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Implementation of a three-qubit quantum error-correction code in a cavity-QED setup
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The correction of errors is of fundamental importance for the development of contemporary computing devices
and robust communication protocols. In this paper we propose a scheme for the implementation of the three-qubit
quantum repetition code, exploiting the interaction of Rydberg atoms with the quantized mode of a microwave
cavity field. Quantum information is encoded within two circular Rydberg states of the atoms and encoding and
decoding processes are realized within two separate microwave cavities. We show that errors due to phase-noise
fluctuations could be efficiently corrected using a state-of-the-art apparatus.
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I. INTRODUCTION

Quantum computers offer the potential to solve certain
classes of problems that appear to be practically unsolvable
with classical computers. For example, they allow for efficient
prime factorization [1] and for the efficient simulation of
quantum systems [2]. However, quantum computers are
particularly subject to the deleterious effects of noise and
decoherence. In fact, the speedup provided by quantum com-
puters relies on the possibility of creating and manipulating
coherent superpositions of quantum states, which, however,
are extremely sensitive to the coupling with external degrees
of freedom. Therefore the protection from noise and errors is
of fundamental importance for the realization of any quantum
computer. At first sight, quantum error correction seems to be
precluded by the no-cloning theorem [3], which seems to rule
out redundancy as usually employed in error correction. The
discovery of quantum error-correction codes (QECC) [4,5]
that allow fault-tolerant quantum computing [6] has therefore
made the realization of practical quantum computers viable.
The literature on the theory of QECC is vast and now covers a
wide range of approaches (see for examples the recent reviews
of Refs. [7,8]). Instead, experimental realizations have been
limited to the field of liquid-state nuclear magnetic resonance
(NMR) [9] and to trapped ions [10]. NMR experiments showed
an increase in state fidelity after performing the unitary
operations of an error-correction protocol. However, these
first NMR demonstrations have two drawbacks: (i) NMR
techniques cannot be scaled up with the number of qubits
[11], and (ii) the ancillary qubits cannot be reset in these
experiments, therefore making it impossible in principle to
repeat the protocol with the same qubits as many times as
required by a particular quantum algorithm. The trapped-ion
implementation of a three-qubit QECC of Ref. [10] does
not have these limitations, but it remains a unique example.
Therefore, studying the feasibility of the implementation of
simple QECC protocols in alternative physical realizations of
quantum computation is an important step in the development
of the field.

In this paper we propose a scheme for the implementation of
the three-qubit repetition QECC [7] on a cavity-QED setup. We
show that one can achieve a significant increase in state fidelity

by implementing the scheme in a state-of-the-art apparatus in-
volving Rydberg atoms and microwave cavities [12]. Quantum
information is encoded within circular Rydberg states, and two
cavities are employed to perform the encoding and decoding
steps by means of standard cavity-QED techniques. In Sec. II
we review the main aspects of the three-qubit repetition code;
in Sec. III its specific implementation in the cavity-QED setup
is described. In Sec. IV the main experimental features of
the scheme are described, while in Sec. V the results of
the numerical simulations of the performance of the QECC
protocol are presented and discussed. Section VI is for
concluding remarks.

II. BASIC PRINCIPLES OF QUANTUM
ERROR CORRECTION

Let us assume that we have two distant stations, Alice
and Bob, interested in sharing a message. This message can
be modeled by a physical system that traveling through the
communication channel is affected by unknown errors of
various types [13,14]. The origin of these errors is the coupling
of the system with the environment (decoherence), and the
ability to reveal and find a way to correct them constitutes the
central task of QECC.

