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Asymmetrical two-dimensional magnetic lattices for ultracold atoms
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A simple method for implementing an asymmetrical two-dimensional magnetic lattice is proposed. The
asymmetrical two-dimensional magnetic lattice is created by periodically distributing nonzero magnetic minima
across the surface of a magnetic thin film, where the magnetic patterns are formed by milling n × n square holes
on the surface of the film. The method is proposed for trapping and confining quantum degenerate gases, such as
Bose-Einstein condensates and ultracold Fermi gases, prepared in low-magnetic-field-seeking states. Analytical
expressions and numerical simulation results of the magnetic local minima are shown where we analyze the
effect of changing the magnetic lattice parameters, such as the separation of the holes, the hole size, and external
bias magnetic fields, to maintain and locate the nonzero local minima at a suitable distance above the film surface
to avoid the effect of Majorana spin flips and the Casimir-Polder potential.
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I. INTRODUCTION

The field of quantum degenerate gases in periodically
distributed microscopic potentials has gained considerable
attention over the last decade; it is being explored to unlock
the answers to various interesting fundamental questions in
physics. In particular, the field of trapped ultracold atoms in
optical confining fields, that is, optical lattices [1], has achieved
remarkable results in the simulation of condensed-matter
systems. Optical lattices are recognized for their ability to
coherently transfer cold atoms, via spin-dependent transport,
between the lattice sites [2]. Such coherent manipulation has
made it possible, using trapped low-dimensional quantum
gases [3,4], to establish realizable analogies with condensed-
matter systems [5]. As an example, the Mott insulator to
superfluid transition has been observed using optically trapped
Bose-Einstein condensates [6] and, more interestingly, the
transition has also been realized using optically trapped
ultracold fermionic gases [7], as well as the observation of
the Fermi surfaces [8].

In the context of quantum processors using trapped ul-
tracold atoms, it is crucial to satisfy the scalability crite-
rion in order to process quantum information [9]; optical
lattices are thought to provide scalable quantum systems
where, remarkably, they have allowed large-scale quantum
entanglement [10,11], pointing to the possibility of using such
ensembles to serve as quantum processing units.

Integrating ultracold atoms with magnetic microstruc-
tures [12] and the creation of Bose-Einstein condensates on
an atom chip [13–15] have triggered an alternative approach
to optical lattices. To realize a magnetic lattice, periodically
distributed nonzero magnetic-field local minima are created by
fabricating microscopic patterns on the surface of permanent
magnetic materials [16–18] or by using current carrying
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microwires [19]. Magnetic lattices created using permanent
magnetic films have very low technical noise and relatively
high magnetic-field gradients with no resistive heating and
offer a highly stable trapping environment for ultracold atoms.
It is also possible to construct magnetic lattices in one- or
two-dimensional configurations where the flexibility of the
design and current state-of-the art fabrication technologies
allow the implementation of arbitrary trap geometries and
scalable lattice spacing [20,21].

Only atoms prepared in low-field-seeking states are at-
tracted to, and trapped in, the distributed confining mag-
netic potentials above the surface, allowing magnetic-state
selectivity as a characteristic identity of magnetic lattices.
This provides a remarkable opportunity to employ on-chip
detection and manipulation techniques [22] such as applying
radio-frequency fields for on-site atomic manipulation [11],
evaporative cooling, and spectroscopy [23].

One-dimensional magnetic lattices have been used as
magnetic mirrors to reflect atoms in low field-seeking states
[24–27] and, in recent experiments, radial trap frequencies
of up to 90 kHz have been measured for 87Rb atoms
trapped at a distance of ∼5 µm below the surface of a
one-dimensional permanent magnetic lattice [18]. Trapped
gases with temperatures of T = 2.0 ± 0.3 µK have been
observed in a permanent two-dimensional (2D) magnetic
microstructure [23] and coherence times of the order of 1 s have
been recorded for cold 87Rb atoms trapped in two different
hyperfine states on an atom chip [12,28]. A Raman focused
laser may be used to selectively drive the cold atoms into
highly excited Rydberg states, as proposed in [23], which can
also lead to the dipole blockade mechanism [29,30], exhibiting
a single Rydberg excitation per lattice site.

