
PHYSICAL REVIEW A 82, 012316 (2010)

Quantum counting algorithm and its application in mesoscopic physics
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We discuss a quantum counting algorithm which transforms a physical particle-number state (and
superpositions thereof) into a binary number. The algorithm involves two quantum Fourier transformations. One
transformation is in physical space, where a stream of n < N = 2K (charged) particles is coupled to K qubits,
rotating their states by prescribed angles. The second transformation is within the Hilbert space of qubits and
serves to read out the particle number in a binary form. Applications include a divisibility check characterizing
the size of a finite train of particles in a quantum wire and a scheme allowing one to entangle multiparticle wave
functions in a Mach-Zehnder interferometer, generating Bell, Greenberger-Horne-Zeilinger, or Dicke states.
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I. INTRODUCTION

Quantum mechanics offers novel algorithms that make it
possible to speed up the solution of specific computational
tasks, some modestly, such as sorting a list [1,2], whereas
others, such as prime factorization [1,3], are accelerated
exponentially. While applications in quantum cryptography
[1,4] are close to commerical realization [5], the endeavor
of building a universal quantum computer with thousands of
quantum bits lies in the distant future, if ever realized. In this
situation, it is interesting to consider special tasks which are
less demanding in their requirement with regard to the number
of qubits and the complexity of their network. An example of
such an application is the use of a qubit as a measuring device
in the realization of full counting statistics [6] in mesoscopic
transport. In the present article, we expand the concept of
counting statistics in mesoscopic systems and analyze the
problem of precise counting of particles in a mesoscopic
setting. This task combines both algorithmic aspects as well as
physical aspects of its implementation; while the algorithmic
task might appear trivial at first glance, closer inspection
unveils a number of interesting features relating the task of
(quantum, nondemolition) counting with the quantum Fourier
transformation.

Consider electrons flowing through a (quantum) wire—the
task of counting particles consists of attributing to a finite
set (or “train”) of electrons a number (the cardinality of the
set). In an information-theoretic sense, this task corresponds
to transforming a unary number (represented by the physical
set of electrons) into a binary (or ternary, quaternary, quinary,
etc.) number. Within a mesoscopic setting, we wish to achieve
this task without perturbing the electron train, that is, to
transform the input into a number with a nondemolitian
measurement. Furthermore, given a superposition of number
states, an ideal algorithm provides a final state for readout
which encodes a superposition of numbers as well. Such
quantum superpositions of number states quite naturally
appear in mesoscopic devices involving a splitter, such as a
Mach-Zehnder interferometer; sending a stream of particles
into such a device, the quantum state within one arm will
constitute a superposition of number states.

It turns out that such a quantum counting algorithm can be
realized by coupling the stream of electrons to a register of
qubits, for example, spin qubits or charge qubits made from
double-dot systems. The cardinality of the particle train then
is encoded into the qubit register via proper rotations of all the
qubit states, whereby the first qubit in the register measures
the number’s parity, the second qubit measures the number
of pairs of electrons, the third qubit measures the number
of electron quartets, etc., passing by. Ideally, a transverse
coupling is used between the electrons flowing in the wire
and the qubits, leading to a mere accumulation of phases (or
rotation of qubits, which is a nonclassical operation); choosing
such a mode of operation immediately connects the task of
counting with the quantum Fourier transformation (counting
in phase space rather than in real space). Hence, the task of
quantum counting in mesoscopics unveils interesting elements
that go beyond simple counting in a classical setting.

Using more technical terms, in our quantum counting
algorithm the information in a physical number state |n〉�
is entangled with the set of K counter-qubits which we
describe with the help of the usual computational basis
|0〉Q,|1〉Q, . . . ,|2K − 1〉Q (cf. Ref. [1]); the indices � and
Q refer to the physical Hilbert space H� of particle states
and the Hilbert space HQ of K-qubit states (cf. Fig. 1). The
passage of the particles in the wire transforms the initial state
F(|0〉Q), that is, the lowest harmonic F(|0〉Q) ∝ ∑2K−1

j=0 |j 〉Q
of the K-qubit register, into the state F(|n〉Q) ∝∑2K−1

j=0 exp(2πinj/2K )|j 〉Q, the quantum Fourier transform of
the state |n〉Q = |n1,n2, . . . ,nK〉, where n is written in binary
form, n = n1n2 . . . nK = n12K−1 + n22K−2 + · · · + nK20