Both classical and quantum error corrections are based
on the following three main stages: (i) the encoding, during
which the original information is registered in a redundant
way involving additional resources (the ancillas), (ii) the
decoding, in which the encoding process is reversed in order
to distinguish which kind of error has taken place, and (iii) the
correction of the error for recovering the initial information.
In the quantum case, the simplest way to encode information
is to use a qubit and consider a generic state

|ψ〉s = α|0〉s + β|1〉s , (1)

with |α|2 + |β|2 = 1. A simple and effective way of describing
the degrading effect of the environment is by means of a
collection of operators {�(i)

R }, acting on the qubit states |ψ〉s ,
each associated with an environmental state |ψ〉(i)

R . For each
i, the pair {�(i)

R },|ψ〉(i)
R describes a type of error affecting the

1050-2947/2010/82(1)/012319(8) 012319-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.012319


CARLO OTTAVIANI AND DAVID VITALI PHYSICAL REVIEW A 82, 012319 (2010)

qubit. After preparing the message, the initial state of the
qubit-environment system is the factorized state

|ψ〉in = |ψ〉s ⊗ |ψ〉R, (2)

which, after the disturbing action of the environment, becomes
the entangled state

|ψ〉out =
∑

i

|ψ〉(i)
R �

(i)
R |ψ〉s . (3)

At the receiving station, Bob does not have access to the
environment variables, and therefore the qubit state received
by him is mixed and given by the trace over the environment

ρBob = TrR(|ψ〉out〈ψ |). (4)

For a classical bit, one can have only the flip error |j 〉 →
|1 − j 〉, j = 0,1; instead the state of a qubit depends also upon
the relative phase between |0〉 and |1〉, and therefore one has
two other independent errors: the phase error |j 〉 → (−1)j |j 〉,
and its combination with the flip error |j 〉 → (−1)j |1 − j 〉.
These three types of errors, associated with the three Pauli
operators σx , σy , and σz, are all simultaneously present in a
generic situation, and in order to correct for all of them the
“cheapest” QECC requires at least four additional ancillary
qubits [14]. However, in many practical situations, one error
type is much more relevant than the others, and one can
adopt the simpler three-qubit QECC which is designed for
correcting a single type of error [14]. The three-qubit repetition
code is the quantum extension of the repetition code [14], in
which redundancy is obtained by circumventing the limitations
imposed by the no-cloning theorem by means of entanglement,
i.e., by encoding the information of the initial qubit state of
Eq. (1) into the entangled state

|ψ〉S = α|0〉S + β|1〉S → |ψ〉L = α|0L〉 + β|1L〉, (5)

where

|0L〉 = |0〉S ⊗ |0〉A1 ⊗ |0〉A2 , (6)

|1L〉 = |1〉S ⊗ |1〉A1 ⊗ |1〉A2 , (7)

with A1 and A2 denoting the two ancillary qubits. The
encoding process is performed by an entangling unitary
operation U , and after that the encoded state is affected
by noise and errors introduced by the interaction with the
environment. The decoding stage is then implemented by
simply applying the inverse of the encoding operation U† in
order to determine which of the three qubits has been affected
by the error. In fact, QECC theory assumes that the probability
of having more than one error on a single qubit (between
encoding and decoding) is negligible, i.e., that the coupling
with the environment is weak. In such a limit, the error
can always be detected and the initial information perfectly
recovered. The final correction stage can be performed in
two different ways: (i) “automatically”, by a further unitary
operation on the three-qubit system (a Toffoli gate [14]) always
yielding the original state of the qubit of interest, and (ii) by
explicitly measuring the ancillas for detecting the error and
eventually applying a feedback operation on the qubit for
restoring the desired state. The first option is deterministic
and therefore usually preferable, but the second option is also
viable when highly efficient single qubit measurements are

available and the implementation of three-qubit gates such as
the Toffoli gate is too difficult (or too slow). This latter scenario
applies to the cavity-QED setup studied here, and therefore we
shall consider from now on the “measurement and feedback”
scheme for the implementation of the final correction stage.

III. THE CAVITY-QED IMPLEMENTATION
OF THE THREE-QUBIT QECC

Many cavity-QED setups have now achieved the ability to
perform entanglement and disentanglement operations with
a high degree of accuracy [15–17]. Here we shall focus
on cavity-QED setup in the microwave regime [15] which
employs circular Rydberg atoms, which represent a formidable
tool for encoding quantum information due to their very long
decay time (of the order of 30 ms).