This has attracted the attention to examine qubit formation
and entanglement in magnetic lattices. The internal hyperfine,
or Zeeman, magnetic states of the trapped cold atoms can be
used to encode the qubit states |0〉 and |1〉, where recently a
superposition of two hyperfine states with a long coherence
lifetime has been demonstrated [28], indicating the possibility
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of constructing quantum gates with a lifetime longer than
the gate operation time [31,32]. This as well suggests that
magnetic lattices are promising candidates for a scalable
quantum processing unit.

In this article, we present a simple method for creating
2D magnetic lattice to microscopically confine ultracold
quantum degenerate gases. The proposed magnetic lattice
shows an asymmetrical feature which can be used to simulate
condensed-matter systems [33] where the asymmetrical effect
introduces a tilt in the magnetic potential similar to the
potential tilt in optical lattices [34,35]. It also introduces what
we call the gravitational offset along the gravitational-field
axis [36].

In Sec. II we describe the magnetic lattice structure and
in Sec. III we describe the characteristic parameters and their
effect in maintaining a magnetic lattice with suitable trapping
sites.

II. MAGNETIC-LATTICE STRUCTURE

The proposed structure of the generated magnetic lattice is
realized by milling an n × n array of square holes of width αh,
separated by αs , in a magneto-optic thin film of thickness
τ deposited onto a suitable substrate, where n represents
the number of holes, as illustrated in Figs. 1(a) and 1(b).
The depths of all holes are equal and the holes extend through
the thin film down to the surface of the substrate. The presence
of the holes results in a magnetic-field distribution having
local minima located at effective z distances, dmin, from
the top of the holes. The structure generates periodically
distributed 2D magnetic-field minima above the surface of the
thin film in which the distribution creates a magnetic lattice
with n × n sites or potential wells. The magnetic device is
in its remanently magnetized state with magnetization Mz

perpendicular to the surface plane. We note that this structure
is a special case of the class of magnetic lattices proposed
in [16,18], with t1 = t2 and t3 = 0.

We assume an infinite lattice with hole widths equal to their
separations, that is, αh = αs ≡ α, to simplify the mathematical
derivation. The spatial magnetic-field components Bx , By ,
and Bz can be written as a combination of a field decaying
with distance from the surface of the traps in the z direction
and a periodically distributed magnetic field in the x-y
plane produced by the magnetic induction, B0 = µ0Mz/π ,
at the surface of the magnetized thin film. We define a
surface reference magnetic field Bref = B0(1 − e−βτ ), where
β = π/α, and a plane of symmetry is assumed at z = 0. We
include in the analysis external magnetic-bias-field compo-
nents, Bx bias, By bias, and Bz bias, which can be produced by the
microfabricated configuration. The analytical expressions that
describe the nonzero local minima are derived and simplified
to the following set of equations:

Bx = Bref sin(βx)e−β[z−τ ] − Bref

3
sin(3βx)e−3β[z−τ ]

+ · · · + Bx bias, (1)

By = Bref sin(βy)e−β[z−τ ] − Bref

3
sin(3βy)e−3β[z−τ ]

+ · · · + By bias, (2)

FIG. 1. (Color online) (a) Schematic representation of a magnetic
lattice. (b) The magnetic lattice parameters are specified by the hole
size αh × αh, the separation between the holes αs , and the magnetic
film thickness τ . (c) Magnetic density plot of the simulated finite
magnetic lattice sites in the z-x plane across the center of the lattice.
The traps are located at an effective z distance, dmin, above the holes.
(d,e) Contour plots of the distributed lattice sites across the x-y plane
without (d) and (e) with application of bias fields of Bx bias = By bias =
10 G. (f) 3D plot of the magnetic field of the distributed sites across
the x-y plane at dmin. The field is displayed from the center sites to
the edge sites. Simulation input parameters: αs = αh = 1 µm, Mz =
3 kG, and τ = 2 µm.

Bz = Bref[cos(βx) + cos(βy)]e−β[z−τ ]

− Bref

3
[cos(3βx) + cos(3βy)]e−3β[z−τ ] · · · + Bz bias.