(cf. Ref. [1]). The full information encoded into the K-qubit
register is made available to a single-shot readout through
a second (inverse) quantum Fourier transformation of the
qubit state F(|n〉Q), taking it back into the state |n〉Q. A
simultaneous measurement of the K qubits then provides the
particle number n in binary form. In case of a superposition∑

j cj |j 〉� of particle-number states, the backward Fourier
transformation F−1 acts on the state

∑
j cj |j 〉�F[|j 〉Q] and

generates the final result
∑

j cj |j 〉�|j 〉Q, with the number
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state entangled with the qubit register; the measurement
of the qubit register then will execute a projection onto
one component. The usefulness of sequential forward and
backward Fourier transformations is well appreciated in the
fields of imaging and particularly in crystallography.

Performing an inverse quantum Fourier transformation on
the state F(|n〉Q) requires a quantum computer. Here, instead,
we use a procedure which is basically identical to the semi-
classical Fourier transform suggested by Griffiths and Niu [7],
a conditional measurement algorithm involving a sequential
readout, where the j th reading depends on the results of
the previous j − 1 measurements (the availability of such a
semiclassical algorithm relies on the fact that the quantum
Fourier transform associated with a number n presents itself as
a simple product state of qubits). Alternatively, a simultaneous
(rather than conditional) readout of the state F(|n〉Q) counts
the power of 2 in the cardinality n of the particle train
(divisibility check by 2k , k < K). The basic concepts entering
our quantum counting algorithm are schematically illustrated
in Fig. 1. The algorithm provides an exponential savings in
resources as compared to a straightforward scheme where the
number n < N is trivially encoded into a set of M = N2/π2

qubits, |n〉� → [|0〉Q + einϕ |1〉Q]⊗M/
√

2M , with ϕ < 2π/N

being a small rotation angle [8]; note, that the no-cloning
theorem [9,10] prevents us from using one spin and then
cloning it after the passage of the n particles. Below, we
will drop the indices � and Q that distinguish states in the
(isometric) Hilbert spaces describing physical particle number
states and qubit states.

The use of two-level systems as clocks or counters has
a long history: using the Larmor precession of a spin as a
clock attached to the particle, Baz’ [11] and Rybachenko [12]
proposed to measure the tunneling time through a barrier. In
the context of full counting statistics in mesoscopic physics,
Levitov and Lesovik [13] introduced the idea of using a

n
F −1

1 Φ =

n Φ

4 =Φ
n Q

0 Q

(      )

(      )

measurement

passage of particles

QH

F

Q

particle number states
Hilbert space         of physicalΦH

Hilbert space         of counter qubits

F

FIG. 1. Schematic representation of the quantum counting algo-
rithm. A particle number state or a superposition of particle number
states is fed into a quantum wire to undergo quantum counting. The
interaction between the charged particles and the qubits rotates the
qubit states, thereby generating the first Fourier transformation F
taking a number state |n〉� from the Hilbert space H� of particles
to the Hilbert space HQ of qubits. The second Fourier transform
F−1 operates within the space of qubit states and generates the
number state |n〉Q in binary form, which may be used in a further
quantum computation or undergo a single-shot measurement for
readout. Rather then relying on a quantum computer, we make use of
a semiclassical Fourier transformation with a sequential readout.

stationary spin as a measurement device to count the electrons
flowing in a nearby quantum wire. The use of a qubit as a
measuring device (counter) in the realization of full counting
statistics has been proposed in Ref. [6]. In quantum optics,
Brune et al. [14] proposed to make use of atoms excited to
Rydberg states as atomic clocks to count photons in a cavity
using a straightforward measurement scheme (cf. Ref. [8]), a
proposal that has been experimentally realized recently [15].
Our algorithm can be used to count photons as well; in our dual
setup the counters are fixed and (microwave) photon pulses
propagate in a transmission line.

Below, we first introduce our setup and algorithm in-
cluding the sequential and single-shot measurement schemes
(cf. Sec. II). We then proceed with some remarks regarding
the implementation of the algorithm with charge qubits in
Sec. III and then discuss an application of our algorithm
(Sec. IV) where we combine our counter with a Mach-Zehnder
interferometer in a “which path” setup [16] in order to fabricate
entangled many-particle wave functions.