In order to implement the three-qubit QECC (see
Fig. 1) one needs two spatially separated high-Q microwave
cavities, C1 and C2, in which the encoding and decoding
process will be implemented, and four atoms A1,A2,A3,A4,
crossing both cavities and interacting sequentially with each
cavity mode. The relevant atomic levels are three successive
circular Rydberg levels with increasing energy, |i〉,|g〉,|e〉. The
quantum information we want to protect is encoded in the first
atom A1, while the second (A2) and third (A3) atoms are the
ancillas, having the role of revealing the syndrome. Finally the
fourth atomA4 is the atom on which the information, originally
encoded in the the quantum state of A1, will be restored.
Together with the two high-Q cavities, the scheme requires
also three “Ramsey” zones (Ri for i = 1, . . . ,3 in Fig. 1)
sandwiching the high-Q cavities, where classical microwave
pulses can be applied for the manipulation of the atomic states.
Finally one has a field-ionization atomic state detector [15]
which detects the error syndrome and activates the feedback
correction loop. The cavities are assumed to be in the vacuum
state at the beginning of the process; we also assume that
the three circular Rydberg states can be prepared with high
probability of success through the circularization process
described in [15]. The QECC scheme proceeds through four
steps which are now described.

First step: qubit state preparation. The first atom A1 is
prepared in level |e〉 and then enters cavity C1, which is

Alice Bob

Feedback

Detector

Atomic
  Gun R1 R2 R3

C1 C2

FIG. 1. (Color online) Cavity-QED scheme of the proposed
three-qubit quantum error-correction code (QECC). The proposed
setup is analogous to the one currently developed at École Normale
Superiéure in Paris. It consists of three classical Ramsey zones
(R1,2,3), i.e., low-Q microwave cavities, and two high-Q microwave
cavities (C1,2). Assuming that the length of the whole apparatus is
15 cm, and that the atoms travel at 500 m/s, the resulting total duration
time of the protocol involving the four Rydberg atoms is 1.2 ms.
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initially in the vacuum state. The atom-cavity mode interaction
is described in general by the following Jaynes-Cummings
Hamiltonian (h̄ = 1):

H = �â
†
C1

âC1 + ı
�C1

2
(â†

C1
|g〉〈e| − |e〉〈g|âC1 ), (8)

where � = ωC1 − ωge is the cavity detuning, which can be
controlled in real time during the atomic passage via Stark-shift
tuning, i.e., by shifting in a controlled way the atomic levels
through a static electric field applied in the cavity [15]. In this
case we consider perfect atom-cavity resonance, � = 0, so
that the time-evolved atom-cavity state is given by

|eA1 ,0C1〉 → cos
�C1 t

2
|eA1 ,0C1〉 + sin

�C1 t

2
|gA1,1C1〉. (9)

The atom-cavity interaction time t can be also adjusted by
using again Stark-shift tuning: in fact, the interaction can be
stopped by shifting the e → g transition far-off resonance.
In this way one can prepare an effective generic qubit state,
encoded within the joint A1-C1 system,

|ψ〉enc = α(t)|eA1,0C1〉 + β(t)|gA1,1C1〉, (10)

with |α(t)|2 + |β(t)|2 = 1.
Second step: the encoding stage. We entangle the principal

qubit with two atomic ancillas in order to obtain a state of
the form given by Eq. (6). The two atomic ancillas A2,A3

are first prepared in the circular state |i〉. In the first Ramsey
zone R1, they undergo a π/2 pulse driving each ancilla to the
superposition state

|+A2,3〉 = 1√
2

(|iA2,3〉 + |gA2,3〉). (11)

The two ancillas are entangled with the prepared qubit state
when crossing C1. The Stark-shift field is set so that the |g〉 →
|e〉 transition of both ancillas is resonant with the cavity mode.
They both experience a 2π resonant cycle, thereby realizing
a controlled phase accumulation on the atomic state |g〉A2,A3

resulting in

|1C1 ,gA2,3〉 → −|1C1 ,gA2,3〉.
When both the ancillas have crossed C1, the final atom-cavity
state will be

α(t)|eA1, +A2, +A3,0C1〉 + β(t)|gA1, − A2 −A3,1C1〉, (12)

where |±〉Aj
= 1√

2
(|i〉Aj

± |g〉Aj
), with j = 2,3.