(3)

We neglect the higher-order terms in the preceding equa-
tions because atoms prepared in low-field-seeking states are
trapped in local magnetic minima located at dmin > α/2π .
Thus, Eqs. (1)–(3) reduce to the following:

Bx = B0(1 − e−βτ ) e−β[z−τ ] sin(βx) + Bx bias, (4)

By = B0(1 − e−βτ ) e−β[z−τ ] sin(βy) + By bias, (5)

Bz = B0(1 − e−βτ ) e−β[z−τ ][cos(βx) + cos(βy)] + Bz bias.

(6)
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The magnitude B of the magnetic field above the film surface
can be written, using Eqs. (4)–(6), as

B(x,y,z) = (
B2

x bias + B2
y bias + B2

z bias

+ 2B2
ref[1 + cos(βx) cos(βy)]e−2β[z−τ ]

+ 2Brefe
−β[z−τ ]{sin(βx)Bx bias + sin(βy)By bias

+ [cos(βx) + cos(βy)]Bz bias}
)1/2

. (7)

The distribution of the nonzero local minima is periodic,
and the magnetic-field minima, Bmin, are located at points
defined by the coordinates (xmin,ymin,dmin). The location of
the minima along the x, y, and z axes for an infinite magnetic
lattice can be written as

xmin = nxα, nx = 0, ± 1, ± 2, . . . , (8)

ymin = nyα, ny = 0, ± 1, ± 2, . . . , (9)

dmin ≈ α

π
ln(Bref). (10)

The parameters dmin and Bmin can significantly influence the
lifetime of the trapped cold atoms, making it crucial to initially
choose suitable values of Bmin and dmin when microfabricating
the magnetic lattice structure.

Each individual potential well, that is, lattice site, is
confined through magnetic barriers �B(x) in which their
heights are determined by

�B(x) = |Bmax(x)| − |Bmin(x)|, x ≡ (x,y,z). (11)

The magnetic fields around the local minima have sym-
metrically distributed gradients across the x-y plane. The
curvatures along the x and y axes are given by

∂2B

∂x2
= −β2eβ[z−τ ]Bref

{
cos(βx) cos(βy)√

2 + 2 cos(βx) cos(βy)

+ cos2(βy) sin2(βx)

[2 + 2 cos(βx) cos(βy)]3/2

}
, (12)

∂2B

∂y2
= −β2eβ[z−τ ]Bref

{
cos(βx) cos(βy)√

2 + 2 cos(βx) cos(βy)

+ cos2(βx) sin2(βy)

[2 + 2 cos(βx) cos(βy)]3/2

}
. (13)

Due to the x-y symmetry for an unbiased magnetic lattice,
we find that at the centers of the traps ∂2B

∂x2 = ∂2B
∂y2 holds. The

curvature of the trapping magnetic field at each individual site
is of particular importance when loading the ultracold atoms
into the magnetic lattice. Lattice sites with a steeper gradient
may develop a destructive Majorana spin-flip process. The
loading procedure in this type of magnetic lattice is reported
elsewhere [17].

The curvatures along the confining directions determine
the trapping frequencies, νx,y,z, which depend on the Zeeman
sublevels. For the case of a harmonic potential they are given
by

νk = β

2π

√
µBgF mF

∂2B

∂k2
, k = x,y,z, (14)

and νz =
√

ν2
x + ν2

y , where gF is the Landé g-factor, µB is

the Bohr magneton, and mF is the magnetic quantum number
of the hyperfine state. The nonzero local minimum values
determine the depth of the harmonic potential traps, where,
for an external trapping magnetic field B � h̄�η

µBgF mF
, in which

the hyperfine splitting �η is larger than the Zeeman splitting,
the depth 	depth of an individual trap can be expressed as

	depth(x) = µBgF mF

kB

�B(x) (15)

where kB is the Boltzmann constant. The magnetic potential is
defined as V (x) = µBgF mF B, and the potential barrier heights
in the k direction are given by

�V k(x) = �V k(x)max − �V k(x)min
(16)

= µBgF mF �Bk(x) = kB	depth(x).