II. SETUP AND ALGORITHM

We consider the setup in Fig. 2 where the n <

N = 2K particles to be counted flow in a quantum
wire along x. The K spins or qubits (we will use
these terms synonymously) are initially polarized along
the positive y axis [i.e., along |+y〉 = (|↑〉 + i |↓〉)/√2,
with the states |↑〉 and |↓〉 polarized along the z axis].
The simplest case makes use of transverse coupling between
the charged particle and the spin: upon passage of a charge, the
induced B field, locally directed along the z axis, rotates the
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FIG. 2. Illustration of the quantum algorithm to transform the
cardinality n of a set of particles into a binary number. (a) Initially, all
spins point in the +y direction. Upon passage of one particle, the j th
spin is rotated (anticlockwise) by φj = 2π/2j . After the passage of
all particles, the first spin is measured along the y axis and provides
the number’s parity. Depending on the parity, the second spin is
measured along the y axis (even parity) or the −x axis (odd parity);
a measurement along (opposite to) the axis is encoded with a 0 (1).
The further iteration is straightforward; see text. The figure shows
the reading after passage of 5 particles with K = 4. (b) Divisibility
check: qubit states after passage of n = 0, . . . ,8 electrons for K =
3; for n = 1, . . . ,7 there is exactly one qubit ending up in the |↓〉
state (shaded), signaling that the cardinality n of the sequence is
not divisible by 23 = 8. The divisibility by 2K can be tested in a
single-shot measurement.
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spins in the x-y plane. The couplings of the spin counters
to the wire are chosen such that the j th spin is rotated
(anticlockwise) by the amount φj = 2π/2j [a rotation by
Uz(φj ) = exp(−iφjσz/2), with σz being a Pauli matrix]. The
passage of n particles then rotates the j th spin by the amount
nφj . In particular, the first spin is rotated by the angle nπ and
points either upward if the number’s parity is even (we store
a “0” in the first position of the binary number) or downward
(we store a “1”) if the parity is odd. Hence the measurement
of the first spin along the y axis provides already the parity of
the number. In addition, the state of the first spin determines
the axis in the measurement of the second spin: for an even n,
we measure φ2 along the y axis [and store a 0 (1) if the spin
is pointing up (down)], while for an odd-parity n, we measure
φ2 along the −x axis.

The iteration of the algoritm is straightforward (see also
Ref. [7]): the j th spin is measured along the direction mj−1φj

with the integer mj−1 = nK−j+2, . . . , nK−1nK correspond-
ing to the binary number encoded in the j − 1 previous
measurements. The j th position in the binary register then
assumes the value nK−j+1 = 0 or nK−j+1 = 1, depending on
the measurement result, 0 for a spin pointing along the axis
and 1 for a spin pointing opposite. Rather than rotating the axis
of measurement, the spins are rotated by the corresponding
angles. These rotations by −mj−1φj are conveniently done
incrementally: after measurement of the j th spin with outcome
0 or 1, all spins J > j are rotated by −nK−j+12j−1φJ .
After the passage of the particles (the first “analog” quantum
Fourier transform which lasts exponentially long in K), the
second semiclassical quantum Fourier transform then requires
∼K2 steps (measurements and rotations) and provides the
desired result, the cardinality of the set of electrons in binary
form, n = n12K−1 + n22K−2 + · · · + nK20.

A. Divisibility by 2k

A variant of the aforementioned counting algorithm pro-
vides a test for divisibility by powers of 2: given a finite train
of electrons and K qubits, we check whether the number n of
electrons in the train is divisible by 2K . As a corollary, we find
the factor 2k , k � K , in n. Using the aforementioned setup,
the divisibility check involves only a single-shot measurement
along the y axis at the end of the train’s passage (rather than
the conditional measurement presented previoulsy): the train’s
cardinality is divisible by 2K , if all spins are pointing up, that
is, along the positive y axis [cf. Fig. 2(b)]. The nondivisibility
is signalled by the “opposite” outcome; that is, there is at least
one spin pointing down.