Third step: the noisy channel. The three encoded atoms
travel from Alice to Bob through the noisy channel, modeled
by a second Ramsey zone, R2, where a random field is applied
(for the details see Sec. V A).

Fourth step: the decoding and the eventual correction. We
now describe the correction stage by considering in sequence
the three possible situations: (i) no error on the three atoms in
R2, (ii) an error on one of the ancillary atom (A2,3), and (iii)
an error on the encoded qubit (A1) (recall that the probability
of two or more errors is assumed to be negligible).

1. No error

The decoding process takes place in the second cavity
C2 which disentangles the three atoms. Let us first consider
the case where there has been no error. Atom A1 interacts

resonantly with a π pulse with the cavity C2: the only part of
the state that evolves is |eA1 ,0C1〉, disentangling the first atom
A1 from the rest, i.e.,

|ψ〉 = [α(t)| +A2, +A3,0C1,1C2〉
+β(t)| −A2, −A3,1C1,0C2〉]|gA1〉. (13)

This transformation transfers the encoded qubit from the
cavity-atom C1-A1 given by the relation (9) to the encoded
qubit that involves the two cavities C1-C2. Then the two ancillas
A2,3 pass through the second cavity, where they experience
the same transformation they already experienced in C1, i.e., a
2π -pulse resonant cycle. As a consequence, the two ancillas
are decoupled from the encoded C1-C2 state as it must be for a
decoding process, and the resulting state is an entangled state
of the two cavities only,

|ψ〉 = [α(t)|0C1,1C2〉 + β(t)|1C1,0C2〉]| −A2, −A3〉. (14)

Finally there is the final (eventual) correction stage: the ancillas
are measured, and if an error is revealed, the correction
procedure is applied. In this step the fourth atom A4 starts
to play its role: it has the function to reload the information
now encoded in the C1-C2 entangled state and record the stored
information in the atomic state. The need for this fourth atom
is in fact evident, because the only information that can be
efficiently read out by the detector is that recorded in the
atomic state. Atom A4 is prepared in the circular state |g〉, and
through Stark-shift tuning it is set far-off resonance from C1

so that it crosses it without interaction. Therefore it arrives in
the same state |g〉 at C2, where it undergoes a resonant π -pulse
interaction identical to that of atom A1. As a consequence, the
state of the system becomes

|ψ〉 = [−α(t)|0C1,eA4〉 + β(t)|1C1,gA4〉]| −A2, −A3,0C2〉.
(15)

The detection of the ancillary atoms provides the error
syndrome: the two states |−〉A2 |−〉A3 signals that the three
qubits have not been affected by any error, and therefore
there is no correction to perform on the final qubit, atom A4.
Actually, the states of Eqs. (10) and (15) are not identical.
Although the amplitude probabilities are exactly the same,
they differ by a relative phase π . This is a consequence of the
sequence of pulses realizing the entangling and disentangling
operations, but there is a simple way to correct this problem,
since it is sufficient to apply a classical 2π pulse resonant with
the i → g transition in the R3 zone. This will change the phase
of the g component of atom A4 only, permitting us to obtain a
perfect matching of the final and initially encoded states.

2. Bit-flip error on the ancillas

A second possible option is that an error occurs on one of
the ancillasA2,3. In this case the final state of Eq. (15) will have
one of the decoupled ancillary states flipped | −A2, −A3〉 →
| +A2, −A3〉,| −A2, +A3〉. By detecting one of these two states
of the ancillas, we can argue that the error has not involved the
qubit we are sending, and therefore that, again, no correction
is needed. As in the previous case, the only thing we have to
do is to apply a classical pulse in R3 to correct the π relative
phase.
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3. Bit-flip error on the encoded qubit

If instead an error occurs on A1 in R2, the effect will be
the exchange between |g〉A1 ↔ |e〉A1 . The state after the first
atom has interacted with C2 now becomes

|ψ〉 = α(t)|0C1,gA1〉| +A2, +A3〉+ β(t)|1C1,eA1〉| −A2, −A3〉,
(16)

and after the passage of A4 we have

|ψ〉 = [α(t)|0C1,gA4〉 − β(t)|1C1,eA4〉]| +A2, +A3〉. (17)

