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Quantum search algorithms on a regular lattice
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Quantum algorithms for searching for one or more marked items on a d-dimensional lattice provide an
extension of Grover’s search algorithm including a spatial component. We demonstrate that these lattice search
algorithms can be viewed in terms of the level dynamics near an avoided crossing of a one-parameter family
of quantum random walks. We give approximations for both the level splitting at the avoided crossing and the
effectively two-dimensional subspace of the full Hilbert space spanning the level crossing. This makes it possible
to give the leading order behavior for the search time and the localization probability in the limit of large lattice
size including the leading order coefficients. For d = 2 and d = 3, these coefficients are calculated explicitly.
Closed form expressions are given for higher dimensions.
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I. INTRODUCTION

Quantum random walks as introduced by Aharonov et al.
[1] in 1993 have gained considerable attention over the last
decade or so. It could be demonstrated that a quantum version
of a classical random walk has transport properties which
exhibit polynomial or even exponential speed-up compared
to a classical random walk; see [2–4] for overviews. This has
recently led to increased efforts for implementing quantum
random walks experimentally. In particular, one-dimensional
quantum walks have been realized using neutral atoms in
optical lattices [5], with trapped ions [6–8], and using coupled
optical wave guides [9] and single photons [10].

One of the most fascinating applications based on quantum
random walk concepts is the spatial quantum search algorithm.
Like Grover’s search algorithm [11,12] for searching an
unstructured data base, quantum walk search algorithms can
(usually) achieve a quadratic speed-up compared to the corre-
sponding classical search. The most prominent algorithms are
the search on a hypercube introduced by Shenvi et al. [13] and
the search on a d-dimensional lattice presented by Childs and
Goldstone [14] in a continuous time version and by Ambainis,
Kempe, and Rivosh (AKR) [15] as a discrete time algorithm.
In particular, it has been pointed out that the search in a
two-dimensional lattice is critical with the number of search
steps scaling like O(

√
N log N ) whereas quantum search

algorithms on the hypercube as well as for lattices of dimension
d � 3 scale like O(

√
N ); here, N is the number of vertices.

Expressions for the leading order coefficients for the search
time in the hypercube have been given in [16]; proposals for
improving the efficiency of the hypercube search can be found
in [17]. In [18], it has been shown that the number of steps
for solving the search problem on a two-dimensional lattice
can be decreased to O(

√
N log N ) by modifying the quantum

walk search algorithm, thus coming closer to the theoretical
lower bound �(

√
N ) [19].1 By changing the starting state, it

has been demonstrated in [20] that quantum search algorithms

1The scaling behavior of a function will be denoted as follows:
f (x) = O(g(x)) indicates that there exist two positive constants
x0 > 0 and a > 0, such that for all x > x0 the inequality 0 �
f (x) � ag(x) is true. Similarly, f (x) = �(g(x)) will be written

on lattices can also be used in a sender-receiver configuration.
Remarkably, this makes it possible to communicate across
the lattice by sending information exclusively between two
(or more) marked vertices where neither the sender nor the
receivers need to know each other’s position.

We will in the following focus on the AKR search
algorithm on d-dimensional lattices. Extending the ideas and
techniques from [16], we will give improved estimates for
the approximate eigenstate of the walk localized on the target
vertex. This makes it possible to give closed form expressions
for the leading order coefficients for both the search time
and the search efficiency, that is, the overlap of the localized
state with the target vertex. The paper is structured as follows.
The search algorithm on the lattice and the basic vectors
spanning the search space in the full Hilbert space are
introduced in Sec. II; this is followed by a detailed calculation
of the normalization constant for the approximate eigenvector
localized on the target vertex in Sec. III. In Sec. IV, we analyze
the spectral gap at the avoided crossing in an (approximately)
invariant two-dimensional subspace. The results for leading
order contributions to the localization time and the amplitude
at the target vertex are given in Sec. V.

II. A QUANTUM SEARCH ON A d-DIMENSIONAL
SQUARE LATTICE: INTRODUCING THE ALGORITHM

Quantum search algorithms—like Grover’s search—are
usually described in terms of two unitary matrices: a quantum
or wave propagator acting uniformly on the search space and
a “marker” (or oracle) matrix which deviates from the identity
only locally near the marked item. We will discuss here a
lattice search algorithm of this type which was first introduced
in [15]. We will limit the discussion to the search of one target
vertex only. A generalization to more than one marked item
is straightforward and is discussed in [15,20]. We will first
introduce the propagator without a marked vertex leading to a
quantum random walk on the lattice. The full quantum search

if 0 � bg(x) � f (x) for all x > x0 for some constants x0, b > 0.
Furthermore, f (x) = �(g(x)) denotes that f (x) = O(g(x)) as well
as f (x) = �(g(x)).
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algorithm and an analysis of the search mechanism will be
given in Sec. II B.