The previous statement relies on the fact that after the
passage of n = 2K particles all counters end up in the spin-up
state, while for n 	= 2K there is exactly one spin residing in a
spin-down state [cf. Fig. 2(b)] (note the difference in having
counters in up and down states with defined measurement
outcomes and statistical results of up and down measurements
for counters pointing away from the y direction). Here is the
formal proof. Starting in the initial state |+y〉 = (|↑〉 + i |↓〉)/√

2, after passage of n particles, the j th spin ends up (up to
an overall phase) in the state |f〉 = [|↑〉 + ie2πin/2j |↓〉]/√2.
The probability to measure this spin along the +y direction
is |〈+y|f〉|2 = cos2(πn/2j ), j = 1, . . . ,K . There is exactly

one spin 1 � j ∗ � K , for which this probability vanishes: this
follows from the statement, that any number 0 < n < 2K can
be represented in the form 2mI with 0 � m < K and I being
an odd integer. Then, for the spin j ∗ = m + 1 (and only for this
spin) the phase πn/2j∗ = πI/2 is an odd multiple of π/2 and
hence the probability | cos(πI/2)|2 to find it pointing along
+y vanishes; that is, the spin is pointing down. For all other
spins j 	= m + 1, the phase is a multiple of π (for j < m + 1,
the spin is pointing up) or a fraction I/2j−m−1 of π/2 (for
j > m + 1, the spin is not pointing down). Furthermore, a
reduced power k < K of 2 in n is easily read off the register’s
state after the passage of the particles: if the first k qubits
(from the left) are pointing up, the cardinality n contains the
factor 2k .

B. Equivalence with quantum Fourier transformation

Next, we establish the equivalence of our algorithm
with the quantum Fourier transformation and discuss the
problem of error correction. Given the computational basis
|0〉, . . . ,|2K − 1〉 defined by the K qubits, we rewrite the state
|n〉 in binary form |n〉 = |n1,n2, . . . ,nK〉. Second, we define
the binary fraction 0.njnj+1 . . . nK = nj/2 + nj+1/4 + · · · +
nK/2K−j+1. The quantum Fourier transform of |n〉 then reads
(cf. Ref. [1])

F(|n〉) =
K∏

j=1

|0〉 + exp(2πi 0.nK−j+1 . . . nK )|1〉√
2

. (1)

In our counting algorithm, the passage of n particles ro-
tates the j th qubit (initially prepared in the state |+y〉 =
[|↑〉 + i |↓〉]/√2) by Uz(φj ) to produce the state [|↑〉 +
i exp(2πi n/2j ) |↓〉]/√2 (up to an overall phase). Identifying
|↑〉 ↔ |0〉 and i |↓〉 ↔ |1〉 and using the binary representation
n = n12K−1 + · · · nK20, this qubit state coincides with the
factor [|0〉 + exp(2πi 0.nK−j+1 . . . nK )|1〉]/√2 in the Fourier
transform (1). Hence, after the passage of the n particles, the
K-qubit register resides in the state F(|n〉). Second,
our sequential readout scheme provides the number n =
n1n2 . . . nK in binary form. The corresponding final state
|n〉 = |nK,nK−1, . . . ,n1〉 (obtained after rotation of the qubits
back to the z axis, that is, a rotation around x by π/2,
and subsequent measurement along the z axis defining the
computational basis) is characterized by the reverse sequence.
The semiclassical readout sequence then corresponds to an
inverse Fourier transformation combined with a permutation
(cf. Ref. [7]). The simpler divisibility check relies upon the
fact that the quantum Fourier transform F(|0〉) = F(|2K〉)
is distinguishable from F(|n〉), 0 < n < 2K , by a single-shot
measurement in the computational basis (after rotation of the
y axis to the z axis).

Not different from others, our algorithm suffers from errors,
particularly those accumulated in the phase φ during rotation
of the qubit. Given a phase error δφ (during rotation in
the x-y plane), the probability for a false readout of the
qubit is given by pe = 1 − cos2(δφ/2) (the phase error δφ

remains the same after rotation around the x axis). Such
erroneous phase drifts may be systematic in origin (due to
a wrong coupling of the qubit to the wire or due to the
usual phase decoherence of the qubit); the resulting bit errors
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destroy the result of the computation. Given the one-bit error
probability pe, the probability to measure a wrong result is
given by Pe = 1 − (1 − pe)K ; for small phase errors δφ, the
total error adds up to Pe ≈ Kδφ2/8, quadratic in δφ. Further
improvement can be gained with a classical multiqubit error
correction scheme combined with a simple majority rule; for
example, for a three-qubit code, pe is to be replaced by p2

e .
Quantum error correction is required only for the case where
the inverse Fourier transform is performed by a quantum
computer.