In this case we have to apply the error correction, which
consists of a feedback π pulse in the first portion of the Ramsey
zone R3, flipping the state ofA4 |gA4〉 ↔ |eA4〉, followed by an
off-resonant 2π pulse, on the second portion of R3, changing
the phase of the |gA4〉. The two pulses can be both performed
within R3 by using strong enough pulses. We finally obtain
the following state [see Eq. (10)] after the measurement of the
two ancillas:

|ψ〉final = α(t)|0C1,eA4〉 + β(t)|1C1,gA4〉, (18)

which is exactly the initial atom-cavity state, provided A1

and A4 are swapped. The original encoded state is therefore
restored, and quantum information has been safely transferred
from Alice to Bob.

IV. EXPERIMENTAL SETUP, RYDBERG STATES,
AND CAVITIES

The cavity scheme assumed in the previous section fits well
with the microwave-cavity setup at École Normale Superiéure
in Paris described, e.g., in [15]. Let us now see in detail the
properties of this setup, and we show that the proposed QECC
scheme can be implemented using a state-of-the-art apparatus,
even when taking into account the experimental limitations
due to spontaneous emission and the finite decay time of the
cavities.

A. The circular Rydberg states

Adopting atoms with long decay times and the right
velocities is of crucial importance for the realization of the
protocol. Circular Rydberg states [18] are excellent candidates
because they correspond to large principal quantum number n

and maximum angular momentum l = n − 1. The three-level
cascade structure can be found by choosing atomic levels with
principal quantum numbers n = 51,50,49 for |e〉,|g〉,|i〉, re-
spectively [15]. The long radiative lifetime permits negligible
effects on the atomic coherence from spontaneous emission,
and the large dipole moment matrix elements, of the order
of 1250 a.u. for the |e〉 ↔ |g〉 transition, permits a strong
atom-field coupling. Circular Rydberg states can be prepared
with a purity of �98% [12], and the velocity of the atoms
in the atomic beam can be controlled with a precision of
∼ ±2 m/s. The position of each atom inside the apparatus
is known with a ±1-mm precision.

B. The cavity

The cavity [12,15] is an open Fabry-Perot resonator made
with two spherical superconducting niobium mirrors facing

each other at a distance d = 27.6 mm, the diameter of the
cavity is D = 50 mm, and the radius of the mirrors is
R = 40 mm. The resonator is close to resonance with the
|e〉 ↔ |g〉 transition, with a maximum photon storage time of
Tcav ∼ 130 ms [19], which corresponds to a record quality
factor of Q ∼ 3 × 108. The vacuum state inside the cavity
is obtained by cooling them down below 1 K to avoid
the presence of thermal photons. After cryogenic cooling, the
mean photon number is still not negligible, ∼ 0.7, and the
vacuum state is achieved with high fidelity by beginning every
experiment with a flux of resonant atoms in the |g〉 state that,
passing through the cavity, absorbs the residual photons.

The time-dependent coupling between the atoms and the
cavity mode, �(t), is a Gaussian function depending on the
atomic velocity v, which we set equal to v = 500 m/s, and on
the waist of the cavity mode, w0 = 6 mm, and it is given by

�(t) = �0

2
E(t) = �0

2
exp

[
−v2t2

w2
0

]
. (19)

As mentioned in the previous section, the interaction time
can be controlled with high accuracy thanks to Stark-shift
tuning of the atoms injected inside the cavities [12,15]. A
quick modification of the resonance conditions is possible by
modulating the electric tension at the end of the two mirrors,
resulting in a rapid change of electric field inside the cavity.
This induces a quadratic Stark shift of the atomic levels, which
for Rydberg atoms is particularly strong [20]. In this way all
possible atom-cavity states of the form of Eq. (10) can be
generated by adjusting the accumulated Rabi angle

φ(tint) = �0

2

∫ tint

−∞
dtE(t) ∈ [0,2π ].