A. A quantum random walk on a d-dimensional lattice

We consider a d-dimensional regular lattice with n vertices
along each dimension, that is, N = nd vertices overall. The
positions of the vertices in the lattice are defined by the set
of vectors |x〉 = �x = (x1,x2, . . . , xd ) with integer coordinates
xi ∈ {0,1, . . . , n − 1}. Periodic boundary conditions will be
assumed throughout.

Following the spirit of quantum graph theory, we consider
quantum waves propagating freely along one-dimensional
bonds connecting adjacent vertices [21,22]. Waves undergo
scattering at the vertices described by a 2d × 2d scattering
matrix σ , where 2d is the number of bonds connected at each
vertex. The scattering mechanism is the same at all vertices
and the quantum dynamics on the lattice is in fact equivalent
to a quantum random walk; see [23]. [The unitary scattering
matrix σ can then also be interpreted as a “coin flip” matrix
acting on an internal (spin) degree of freedom of a quantum
walker.] The total Hilbert space H of the problem is described
as the tensor product of a vertex or position space |x〉 and a
direction or coin space |i±〉 representing waves traveling in the
negative or positive direction along the ith axis, i = 1, . . . , d.
The dimension of H is thus 2dnd = 2dN.

We chose a scattering matrix σ which is unbiased with
respect to the outgoing directions (except possibly for back-
scattering). A natural choice is Grover’s matrix [12] (which
incidentally also features prominently in a quantum graph
approach using Kirchhoff boundary conditions on the vertices;
see [21,22]). That is, we define [15]

σ = 2|s〉〈s| − 12d , (1)

where |s〉 is the uniform distribution in coin space, that is,

|s〉 = 1√
2d

d∑
i=1

(|i+〉 + |i−〉).

We have identical scattering processes at all vertices and we
thus define a global coin flip matrix,

C = σ ⊗ 1N . (2)

The wave propagation on the lattice is now given by a
“shift” matrix S. Waves emanating from vertex |x〉 in the i±th
direction will reach vertex |x ± ei〉 with |ei〉, the unit vector in
the i+th direction. Writing |i±x〉 = |i±〉 ⊗ |x〉, we find for the
shift matrix S,

S =
∑

�x

d∑
i=1

(|i+x − ei〉〈i−x| + |i−x + ei〉〈i+x|). (3)

This is a natural choice for a moving shift since a walker
leaving vertex �x in direction i+, enters vertex �x + �ei from
direction i−.

The quantum random walk U0 is defined by first applying
the global coin flip and then the moving shift,

U0 = SC. (4)

In what follows, the eigenvectors and eigenvalues of U0 will
be of importance; these have been discussed in some detail
in [15]. Using the tensor product, we write each eigenvector
of U0 as a vector in coin space |uc

�k〉 and a position space vector
|X�k〉 according to ∣∣φc

�k
〉 = ∣∣uc

�k
〉⊗ |X�k〉,

where �k is a d-dimensional vector with components ki ∈
{0,1, . . . , n − 1} and c = 1, . . . , 2d. The vector in position
space can be factorized in the form |X�k〉 =⊗d

i=1 |χki
〉, where

the |χki
〉 are obtained from the canonical basis vectors of

position space using a Fourier transformation, that is,

∣∣χki

〉 = 1√
n

n−1∑
j=0

αkij |j 〉 where α = e2πi/n. (5)

The thus obtained basis provides a convenient way to denote
the eigenvectors in position space.

For the quantum search, only 2N − 1 of the 2dN eigen-
vectors of U0 are important, namely, those having a coin
space component not orthogonal to |s〉. These vectors are
the one-eigenvector |φ0〉 = |s〉 ⊗ |X�0〉, which is the uniform
distribution, and two eigenvectors [15]

|φ±
�k 〉 = |u±

�k 〉 ⊗ |X�k〉 (6)

for each �k �= �0 with complex conjugated eigenvalues e±iθ�k , and

cos θ�k = 1

d

d∑
i=1

cos
2πki

n
.

The expressions for the vector |u±
�k 〉 in coin space become

more and more cumbersome with increasing d and we will not
attempt to give closed form expressions here. However, it has
been shown in [15] that

〈s|u±
�k 〉 = 1√

2
, (7)

which is all we need in what follows. In addition, one has
(d − 1)N + 1 eigenvectors with eigenvalue 1 and (d − 1)N
eigenvectors with eigenvalue −1 all with coin components
perpendicular to |s〉. Note that the high degeneracies in the
±1 eigenspaces are due to the special choice of the coin flip
matrices σ and thus C.