For 87Rb atoms in a low-magnetic-field-seeking state with
F = 2 and mF = +2, the potential barrier heights along the
x, y, and z axes are �V x ≈ 184 µK, �V y ≈ 186 µK,
and �V z ≈ 122 µK, respectively, where �Bx = 2.74 G,
�Bx = 2.78 G, and �Bz = 1.83 G. The lattice parameters
are αh = αs = 3.5 µm, τ = 2 µm, Mz = 3.80 kG, Bx bias =
−5 G, By bias = −4.22 G, and Bz bias = −1.87 G.

Simulated maps of the magnetic-field strength distribution
across the x-y plane located at an effective z distance above
the magnetized film surface are shown in Figs. 1(d) and 1(e).
Contour plots are shown for a finite magnetic lattice, Fig. 1(d)
in the initial magnetic state formed by Bref only and Fig. 1(e)
with the application of external bias fields Bx bias and By bias.
Figures 2(a)–2(d) show the dependence of the magnetic-field
gradient on αh and αs .

FIG. 2. (a)–(d) Contour plots of different magnetic-field gradients
for different sizes of a single magnetic potential well simulated using
different values of hole size αh. The simulation is carried out using
the parameters Mz = 2.8 kG, τ = 2 µm, and with external bias fields
Bx bias = By bias = 1.5 G. αh = αs = (a) 1 µm, (b) 3 µm, (c) 5 µm,
and (d) 7 µm.
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FIG. 3. (Color online) (a) Biased and unbiased magnetic-field
minimum Bz

min along the z axis with Bx bias = 3 G. (b) Magnetic-
field minima along the z axis at the center and edge lattice sites.
(c) Magnetic-field distribution along the x axis for an 11 × 11 2D
magnetic lattice with αs = αh = 3.5 µm. (d) Two adjacent magnetic
quantum wells at the lattice edge along the y axis separated by
the magnetic barrier �By and having different values of nonzero
local minima through a tilted (magnetic) potential. Simulation input
parameters: Mz = 2.8 kG and τ = 2 µm with no external bias fields
applied in (b)–(d).

Figure 3(a) shows the location of the magnetic field nonzero
local minimum Bz

min along the z axis at the distance dmin from
the top of the hole. The results shown in Fig. 3(c) demonstrate
the existence of nonzero local minima of the magnetic field
along the x axis at the effective z distance.
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FIG. 4. (Color online) (a) Effect of changing the size of the holes,
αh, on the location of the magnetic-field local minima along the z axis
at dmin above the holes of the thin film and (b) effect of changing the
separation of the holes, αs , across the x-y plane. (c) Simulation result
of varying the barrier heights �By by applying a negative external
Bz bias magnetic field and (d) Bx bias, By bias, and Bz bias effects on
the gradient of the magnetic sites near the local minima along the
z axis. A film thickness of τ = 2 µm is used in the simulation results
shown.
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FIG. 5. (Color online) (a)–(d) Effect of applying a Bz bias field
along the negative direction of the z axis on the magnetic barriers
�By and �Bz and the nonzero magnetic local minima. Enhanced
asymmetrical effect and dmin values are realized for different values
of Bz bias field. Simulation input parameters: n = 11 sites, αs = αh =
3.5 µm, Mz = 2.8 kG, and τ = 2 µm.

III. CHARACTERISTIC PARAMETERS OF THE
ASYMMETRICAL TWO-DIMENSIONAL

MAGNETIC LATTICE

We simulated the effect of changing the dimensions αs and
αh on the characteristic parameters of the magnetic lattice, in
particular the location of the nonzero local minima, their size,
and the curvature of the magnetic field across each individual
lattice site. A shallower or steeper magnetic potential can be
realized by choosing suitable values of αs and αh. Increasing
the separation αs between the holes raises the value of the
nonzero local minimum by several Gauss above zero, thereby
eliminating Majorana spin flips. Also, large separation values,
αs >∼ 2.5 µm, cause the magnetic minima to occur further from
the surface, Figs. 4(a) and 4(b), which keep the cold atoms
away from Casimir-Polder interactions.