III. IMPLEMENTATION WITH CHARGE QUBITS

The spins required in the aforementioned counting and di-
visibility check algorithms can be implemented using various
types of qubits; note that, while the special nature of our
algorithm avoids the large number of qubits and the huge
network complexity of a quantum computer, we do require
individual qubits with high performance. Most qubits naturally
couple to the electrons in the quantum wire, either via the gauge
field (current) or via the scalar potential (charge). The coupling
to charge is strong, with typical rotation angles φ allowing for
an ∼π -phase rotation upon passage of one unit of charge.
Transverse coupling via the current is weak, usually requiring
enhancement with a flux transformer (cf. the discussion in
Ref. [6]).

To fix ideas, we consider an implementation with charge
qubits in the form of double quantum dots (DQD) as
one attractive possibility. DQDs have been implemented in
GaAs/AlxGa1−xAs heterostructures [17,18] or as an isolated
(leadless) version in Si technology [19], the former with typical
oscillation frequencies in the few GHz regime and nanosecond
phase decoherence times, resulting in quality factors of orders
1 to 10. Alternatively, one may consider superconducting
charge qubits, for example, the “Quantronium” [20], with a
decoherence time reaching nearly a µs; this value, measured
at the “sweet spot,” will be reduced when choosing a working
point which is sensitive to charge. At present, the resolution
in the competition between a suitable charge sensitivity to
achieve rotation angles of order π and the decoherence due to
fluctuating charges in the environment remains a technological
challenge. On the other hand, today’s best solid-state qubit
(with a decoherence time above 2 µs), the transmon [21,22],
could be used as a photon counter in the microwave regime
[23].

The aforementioned qubit characteristics have to be com-
pared with the typical time scale of electronic transport in
the wire. While under dc bias conditions subsequent electrons
are separated by the voltage time τ = h/eV, single-electron
wave packets can be generated by unit-flux voltage pulses
of Lorentzian shape [24,25]. Recently, an alternative scheme
has been used by Fève et al. [26], who have been injecting
individual electrons from a quantum dot into an edge channel
formed in the quantum Hall regime. Typical time scales
τ = h/T δ of single-electron pulses in their experiment range
between 0.1 and 10 ns [26], where T and δ denote the tunneling
probability and the level separation between states in the dot
feeding the quantum wire. We conclude that today’s charge
qubits are at the border of becoming useful for the proposed
electron counting experiments.
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FIG. 3. Elements of the counting algorithm with double-dot
charge qubits modeled as double-well systems. (a) The initial state
|+y〉 = [|↑〉 + i |↓〉]/√2 involves balanced weights and phases 1
and i. (b) Particles are counted via their associated voltage pulses
generating an unbalanced energy state of the qubit and thereby a
phase shift between the states |↑〉 and |↓〉 (rotation around z). The
initialization and readout involve manipulations of phase [see panel
(c) where the levels |↑〉 and |↓〉 are disbalanced producing a rotation
around z] and of amplitude [see panel (d) where the barrier between
|↑〉 and |↓〉 is lowered, producing a rotation around x].

For the implementation of the charge qubit counter, we
assume the two dots aligned perpendicular to the wire, such
that they couple differently to the electron charge in the
wire. We model the double dot as a two-well potential with
quasiclassical states |T〉 ≡ |↑〉 (top well, see Fig. 3; we use spin
language in our analysis below) and |B〉 ≡ |↓〉 (bottom well)
and ground and excited states |±〉 = [|↑〉 ± |↓〉]/√2 separated
by the gap �. We consider a “phase mode operation” of the
counter with a large barrier separating the quasiclassical states,
resulting in an exponentially small tunneling amplitude ∝ �.
To prepare the qubits in the state |+y〉 = [|↑〉 + i |↓〉]/√2,
we measure and subsequently rotate the states around x by an
angle of −π/2 (π/2) if the state |↑〉 (|↓〉) is measured (this
rotation involves a lowering of the barrier, allowing for an
amplitude shift, cf. Fig. 3). The passage of electrons in the
wire generates a state [|↑〉 + ieiφj n|↓〉]/√2 (up to an overall
phase). The divisibility check involves a rotation around the
x axis by an angle of π/2 and tests for the presence of all
dot electrons in the state |↑〉; if the answer is positive, the
number n of particles passing the K double-dots is divisible
by 2K . In order to find the exact value of the cardinality n,
another rotation around the z axis by an angle of −mj−1φj

has to be performed before rotating around x; for example,
for the third qubit j = 3, after passage of seven electrons,
the measurement of the first two qubits provides the binary
number (1,1), hence m2 = 3, and a rotation by −3π/4 around
z makes the third spin point along the −y direction; storing a
1 as the third digit of the binary number we obtain m3 = 7
[cf. Fig. 2(b)]. Using the aforementioned phase mode op-
eration, the double dot does not act back on the electrons
in the wire since the charge distribution of the qubits
remains unchanged during the detection phase. When using an
“amplitude mode operation” of the charge qubit, the moving
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charge of the qubit acts back on the wire, what can be exploited
in the detection scheme (cf. Ref. [8]).