B. The quantum search algorithm

1. The quantum search matrix

We now assume that the lattice contains one marked vertex
at (a yet unknown) position �v; here, the marking is done by
applying a different coin flip or scattering matrix σ ′ at this
target vertex |v〉. The search algorithm is then defined as

U1 = SC ′, (8)

C ′ = C − (σ − σ ′) ⊗ |v〉〈v|. (9)

Note that, since |v〉〈v| is a projection on the target vertex, the
additional term changes at most 4d2 matrix elements in U0.
As U0 is a 2dN × 2dN matrix, U1 is identical to U0 up to a
local perturbation and the quantum search algorithm can be
regarded as a locally perturbed quantum random walk.
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FIG. 1. (Color online) Probability distribution of the quantum
walk on a 31 × 31 lattice for a number of time steps t (on a logarithmic
scale).

Following AKR we define σ ′ = −12d which leads after
some algebra to

U1 = U0(1 − 2|sv〉〈sv|). (10)

The perturbed quantum walk is shown in Fig. 1; starting
from the uniformly distributed state |φ0〉 and applying U1

for t time steps with t = 0, 19, 38, and 57, one observes a
localization on the target vertex. Plotted here is the probability
(wave amplitude squared) on a logarithmic scale.

Following the analysis developed for the hypercube in [16],
we now define a one-parameter family of unitary matrices Uλ

for the d-dimensional lattice:

Uλ = U0 + (eiπλ − 1)U0|sv〉〈sv|. (11)

This makes it possible to extrapolate smoothly from the un-
perturbed walk (λ = 0) to the AKR search algorithm (λ = 1)
and will be helpful for analyzing the eigenvalues and eigen-
vectors of Uλ near λ = 1 in terms of the eigenbasis of the
unperturbed quantum walk.

Before doing so, we simplify the problem by reducing
the size of the Hilbert space. We note that eigenvectors of
U0 with eigenvalues ±1 (except the important vector |φ0〉)
are orthogonal to |sv〉 and thus remain eigenvectors of Uλ

independent of the value of λ; this part of H is thus irrelevant
for the localization effect. We define a reduced space H′ by
projecting out all ±1 eigenvectors of U except |φ0〉. This
subspace is a (2N − 1)-dimensional Hilbert space spanned
by |φ0〉 and |φ±

�k 〉 for �k �= �0.

The scalar product 〈φ±
�k |sv〉 can be obtained using (7); thus

an expansion of |sv〉 in terms of eigenvectors of U0 in the
reduced space gives

|sv〉 = 1√
N

|φ0〉 + 1√
2N

∑
�k �=�0

α−�k�v(|φ+
�k 〉 + |φ−

�k 〉). (12)

Since |sv〉 is orthogonal to all eigenvectors of U0 not contained
in H′, this expansion also holds for the nonreduced space.

0 0.5 1 1.5 2
λ

-2

0

2

ω

FIG. 2. The eigenphases as functions of λ for n = 11, d = 2.

2. Approximate eigenvectors of Uλ

In the following we will analyze the search algorithm
in detail. Our approach is based on the work in [16]
and makes it possible to go beyond the results found in
[15] by giving explicit leading order coefficients for the
search time.

The overall strategy is best explained by considering briefly
the spectrum of eigenphases {ωi} of Uλ; in Fig. 2, the
eigenphases are shown for an 11 × 11 lattice in the reduced
space H′. The local perturbation leads to a set of avoided
crossings in the spectrum, most notably at λ = 1, ω = 0. This
avoided crossing is formed by the state |φ0〉 (which is a 1
eigenstate of U) and “another” state, which we will denote |νλ〉
in what follows. It will be argued that |νλ〉 is localized in the
vicinity of the target vertex and that the subspace {|φ0〉,|νλ〉}
is an approximate basis for the two-dimensional eigenspace
spanned by the exact eigenstates at the crossing. The quantum
search amounts then to a rotation in this two-dimensional
subspace of H′ similar to the mechanism found in Grover’s
original search. It is important to note that unlike for Grover’s
algorithm, for the lattice search only approximate expressions
for the state |νλ=1〉 are known which will be given below;
furthermore, the starting state |φ0〉 has a small overlap with
the rest of the spectrum at λ = 1 leading to losses.

We start by considering the uniform distribution |φ0〉 which
is the remaining 1 eigenvector of U0 in H′. One obtains

Uλ|φ0〉 = |φ0〉 + (eiλπ − 1)U0|sv〉 1√
N

, (13)

that is, |φ0〉 is an approximate eigenvector of Uλ of order
O(N−1/2). The remaining components, U0|sv〉, are localized
on the 2d sites next to the target vertex. This can be seen from
the definition of the shift operator S in Eq. (3).