FIG. 6. (Color online) Applying external magnetic bias fields,
Bx bias = By bias = 5 G, produces symmetrically distributed magnetic
lattices sites with (almost) no offset of each lattice site. Simulation
input parameters: n = 9, αs = αh = 3.5 µm, Mz = 2.80 kG, and
τ = 2 µm.
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FIG. 7. (Color online) (a) Scanning-electron-microscope and
(b) atomic-force microscope images of a fabricated 2D magnetic
structure. (c) Magnetic field measured using the magnetic-force
microscope and (d) simulation result of the in situ biased 2D magnetic
lattice. Simulation and experimental input parameters: αs = αh =
10 µm, Mz ≈ 2.80 kG, and τ = 1 µm.

Another characteristic is identified for small n. There is
a pronounced asymmetrical distribution of the magnetic local
minima across the x-z and y-z planes; each two adjacent lattice
sites, that is, site (i) and site (i + 1), are displaced along the
z axis and differ from one another by a tilting potential �V i+1

i ,
as shown in Fig. 3(d). We regard the magnetic lattice exhibiting
an asymmetrical behavior as a magnetic band gap structure
similar to the energy band gap structure in semiconductor
devices which may allow the simulation of condensed matter
systems using trapped degenerate quantum gases. Figures 4(a)
and 4(b) summarize the simulation results of changing the
hole size and the separating distance, and Figs. 4(c) and 4(d)
show the effect of applying external magnetic-bias fields on
the height of the magnetic barrier and the amount of potential
tilt between each two adjacent lattice sites, along the y axis
and z axis, respectively.

An asymmetrical magnetic lattice set at the reference
magnetic field, Bref , with no external bias fields, creates a
magnetic confinement with Bmin close to zero. This situation
can be avoided by changing the separation αs between
holes to be larger than the hole size αh. Another way of
setting Bmin �= 0 is to apply external magnetic bias fields.
Figure 5 shows the effect of applying different magnetic bias
fields where we simulated an 11 × 11 asymmetrical magnetic
lattice with αh = αs = 3.5 µm. Moreover, applying external
magnetic-bias fields, namely, Bx bias and By bias, will maintain

symmetrically distributed lattice sites across the x-z and y-z
planes, as shown in Fig. 6. To realize tunneling of cold atoms,
a relatively small separation (<∼2 µm) is necessary.

We have fabricated a magnetic lattice device by milling
an n × n hole structure using a focused ion beam in a
magnetic thin film (a 1-µm-thick film of Bi2Dy1Fe4Gd1O12

material rf-sputtered onto a Si substrate). The detailed de-
scription of our experimental work will be reported elsewhere.
Figures 7(a) and 7(b) show 2D and 3D images of the magnetic
structure taken using a scanning electron microscope and an
atomic-force microscope, respectively. The z component of
the magnetic field of the asymmetrical magnetic lattice is
measured using a magnetic-force microscope, as shown in
Fig. 7(c).

IV. CONCLUSIONS

We have proposed a method of creating an asymmetrical
2D magnetic lattice suitable for trapping and confining
ultracold atoms and quantum degenerate gases prepared in
low-magnetic-field-seeking states. The proposed magnetic
structure can be fabricated by milling an n × n array of
square holes on the surface of permanent magnetic thin film.
Simulation results have shown that it is possible to optimize
the 2D magnetic lattice by choosing suitable values for the
square hole size and their separating distance as well as by
applying external magnetic bias fields. We have also proposed
the possibility of creating discrete magnetic levels using the
asymmetrical character in the distributed magnetic field in
which we associate the discrete effect with a magnetic band
gap structure similar to the energy band gap structure in semi-
conductor devices. This feature will make it possible, using
magnetically trapped ultracold quantum gases, to simulate
condensed-matter systems where many interesting problems
can be investigated, such as exciton and biexciton formation,
the Josephson effect [37], and long-range entanglement [38].
It is of a particular importance to highlight the simplicity of the
method proposed in this article for achieving a 2D magnetic
lattice using current state-of-the-art fabrication technologies.
We have shown that applying external bias fields in the z

direction can be used to control the potential barrier height
and hence the tunneling process of the cold atoms between
sites presenting the asymmetric 2D magnetic lattice as a
promising candidate for processing quantum information, such
as multipartite entanglement and qubit formation.
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[8] M. Köhl, H. Moritz, T. Stöferle, K. Gunter, and T. Esslinger,
Phys. Rev. Lett. 94, 080403 (2005).