V. NUMERICAL SIMULATION

The protocol has been simulated by choosing the parame-
ters described in the previous section and adopting the quantum
trajectories (QT) approach [21] in order to solve for the time
evolution of the atom-cavity system. We have considered two
different initial states to encode, i.e., two different values
of α(t) and β(t). The QECC protocol is designed assuming
perfect apparatus, i.e., nondecaying atoms and cavities; the
simulations include these decay processes in order to verify
to what extent the unavoidable imperfections and nonideal
features of the apparatus affect the efficiency of the algorithm.

A. Simulation of the noisy channel

Let us now see in detail how the quadratic Stark-shift effect
can be used to engineer a noisy channel. In the second Ramsey
zone R2 the atoms interact, for a controllable time, with a
classical electromagnetic field. Applying a π/2 pulse to the
A1 atom, the encoded state at the exit of cavity C1 of Eq. (12)
becomes

|ψ〉 = α(t)| +A1, +A2, +A3, 0C1〉
+β(t)| −A1, −A2 −A3, 1C1〉, (20)

so that the three qubits are all encoded in the |±〉 basis. A
random electric field in R2 generates, through the quadratic
Stark-shift effect, random phase shifts of the |i〉, |g〉, |e〉 states,
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which, however, become bit-flip errors in the |±〉 basis of the
three qubits. This means that using the chosen encoding of
Eq. (20) and random Stark shifts, we engineer an effective
channel in which each qubit is affected by the bit-flip error
only. After the application of the random electric field, we
have to apply an inverse π/2 interaction on the A1 atom. This
operation is needed in order to guarantee that, if there has been
no error, the A1 state at the entrance of C2, when the qubits
start to be processed by Bob, is identical to the state at the exit
of C1. The random electric field in R2 induces a shift of the
energies of the three levels of interest, |i〉,|g〉,|e〉, due to the
quadratic Stark effect,

ψk → ψk exp[−ıT �Ek/h̄], k = i,g,e, (21)

where T is the duration of the random electric field pulse in R2.
As a consequence, off-diagonal matrix elements with respect
to atomic indices, i,e,g, will acquire a random phase shift given
by

ρk,l → ρk,l exp[−ıT (�Ek − �El) /h̄], k,l = i,g,e. (22)

In the case of Rydberg levels, the energy shift �Ek due to the
quadratic Stark shift caused by an electric field E is given by
(in atomic units) [20,22]

�E(2) = −1

8

[
7n2 − 6(|m|2 + n1)2 + 6n1(|m| − 1)

+ 6n(|m| + 1) − 3

2
|m| + 8

]
n4|E |2, (23)

where n1 is the parabolic quantum number, n is the principal
quantum number (n = 49,50,51 for |i〉,|g〉,|e〉, respectively),
and m is the magnetic quantum number. For circular Rydberg
states, we have n1 = 0 and |m| = n − 1 so that

�En = −1

8

[
7n2 + 21

2
n + 7

2

]
n4|E |2 ≡ αn|E|2. (24)

As a consequence, the phase shift of an off-diagonal matrix
element due to the application of the random electric field can
be written as

ρk,l → ρk,l exp[−ıT |E |2 (αk − αl) /h̄]

= ρk,l exp[−iφ (αk − αl)] , (25)

where φ is a random phase proportional to the intensity of the
Stark field and which we shall assume as uniformly distributed
over an interval [0,φmax]. Therefore one has random state-
dependent Stark shifts determined by Eqs. (24) and (25).

B. Discussion of the results

The state of the whole systems evolves in a Hilbert state of
dimension n = 324 (four three-level atoms and two cavities
with one photon at most). The adoption of the QT approach
permits us to manipulate the evolution of a wave function and
not of a density matrix, as it happens when solving master
equations, which instead would have implied working in a
much larger space of dimension 3242. The density matrix of
the whole system is obtained by averaging over the trajectories,
and in our case we have simulated the proposed QECC protocol
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FIG. 2. (Color online) Fidelity of the proposed QECC scheme.
Parameters are those of Ref. [12], corresponding to a cavity decay
time Tcav = 100 ms. The initial state to protect has α = √

0.7 and
β = √

0.3. Blue circles correspond to the QECC scheme, while red
dots correspond to the case without correction.

and performed the average over 1000 trajectories. During
each trajectory, a flat-distributed random phase φ chosen
in the interval [0,φmax] on the three atoms is induced. The
performance of the QECC protocol is analyzed by comparing
the fidelity [14]