To obtain |νλ〉, we start by expanding the vector in the basis
of the unperturbed walk U0, that is,

|νλ〉 = a0|φ0〉 +
∑
�k �=�0

(a+
�k |φ+

�k 〉 + a−
�k |φ−

�k 〉), (14)
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with a yet unknown set of coefficients {a0,a
±
�k }. Normalization

requires

|a0|2 +
∑
�k �=�0

(|a+
�k |2 + |a−

�k |2) = 1. (15)

We now make the ansatz

Uλ|νλ〉 ≈ eig(λ)|νλ〉, (16)

that is, we assume an approximate eigenvalue equation with a
yet unknown eigenvalue eig(λ). This gives rise to a linear system
of equations for the 2N − 1 unknown coefficients {a0,a

±
�k }. We

are looking for a second approximate eigenvector which spans
the space at the avoided crossing together with |φ0〉, that is,
we demand that |νλ〉 and |φ0〉 are orthogonal which leads to
a0 = 0.

A straightforward application of Uλ on |νλ〉 results in

Uλ|νλ〉 =
∑
�k �=�0

(a+
�k eiθ�k |φ+

�k 〉 + a−
�k e−iθ�k |φ−

�k 〉) + (eiπλ − 1)

×
⎡
⎣ 1√

N
|φ0〉 + 1√

2N

∑
�k �=�0

α−�k�v(eiθ�k |φ+
�k 〉

+ e−iθ�k |φ−
�k 〉)
⎤
⎦ 〈sv|νλ〉, (17)

with �ν, the position of the target vertex. In what follows, we
set

b := 〈sv|νλ〉, (18)

and define the overall phase factor of |νλ〉 such that b is real
with 0 � b � 1. Note that b determines the overlap of the
approximate eigenvector with the target vertex. We will show
in the next section that b is of order O(1/

√
ln N ) for d = 2

and O(1) for d � 3 at λ = 1; thus |ν1〉 is indeed localized at
the target vertex.

We now add and subtract the right-hand side of Eq. (16) in
(17) and obtain

Uλ|νλ〉
= eig(λ)|νλ〉 + b(eiπλ − 1)√

N
|φ0〉

+
∑
�k �=�0

{[
a+

�k (eiθ�k − eig(λ)) + b(eiπλ − 1)α−�k�veiθ�k√
2N

]
|φ+

�k 〉

+
[
a−

�k (e−iθ�k − eig(λ)) + b(eiπλ − 1)α−�k�ve−iθ�k√
2N

]
|φ−

�k 〉
}

.

(19)

An approximate solution is obtained if each of the coefficients
in front of the components |φ±

�k 〉 is zero, that is,

a±
�k = b(eiπλ − 1)α−�k�ve±iθ�k√

2N (eig(λ) − e±iθ�k )
. (20)

The resulting vector Uλ|νλ〉 has a component in the |φ0〉
direction of order O(1/

√
N ); thus, similar to Eq. (13), |νλ〉

remains in a subspace spanned by itself and |φ0〉.

The coefficients a±
�k enter Eq. (20) also through b, that is,

(20) represents a set of linear, coupled equations. Assuming
b �= 0, Eq. (18) can be divided by b and the system of equations
has a solution if and only if

1 = (eiπλ − 1)

2N

∑
�k �=�0

(
eiθ�k

eig(λ) − eiθ�k
+ e−iθ�k

eig(λ) − e−iθ�k

)
. (21)

The avoided crossing occurs at λ = 1 and eig(1) = 1, for
which the right-hand side of Eq. (21) can be obtained directly:

−2

2N

∑
�k �=�0

(−1) = 1

N
(N − 1) = 1 − 1

N
, (22)

that is, no solution exists which maps a vector |ν1〉 exactly
onto itself and |φ0〉. The error term 1/N is small compared to
typical coupling terms between basis states |φ±

�k 〉 (which are

of the order 1/
√

N ) and the set of coefficients from Eq. (20)
thus define an approximate solution of the eigenvalue Eq. (16).
That is, the vector,2

|νλ〉 = b(eiπλ − 1)√
2N

∑
�k �=�0

α−�k�v

×
(

eiθ�k

eig(λ) − eiθ�k
|φ+

�k 〉 + e−iθ�k

eig(λ) − e−iθ�k
|φ−

�k 〉
)

, (23)

fulfills to leading order the equation

Uλ|νλ〉 = eig(λ)|νλ〉 + b(eiπλ − 1)√
N

|φ0〉, (24)

where g(λ) is defined implicitly by minimizing the expression
(21). An expansion of g(λ) around λ = 1 can be obtained
successively; see [16]. We will restrict our attention here to
the case λ = 1 and thus |νλ=1〉 for which g(1) = 0.