IV. APPLICATION: ENTANGLING PARTICLES

As an application, we discuss how to make use of our
quantum counting algorithm to generate multiqubit entangled
states. The basic idea is to generate a superposition of number
states in the arms of a Mach-Zehnder interferometer and to use
our counting device in order to project the system to a desired
entangled state—depending on the reading of the counting
register, we end up with different entangled states such as
Greenberger-Horne-Zeilinger (GHZ) or Dicke states.

The standard way to entangle quantum degrees of freedom
makes use of the interaction between the constituents. An
alternative is provided by a projection technique, where a mea-
surement selects the desired entangled state. In some cases, the
projection makes use of the entangled state but simultaneously
implies its destruction—more useful for quantum information
processing are those schemes which entangle qubits for further
use after the projection. Examples for the latter have been
proposed using various arrangements of double-dot charge
qubits combined with a quantum point contact serving as
a quadratic detector [27,28] or (free) flying spin qubits
tracked via a charge detector, where the charge provides an
additional nonentangled degree of freedom associated with the
entangled spins [29,30]. Here, we generate multiqubit orbital
entanglement of flying qubits via their entanglement with our
spin counters serving as ancillas; after reading of the counter
states, the entangled multiqubit state can be further used.

Consider a particle entering the Mach-Zehnder interferom-
eter from the lower-left lead and propagating along one of
the two leads U or D (see Fig. 4). The wave function can
propagate along two trajectories: the upper arm U where the
particle picks up a phase ϕU and the spin counter is flipped, or
the lower arm D accumulating a phase ϕD and leaving the spin
unchanged. The total wave function evaluated at the position
A then assumes the form

	1A = t eiϕU |⇑〉 ⊗ |↓〉 + r eiϕD |⇓〉 ⊗ |↑〉, (2)

where t and r denote transmission and reflection coefficients of
the beam splitter and we have introduced a pseudospin notation
to describe the propagation of the particles along the two arms:

Φ

u

d

A

D

φ

U

FIG. 4. Mach-Zehnder interferometer with spin counter. Particles
enter the interferometer through the left leads (here the bottom lead)
and are measured on the right. The spin counter in the upper arm
U detects the passage of particles via a rotation by the angle φ.
The magnetic flux � through the loop allows one to tune the phase
difference when propagating along different arms.

a pseudospin ⇑ (⇓) refers to propagation in the upper (lower)
arm.

Next, we inject two particles (from the bottom left) into
the Mach-Zehnder (MZ) loop with the spin-counter flipping
by φ = π upon passage of one particle in the upper arm. We
assume the two wave functions describing the initial state to be
well separated in space, allowing us to ignore exchange effects
in our (MZ) geometry. Assuming scattering coefficients for
a symmetric beam splitter, for example, t2 = 1/2 and r2 =
(−1)/2 and r t = (±i)/2, the wave function at the position A
reads

	2A = {[[−1]e2iϕU |⇑,⇑〉 + (−1)e2iϕD |⇓,⇓〉] ⊗ |↑〉
+ (±i)ei(ϕU +ϕD )[|⇓,⇑〉 + |⇑,⇓〉] ⊗ |↓〉}/2. (3)

The factor [−1] accounts for the phase π picked up in the
rotation of the spin state by 2π (for a qubit, this phase can
be tuned and assumes the value [−1] if the coupling shifts
the qubit levels symmetrically up and down), while the factor
(−1) accounts for the additional scattering phases (±i) in the
reflection process. Choosing ϕU = ϕD , the measurement of the
spin counter in the |↑〉 state projects the particle wave function
to the Bell state |⇑,⇑〉 + |⇓,⇓〉, while the measurement of the
|↓〉 state generates the state |⇓,⇑〉 + |⇑,⇓〉. The remaining
Bell states can be obtained by injecting the two particles
through the different leads on the left or applying a flux �

(cf. Ref. [8]). Note that the indistinguishability of particles
exploited in the aforementioned entanglement process is an
“artificial” one defined by the qubit detector, rather than the
“fundamental” one of identical particles.