F =
√

〈ψenc |ρfinal| ψenc〉, (26)

in the two cases, i.e., when QECC is applied and when we do
not complete the final correction step, i.e., we do not perform
the feedback action in R3 on the fourth atom. We always find
a clearly visible difference between the two fidelities, showing
the validity of the protocol even in the presence of a nonideal
apparatus. Both the corrected and the uncorrected fidelities are
oscillating function of the error strength, which we measure in
terms of the maximum possible random phase shift, φmax, and
both tend to an asymptotic value for large values of φmax.

Figure 2 refers to an initial state to protect equal to√
0.7|eA1,0C1〉 + √

0.3|gA1,1C1〉, and to a parameter choice
corresponding to those of the experiment of Ref. [12], which
means in particular a cavity decay time Tcav = 100 ms. Without
QECC, the fidelity F tends to an asymptotic value for large
phase shifts around F ∼ 0.8, while it tends to F ∼ 0.92 in the
presence of QECC. In Fig. 3 we study how the performance of
the QECC protocol depends upon the chosen initial state, by
comparing the fidelity with and without QECC for the states
with α = √

0.7 or α = √
0.6. We see that this dependence is

extremely weak, especially in the presence of error correction.
Finally in Fig. 4 we study the dependence of the protocol
performance upon the imperfection of the apparatus and
upon the cavity decay time in particular, by comparing the
cases with Tcav = 100 ms and Tcav = 1 ms. As expected, the
performance worsens for shorter cavity decay times, but again
the dependence is very weak and one has only a small decrease
of the fidelity for microwave cavities with a lifetime 100 times
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FIG. 3. (Color online) Comparison between two different initial
states: (i) α = √

60, β = √
40, (red triangles, no correction, and

blue triangles, with QECC); (ii) α = √
70, β = √

30 (red dots, no
correction, and blue circles, with QECC). The cavity decay time is
Tcav = 1 ms, while the other parameters are the same as those of
Fig. 2.

shorter. These results show the robustness of the proposed
QECC protocol, which provides a significant state protection
even in the presence of non-negligible loss processes.

The effect of cavity and atomic decay is well visible by
looking at the data points corresponding to no error, φmax =
0: the fidelity both with and without QECC is not equal to
unity, because the evolution is not unitary. Cavity decay and
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FIG. 4. (Color online) Comparison for two different cavity decay
times Tcav = 100 ms (blue circles for the QECC case and red dots with
no QECC), and Tcav = 1 ms (blue triangles for the QECC case and
red triangles with no QECC). In both cases the initial state is with
α = √

60 and β = √
40. The other parameters are the same as in

Fig. 2

atomic spontaneous emission, even though small, are not zero,
determining a nonzero error probability. However, even in the
case of Tcav = 1 ms, such error probability is small, because
decay processes are still much slower than typical interaction
times, which in our case can be taken of the order of 20 µs.

These results can be qualitatively explained by adopting a
simple model for the correction protocol. In practice, we want
to transfer a given state from Alice to Bob by crossing a noisy
region. Without loss of generality we can always choose the
basis so that the state we want to recover at the Bob site is
called |e〉. The Stark random phase φ together with the two
π/2 pulses (the operations described in Sec. V A) in R2 is
equivalent to a rotation by a random angle φ of the transferred
state. The state at the Bob site can be therefore written as

|ψ〉 = cos
φ

2
|e〉 + sin

φ

2
|g〉.