The only unknown quantity in determining |ν1〉 is the
constant b which has dropped out of the equations. Since
the vector |ν1〉 needs to be normalized, b turns out to be a
normalization constant.

III. NORMALIZATION OF |ν1〉
Evaluating the normalization constant b turns out to be the

most laborious and technical part of the derivation. Readers
more interested in the final results may want to proceed directly
to the result in Eq. (54).

We will in the following restrict ourselves to the case λ = 1
and thus eig(1) = 1 only. Demanding the vector in Eq. (23) to

2This vector |νλ=1〉 plays essentially the same role as the vector
|ωgood〉 considered by AKR [15]. Both vectors are in good approxi-
mation in the subspace spanned by the two exact eigenvectors at the
crossing. However, the vector in [15] is not orthogonal to |φ0〉 and
one needs information about the exact eigenphases of Uλ=1 at the
crossing. For the vector presented here, a diagonalization of Uλ=1 is
not necessary.
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be normalized, one obtains

1

|b|2 = 4

2N

∑
�k �=�0

2

|1 − eiθ�k |2 (25)

= 2d

N

∑
�k �=�0

1

d −∑d
i=1 cos 2πki

n

, (26)

where the sum is taken over all vectors �k �= �0 in a
d-dimensional cube with ki ∈ {0,1, . . . , n − 1}.

We start by rearranging the total sum into a summation
over lower-dimensional objects where only a limited number
of entries of �k are different from 0. That is, we consider the
summation over all one-dimensional edges, two-dimensional
faces, three-dimensional cubes, and so on, where the nonzero
entries ki vary from 1 to n − 1. The edges are obtained by
choosing d − 1 entries of �k equal 0, the faces have d − 2
entries of �k equal 0 and higher dimensions accordingly. This
new arrangement results in

1

|b|2 = 2d

N

∑
�k �=�0

1

d −∑d
i=1 cos 2πki

n

(27)

= 2d

N
d︸︷︷︸

number of edges

n−1∑
j1=1

1

1 −∑1
l=1 cos 2πjl

n︸ ︷︷ ︸
contribution of one edge

+ 2d

N

(
d

2

)
︸︷︷︸

number of faces

n−1∑
j1,j2=1

1

2 −∑2
l=1 cos 2πjl

n︸ ︷︷ ︸
contribution of one face

+ · · · (28)

= 2d

N

d∑
i=1

(
d

i

) n−1∑
j1,j2,...,ji=1

1

i −∑i
l=1 cos 2πjl

n

(29)

= 2d

N

d∑
i=1

(
d

i

)( n

π

)i

Ii , (30)

where Ii has been implicitly defined in (30). Using the identity
1 − cos x = 2 sin2 x

2 , we can simplify the sums and obtain

Ii = 1

2

(π

n

)i
n−1∑

j1,...,ji=1

(
i∑

l=1

sin2 πjl

n

)−1

. (31)

Using Poisson’s summation formula, one arrives at

Ii = 1

2

(π

n

)i
∫ n− 1

2

1
2

dx1

∞∑
m1=−∞

e2πim1x1 . . .

∫ n− 1
2

1
2

dxi

∞∑
mi=−∞

e2πimixi

(
i∑

l=1

sin2 πxl

n

)−1

(32)

= 1

2

∫ π− π
2n

π
2n

dy1 . . .

∫ π− π
2n

π
2n

dyi,

∞∑
m1=−∞

. . .

∞∑
mi=−∞

e2in(m1y1+···+miyi )∑i
l=1 sin2 yl

, (33)

where the last equality is due to a reordering of terms and
substituting yj = π

n
xj in all integrals.

The dominant contributions come from the terms mj = 0
for all j = 1, . . . i, that is, we write to leading order in the
large n limit,

Ii = 1

2

∫ π− π
2n

π
2n

dy1 . . .

∫ π− π
2n

π
2n

dyi

1∑i
l=1 sin2 yl

. (34)

Using the symmetry of the sine squared function, the integrals
(34) can be simplified to

Ii = 2i−1
∫ π

2

π
2n

dy1 . . .

∫ π
2

π
2n

dyi

1∑i
l=1 sin2 yl

. (35)

We are only interested in leading order contributions and will
thus use the integral (35) as an approximation for the full set
of sums in Eq. (33). The expression (35) will form the starting
point of our calculation of the leading order behavior of |b|.