The aforementioned scheme for entangling two particles
with one spin-counter is easily extended to 2K particles and
an array of K spin-counters. As an illustration, we consider
the case K = 2, four particles and two spin-counters. We use
the shorthand |j 〉, j = 0,1,2,3,4, with the identification |0〉 =
|4〉 = |↑,↑〉 for the four different counter states, assume again
a symmetric splitter, ϕU = ϕD , and injection from the bottom
left; then

	4A = {[[−1]|⇑,⇑,⇑,⇑〉 + |⇓,⇓,⇓,⇓〉] ⊗ |0〉
+ (±i)[|⇑,⇑,⇑,⇓〉 + · · ·] ⊗ |3〉
+ [−1](−1)[|⇑,⇑,⇓,⇓〉 + · · ·] ⊗ |2〉
+ (∓i)[|⇑,⇓,⇓,⇓〉 + · · ·] ⊗ |1〉}/4 (4)

and proper projection provides us with specific entangled states
with all pseudospins aligned (Greenberger-Horne-Zeilinger
states [31]) or superpositions with exactly one-, two-, and
three pseudospins pointing downward, among them the Dicke
states [32] with an equal number of pseudospins pointing
upward and downward.

Letting the particles propagate beyond the line A, the
many-particle wave function undergoes mixing in the second
beamsplitter (cf. Fig. 4). By properly choosing the transmis-
sion (t = cos θ ) and reflection (r = i sin θ ) coefficients of
the second splitter, the pseudospins can be rotated into any
direction, though all of the pseudospins are rotated equally.
Different rotations of the pseudospins can be implemented
by changing the characteristics of the splitter in time—the
time separation of the particle wave packets can be enlarged,
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while compromising between leaving sufficient time for the
manipulation of the splitter and keeping the system coherent.

We end with the discussion of a simple, though not
rigorous, test for the presence of entanglement due to the
action of the spin counter. We inject two (time delayed, to
avoid exchange effects) particles through the two different
leads on the left and measure the cross-correlator 〈NuNd〉
on the right (Nu,d ∈ {0,1,2} denote the number of particles
observed in the leads u and d). Without the counter, the product
state generates the result 〈NuNd〉 = P1u,1P1d,2 + P1d,1P1u,2,
where P1x,i denotes the probability to find the particle i

in the lead x. With P1u,1 = |t2 + r2 exp(2πi�/�0)|2 and
P1u,2 = |r t[1 + exp(2πi�/�0)]|2 and assuming symmetric
splitters with t2 = 1/2, r2 = −1/2, we find that 〈NuNd〉 =
[1 + cos2(2π�/�0)]/2. On the other hand, with the spin-
counter selecting the singlet state |⇑,⇓〉 − |⇓,⇑〉, only paths
where the combined trajectories encircle the loop survive
and the correlator is independent of �, 〈NuNd〉 = P2ud =
|t4 + r4|2 + |2t2r2|2 = 1/2 for symmetric splitters. Hence
post-selecting the spin-flipped events entangles the particles
and quenches the Aharonov-Bohm oscillations in the cross
correlator 〈NuNd〉. Such an analysis, although not as rigorous
as the standard Bell-inequality test but much simpler to
implement, may nevertheless serve as a preliminary indicator
for the presence of entanglement.

V. SUMMARY AND CONCLUSION

We have introduced a base-2 quantum counting algorithm
with qubits, providing the binary number representation of the

cardinality of a finite stream of particles (electrons) passing
in a nearby quantum wire. Our scheme exerts a minimal per-
turbation where both the counter and the particle merely pick
up a phase in the counting process. Such a minimal coupling
establishes the counting procedure as a sequence of forward
and backward quantum Fourier transformations, a physical
method often used in other contexts, for example, in imaging
or crystallography; in the latter case, the x-ray beam generates a
Bragg image (the forward Fourier transformation), which then
has to be converted back into a real space structure (via a back
transformation). A simpler single-shot measurement (rather
than an inverse Fourier transformation) provides us with a
divisibility test (by 2k) for the train’s cardinality. We have
discussed aspects of a possible implementation with charge
qubits and have shown how to make use of the algorithm
in entangling particles in a Mach-Zehnder interferometer.
Finally, we remark that our algorithm can be generalized
to base-d counting with qudits, disclosing further interesting
features of quantum counting in mesoscopics [33].
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