The measurement of the ancillas is practically equivalent to a
measurement in the e-g basis, in order to check if the desired
state e has arrived at the destination or not. Therefore the
probability of success of the transport, without any correction,
is simply cos2 φ/2 and the corresponding fidelity is simply
given by

Fno fb =
∣∣∣∣cos

φ

2

∣∣∣∣ . (27)

In this simple model, the correction after the measurement
is described by the application of the spin-flip operator σx =
|e〉〈g| whenever one detects g, which occurs with probability
Perr = sin2 φ/2, and no correction in the other cases. The
resulting final state is a mixed state, given by

ρfin = Perrσx |ψ〉〈ψ |σx + (1 − Perr)|ψ〉〈ψ |. (28)

The success probability in the case of feedback is 〈e|ρfin|e〉
and taking the square root, one gets

Ffb =
√

cos4
φ

2
+ sin4

φ

2
, (29)

The phase φ is random, and one has to average these results
over a flat distribution between zero and φmax. Just to simplify
the analytical calculation, instead of averaging the fidelity (i.e.,
the average of the square root of the success probability), the
result can be approximated by the square root of the average
of the success probability. One gets

F av
no fb �

[
1

φmax

∫ φmax

0
dφ cos2 φ

2

]1/2

=
[

1

2
+ sin φmax

2φmax

]1/2

, (30)

F av
fb �

[
1

φmax

∫ φmax

0
dφ

(
cos4 φ

2
+ sin4 φ

2

)]1/2

=
[

3

4
+ sin 2φmax

8φmax

]1/2

. (31)

Figure 5 shows the resulting fidelity as a function of the
error strength. The two curves manifest the same qualitative
behavior as that of the numerical results shown in Figs. 2–4.
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FIG. 5. (Color online) Fidelities associated with the simple model
of Eqs. (30) and (31) with (upper curve, blue) and without correction
(lower curve, red).

The simplified expressions of Eqs. (30)–(31), however, under-
estimate both fidelities and also the performance of the QECC
scheme, predicting lower asymptotic values of the fidelities.
This is related to the fact that we have overestimated the effect
of errors, because we have assumed that the errors mainly
affect the qubit of interest A1 and neglected errors occurring
on the ancillas.

VI. CONCLUSIONS

We have proposed a scheme for the implementation of the
three-qubit QECC using a cavity-QED setup. In particular
we have considered a state-of-the-art apparatus in which the
quantum information to protect is encoded in the state of
circular Rydberg atoms crossing two high-quality microwave
cavities. The encoding and decoding steps of the three-qubit
QECC are performed within the cavities, exploiting a resonant
atom-cavity interaction and the possibility to manipulate
this interaction by Stark shifting the atomic levels. The
disclosure of the error syndrome and the eventual correction
are performed by explicitly detecting the atomic state and
via a controlled π -pulse operation. By considering the same
parameter regime of the recent experiment of Ref. [12], we
have shown that QECC significantly preserves the prepared
atomic state against the noise due to fluctuating electric fields

which randomly shift the atomic energy levels via the quadratic
Stark effect. Our analysis has taken into account all the major
experimental limitations, i.e., cavity decay and spontaneous
emission, and we have seen that the performance of the QECC
is not too much affected by them, as long as the decay times
are much longer than the typical atom-cavity interaction times.
Instead, we did not take into account the non-unit efficiency
of atomic detectors. In fact, as long as the detection efficiency
does not depend on the atomic state, the fact that the probability
of missing an atom is nonzero does not affect the efficiency of
the protocol, but only decreases the rate of significative events
in performing the experiment.

The present scheme can be extended for implementing
more involved quantum error-correction codes, e.g., the five-
or seven-qubit code, paying only the price of a slightly more
involved sequence of operations. In fact, the main limitation
in scaling up the scheme to more qubits is represented by the
spontaneous emission of the circular Rydberg states, which
is of the order of 30 ms and limits the number of atoms that
can be prepared and manipulated. Cavity decay time is less
important because the cavity modes are used only for much
shorter times for carrying out the operations. Assuming an
atomic velocity around 500 m/s (as used in our simulations),
the time duration of the whole protocol is around 1.2 ms,
and therefore there is enough time for scaling up to at least
10 qubits. In order to scale up to a realistic and useful quantum
processor, the present cavity-QED setup is less suitable. In fact,
one should avoid spontaneous emission by encoding quantum
information in hyperfine-split ground-state sublevels and by
employing optical Raman transitions between these levels.
Replacing microwave cavities and transitions with optical
ones has also the advantage of avoiding cryogenic setups.
For example, scalable cavity-QED configurations of this kind
could be provided by coupled cavity arrays [23].
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