A. Integration of I1

The first integration can be done explicitly and one obtains

I1 =
∫ π

2

π
2n

dy
1

sin2 y
= cot

π

2n
= 2n

π
+ O

(
1

n

)
. (36)

B. Integration of I2

To obtain a leading order estimate for

I2 = 2
∫ π

2

π
2n

dx

∫ π
2

π
2n

dy
1

sin2 x + sin2 y
, (37)

we first note that the integrand is symmetric with respect to
exchanging x and y and, therefore,

I2 = 4
∫ π

2

π
2n

dx

∫ π
2

x

dy
1

sin2 x + sin2 y
. (38)

Now, the y integration is solved by observing that

d

dx

arctan
(

tan y

tan x

√
2 tan2 x + 1

)
sin x

√
sin2 x + 1

= 1

sin2 x + sin2 y
. (39)

Thus,

I2 = 4
∫ π

2

π
2n

dx

[
arctan

( tan y

tan x

√
2 tan2 x + 1

)
sin x

√
sin2 x + 1

] π
2

y=x

(40)

= 4
∫ π

2

π
2n

dx

π
2 − arctan(

√
2 tan2 x + 1)

sin x
√

sin2 x + 1
. (41)

Integrating by parts results in

I2 = 4 ln

(√
2 + cot2

π

2n
+ cot

π

2n

)

×
(

π

2
− arctan

√
2 tan2 π

2n
+ 1

)

− 4
∫ π

2

π
2n

dx
ln(

√
2 + cot2 x + cot x)√

2 + cot2 x
. (42)

012326-5



BIRGIT HEIN AND GREGOR TANNER PHYSICAL REVIEW A 82, 012326 (2010)

Using the substitution z = tan x, the resulting integration can
finally be written in the form3

I2 = π ln n + π ln
4

π
− 2K − π

2
ln 2 + O

(
1

n2

)
, (43)

where K ≈ 0.916 is Catalan’s constant.
Using Eq. (30), the result for the (d = 2)-dimensional

lattice is

1

|b|2 = 4

N

2∑
i=1

(
2

i

)( n

π

)i

Ii (44)

= 2

π
ln N + 8

π2
(2 − K) + 2

π
ln

8

π2
+ O

(
1

N

)
. (45)

C. Integration of I3

For the third integral I3, we will only evaluate the
asymptotic limit for n → ∞. Starting with

I3 = 4
∫ π

2

π
2n

dx

∫ π
2

π
2n

dy

∫ π
2

π
2n

dz
1

sin2 x + sin2 y + sin2 z
, (46)

we evidently have I3 > 0 independent of n. An upper bound
for I3 can be obtained using spherical coordinates, that is,

I3 < 4
∫ π

2

√
3

π
2n

dr

∫ π
2

0
dϕ

∫ π

π
2

dθ
r2 sin θ

sin2 x + sin2 y + sin2 z
.

(47)

The integrand is bounded in the whole region of integration and
in particular also in the limit r → 0; we thus have I3 = O(1).

Using numerical integration methods, we obtained

lim
n→∞ I3 = 15.672 . . . . (48)

Substituting again into Eq. (30), we obtain for the normal-
ization of the (d = 3)-dimensional lattice:

1

|b|2 = 6

N

3∑
i=1

(
3

i

)( n

π

)i

Ii (49)

= 6

π3
I3 = �(1). (50)

D. Integrations for d > 3

We show in this section that 1/b2 = O(1) for all d �
3; actual numerical values can be obtained by integrating
expressions of the form (35) using numerical methods. From
this, we can deduce that the search time T indeed scales like
T ∼ √

N for d � 3 as will be shown in Sec. IV.
We will proceed by induction: from (50) it is evident that

1/|b|2 = O(1) holds for d = 3. Thus, assuming that 1/|b|2 =
O(1) holds for some d � 3, it follows from Eq. (30) and Ii > 0,
that Id = O(1).

3The following result was obtained using MATHEMATICA.

It remains to be shown that 1/|b|2 = O(1) also holds for
d + 1. The starting point is again provided by Eq. (30), but
this time for d + 1, that is,

1

|b|2 = 2(d + 1)

[
d∑

i=1

(
d + 1

i

)
ni−d−1

πi
Ii + 1

πd+1
Id+1

]
.

(51)

The sum of the first d terms adds to a leading order of
1/n, since Ii = O(1) for 3 � i � d and the lower-order
terms I2 = �(ln N ) and I1 = �(n) have prefactors n1−d and
n−d , respectively. Therefore, these contributions vanish for
n → ∞.

It remains to be shown that Id+1 = O(1) and this is done
using Eq. (35), that is,

Id+1 = 2d

∫ π
2

π
2n

dy1 · · ·
∫ π

2

π
2n

dyd+1
1∑d

l=1 sin2 yl + sin2 yd+1

.

(52)

As the squared sines are greater than zero, an upper bound
is obtained by dropping the last sine term. Now, the yd+1

integration is performed, that is,

Id+1 � 2d
(π

2
− π

2n

) ∫ π
2

π
2n

dy1 · · ·
∫ π

2

π
2n

dyd

1∑d
l=1 sin2 yl

=
(
π − π

n

)
Id, (53)

and this results in Id+1 = O(1). Thus, the normalization
constant b is of the order O(1).