[9] D. P. DiVincenzo, Fortschr. Phys. 48, 771 (2000).
[10] O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and
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J. Reichel, Phys. Rev. Lett. 92, 203005 (2004).

[29] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, and D. M. Lukin,
Phys. Rev. Lett. 85, 2208 (2000).

[30] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan,
D. Jaksch, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 87, 037901
(2001).

[31] J. Cirac and P. Zoller, Nature (London) 404, 579
(2000).

[32] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188
(2001).

[33] D. Jakscha and P. Zoller, Ann. Phys. 315, 52 (2005).
[34] S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, Nature

(London) 449, 579 (2007).
[35] F. Cataliotti, S. Burger, P. M. C. Fort, F. Minardi, A. Trombettoni,

A. Smerzi, and M. Inguscio, Science 293, 843 (2001).
[36] W. M. Liu, W. B. Fan, W. M. Zheng, J. Q. Liang, and S. T. Chui,

Phys. Rev. Lett. 88, 170408 (2002).
[37] A. Abdelrahman, P. Hannaford, and K. Alameh, Opt. Express

17, 24358 (2009).
[38] A. M. Abdelrahman, P. Hannaford, M. Vasiliev, and K. Alameh,

in Asia Communications and Photonics Conference and
Exhibition, Technical Digest (CD) (Optical Society of America,
2009), paper ThEE4.

012320-6

http://dx.doi.org/10.1038/nature07244
http://dx.doi.org/10.1103/PhysRevLett.94.080403
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11%3C771::AID-PROP771%3E3.0.CO;2-E
http://dx.doi.org/10.1038/nature02008
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1007/s003400200861
http://dx.doi.org/10.1103/PhysRevLett.87.230401
http://dx.doi.org/10.1103/PhysRevLett.87.230401
http://dx.doi.org/10.1038/35097032
http://dx.doi.org/10.1038/35097032
http://dx.doi.org/10.1103/RevModPhys.79.235
http://dx.doi.org/10.1103/RevModPhys.79.235
http://dx.doi.org/10.1088/0953-4075/39/4/009
http://dx.doi.org/10.1088/0953-4075/39/4/009
http://dx.doi.org/10.1088/0953-4075/40/6/018
http://dx.doi.org/10.1088/0953-4075/40/6/018
http://dx.doi.org/10.1088/0953-4075/41/6/065301
http://dx.doi.org/10.1016/S0030-4018(02)01390-1
http://dx.doi.org/10.1016/S0030-4018(02)01390-1
http://dx.doi.org/10.1103/PhysRevA.76.033408
http://dx.doi.org/10.1103/PhysRevA.76.033408
http://dx.doi.org/10.1103/PhysRevA.77.033409
http://dx.doi.org/10.1103/PhysRevLett.97.023002
http://dx.doi.org/10.1103/PhysRevLett.97.023002
http://dx.doi.org/10.1088/1367-2630/11/2/023021
http://dx.doi.org/10.1088/1367-2630/11/2/023021
http://dx.doi.org/10.1007/BF00325385
http://dx.doi.org/10.1007/BF00325385
http://dx.doi.org/10.1103/PhysRevLett.75.629
http://dx.doi.org/10.1103/PhysRevLett.75.629
http://dx.doi.org/10.1088/1355-5111/8/3/030
http://dx.doi.org/10.1103/PhysRevA.79.053407
http://dx.doi.org/10.1103/PhysRevA.79.053407
http://dx.doi.org/10.1103/PhysRevLett.92.203005
http://dx.doi.org/10.1103/PhysRevLett.85.2208
http://dx.doi.org/10.1103/PhysRevLett.87.037901
http://dx.doi.org/10.1103/PhysRevLett.87.037901
http://dx.doi.org/10.1038/35007021
http://dx.doi.org/10.1038/35007021
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1016/j.aop.2004.09.010
http://dx.doi.org/10.1038/nature06186
http://dx.doi.org/10.1038/nature06186
http://dx.doi.org/10.1126/science.1062612
http://dx.doi.org/10.1103/PhysRevLett.88.170408
http://dx.doi.org/10.1364/OE.17.024358
http://dx.doi.org/10.1364/OE.17.024358