The overall result for the normalization constant is to
leading order,

1

b2
=

⎧⎪⎨
⎪⎩

2
π

ln N + 8
π2 (2 − K) + 2

π
ln 8

π2 for d = 2,
6
π3 I3 for d = 3,

O(1) for d � 4,

(54)

where K ≈ 0.916 is Catalan’s constant and we found I3 ≈
15.672 asymptotically; see (48). In particular, it has been
shown that for i � 3, limn→∞ Ii converges. Thus, the leading
order contribution to b can be calculated from Eq. (35) by
replacing π

2n
with 0 and using numerical integration methods.

E. Localization

The normalization parameter b is at the same time a measure
for the localization of |ν1〉 onto the state |sv〉 and thus on the
target vertex �v; see Eq. (18). Hence, the probability that the
search will be localized at the target vertex |v〉 is proportional
to

|〈ν1|sv〉|2 = b2. (55)

(In fact, b2 gives only a lower bound for the localization
probability as |s〉 fixes the coin space state in which the
localized state is measured.)

For estimating the overlap of the two-dimensional
eigenspace at the avoided crossing with the basis vector pair
|φ0〉,|ν1〉, we can resort to the results Eqs. (13) and (24). In
particular, we found in (13) that the uniform state |φ0〉 is
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mapped onto itself and a component in the direction U0|sv〉.
One finds by straightforward calculation

〈ν1|U0|sv〉 = − 2b

2N

∑
�k �=�0

(
1

e−ig(1) − eiθ�k
+ 1

e−ig(1) − e−iθ�k

)

(56)

= −b

(
1 − 1

N

)
. (57)

The overlap of |ν1〉 with U0|sv〉, that is, the localization on the
nearest neighbors is thus of the same order as on the target
state |sv〉 itself. To obtain the last equality eig(1) = 1 has been
used.

We have shown that the vector |ν1〉 constructed in the
preceding section is localized on the target vertex. We have
furthermore shown that the vector space spanned by the
orthonormal pair of approximate eigenvectors {|φ0,|ν1〉} has
an order O(1) or O(1

√
ln N ) overlap with itself under the

unitary map U1.

IV. QUANTUM SEARCH AT THE AVOIDED CROSSING

The quantum search algorithm corresponds to a rotation in
a lower-dimensional subspace spanned by the eigenvectors at
the avoided crossing at λ = 1, ω = 0. The search is initialized
in the state |φ0〉 which has an O(1) overlap with the exact
eigenstates at the crossing; see (13). We have constructed a
second approximate eigenvector at the crossing, namely, |νλ=1〉
in (23), again with an O(1) overlap with the eigenspace at the
avoided crossing. We can thus restrict the analysis to studying
the avoided crossing in the subspace of H spanned by the basis
vectors {|φ0〉,|ν1〉}; this subspace is approximately invariant
under the quantum walk U1, as shown in Sec. II B; see also
[16,20].

A. The size of the gap at the avoided crossing

In a first step, we project out the two-dimensional submatrix
related to the (approximately) invariant subspace, namely,
(U 2×2

1 ) = e−iH , where H is a Hermitian 2 × 2 matrix. The
entries of H can be determined by calculating the matrix
elements of (U 2×2

1 ) explicitly. Using Eqs. (12), (13), and (24),
one obtains to leading order,

〈φ0|U1|φ0〉 = 1 − 2

N
, (58)

〈ν1 | U1|ν1〉 = 1 (59)

for the diagonal elements, and

〈φ0|U1|ν1〉 = −2b√
N

, (60)

〈ν1|U1|φ0〉 = −2√
N

〈ν1 | U0|sv〉 (61)

= 2b√
N

(
1 − 1

N

)
(62)

for the off-diagonal entries, where Eq. (57) has been used for
the last equality. Identifying the basis vectors {|φ0〉,|ν1〉} with
{|1〉,|2〉}, we obtain to leading order,

U 2×2
1 =

(
1 −ε

ε 1

)
with ε = 2b√

N
, (63)

which results in a Hamiltonian

H =
(

0 −iε

iε 0

)
. (64)

We note that the coupling term ε scales like 1/
√

N and
depends on the normalization constant b.

Eigenvectors and eigenvalues of H are easily calculated,
that is,

eigenvector eigenvalue

|u1〉 = 1√
2

(
1
i

)
−ε

|u2〉 = 1√
2

(
1
−i

)
ε

(65)

This means, in particular, that the gap at the avoided crossing
behaves like

� = 2ε = 4b√
N

+ O

(
1

N

)
.

The time of search is directly related to the gap �; the
search starts in the vector |φ0〉 = 1/

√
2(|u1〉 + |u2〉) which

after successive iterations becomes

(
U 2×2

1

)t |φ0〉 = e−iH t |φ0〉 = e−iH t 1√
2

(|u1〉 + |u2〉) (66)

= 1√
2

(eiεt |u1〉 + e−iεt |u2〉). (67)

Thus, for a time T := π
2ε

= π
�

, one has e±iεt = ±i and

(
U 2×2

1

)t |φ0〉 = i√
2

(|u1〉 − |u2〉) = −|ν1〉, (68)

which is the localized state. Note that the search time T

is inversely proportional to the coupling parameter ε in
Eq. (64) and thus to the spectral gap at the avoided crossing.
The quantum search algorithm succeeds after O(

√
N/b) steps

and thus faster than any classical search.

V. RESULTS

Putting everything together, we have now identified the
search time in leading order as

T = π

2ε
= π

√
N

4b
. (69)
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FIG. 3. The localization time T after which the walk is localized
at the marked vertex for several N . Numerical result compared to
analytical for d = 2 and 3.

It depends on the normalization constant b which has been
obtained in (54). Overall, the number of time steps T can now
be given as the integer closest to

T =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π
√

N
4

√
2
π

ln N + 8
π2 (2 − K) + 2

π
ln 8

π2 for d = 2,

π
√

N
4

√
6I3
π3 for d = 3,

�(
√

N ) for d � 4.

(70)

Note that the bound for d � 3 is tight because we know
from [11,19] that the search cannot be faster than

√
N . In

Fig. 3, we compare the analytical results for the localization
time with numerical simulations. The theoretical results agree
very well with the outcome of the numerical simulations. The
general behavior suggests that the walk for a fixed number of
vertices is the faster the higher the dimension.

The probability to find the search at the target vertex after
T steps is equal to b2 (18). From Eq. (54), we find

b =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
2
π

ln N+ 16
π2 + 4

π
ln 4

π
− 8K

π2 − 2
π

ln 2+O( 1
N

)
= �( 1√

ln N
) for d = 2,

1√
6

π3 I3

= �(1) for d = 3,

�(1) for d � 4.

(71)

Note that the upper bound for b in the case d � 4 is a
consequence of (69) and the lower bound for the search time
is provided by [19].

To leading order, the localization amplitude at the target
vertex is not N dependent for d � 3; the d = 2 case is
exceptional, as the projection of |ν1〉 onto |v〉 decreases
like 1/

√
ln N . Note, however, that the state |ν1〉 is still
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FIG. 4. Maximal probability at the target vertex as a function of
N . Circles (d = 2) and squares (d = 3) are obtained directly from
the quantum search; the solid and dashed lines represent Eq. (71).
The dashed-dotted line gives the result for b2 obtained directly from
Eq. (30) for d = 3. (Inset) Direct evaluation of Eq. (30) compared
with asymptotic result Eq. (71) for d = 3 over large N interval.

localized on the marked vertex for d = 2 since the average
amplitude of an eigenstate of the random walk U0 on an
arbitrary vertex decreases like 1√

N
. Amplitude amplification

methods can be used to increase the success probability to a
constant in N by repeating the search algorithm O(

√
ln N )

times [24].
In Fig. 4, we compare the numerical results for the

probability to find the walk at the target vertex with the
analytical results for b2. The numerical results are obtained
from running the quantum search algorithm and determining
the maximum of the probability at the target vertex. It is noted
that for d = 3, the asymptotic value given in Eq. (71) is not
reached before N ≈ 106 (see inset of Fig. 4). This corresponds
to a three-dimensional lattice of side length n = 100—far
beyond what can be simulated on a computer. However, a direct
evaluation of b2 in terms of the sums in Eq. (30) confirms the
basic mechanism behind our approach.

VI. CONCLUSIONS

We presented a detailed analysis of the lattice search and
show in particular that the search mechanism is based on a
rotation from a uniformly extended state to a localized state
coupled at an avoided crossing point in the spectrum of the
operator Uλ. The search time and localization strength can be
obtained from an effectively two-dimensional model similar
to the analysis in [16]. We have thus independently verified the
scaling behavior of the search time and localization probability
as stated in [15] and can now also give explicit expressions for
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the leading order coefficients; the results have been verified by
numerical simulations.

A generalization to a search with more than one marked
item is straightforward and leads to reduced models as
presented in [20]. We also give a detailed derivation of how to
obtain the localized state |νλ〉 asymptotically. This is important

for the wave communication protocols proposed in [20]; here,
the search algorithm is used to search for more than one
marked vertex, to send signals through the lattice from a sender
to one or more receiver points, and to construct new search
algorithms that do not rely on knowing the number of target
vertices.
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