
PHYSICAL REVIEW A 82, 012315 (2010)

Efficient algorithm for approximating one-dimensional ground states

Dorit Aharonov*

School of Computer Science and Engineering, Hebrew University, Jerusalem, Israel

Itai Arad†

School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel

Sandy Irani‡

Computer Science Department, University of California, Irvine, California, USA
(Received 17 November 2009; published 16 July 2010)

The density-matrix renormalization-group method is very effective at finding ground states of one-dimensional
(1D) quantum systems in practice, but it is a heuristic method, and there is no known proof for when it works. In
this article we describe an efficient classical algorithm which provably finds a good approximation of the ground
state of 1D systems under well-defined conditions. More precisely, our algorithm finds a matrix product state of
bond dimension D whose energy approximates the minimal energy such states can achieve. The running time is
exponential in D, and so the algorithm can be considered tractable even for D, which is logarithmic in the size of
the chain. The result also implies trivially that the ground state of any local commuting Hamiltonian in 1D can
be approximated efficiently; we improve this to an exact algorithm.

DOI: 10.1103/PhysRevA.82.012315 PACS number(s): 03.67.Ac, 05.50.+q, 89.70.Eg

I. INTRODUCTION

Finding ground states of local one-dimensional (1D)
Hamiltonian systems is a major problem in physics. The most
commonly used method is density matrix renormalization
group (DMRG) [1–6], discovered in 1992. DMRG can be cast
in the form of matrix product states (MPSs) which are succinct
representations of 1D quantum states using D × D matrices,
where the coefficients in the state can be written in terms
of products of these matrices. The number of matrices is dn,
where d is the dimension of each individual particle and n is the
number of particles in the system. The parameter D is called
the bond dimension. DMRG works essentially as follows:
The algorithm starts with some initial MPS and sweeps from
one end of the chain to the other, optimizing the entries of
the matrices at one site with the other parameters fixed. Some
versions allow optimizing over two neighboring sites at once,
which enables the algorithm to increase the bond dimension in
the course of the algorithm for improved accuracy. In all cases,
the approach is to apply local optimizations iteratively. It is thus
easy to construct examples in which the DMRG algorithm gets
trapped in a local minimum. To illustrate this, think of a 1D spin
chain whose Hamiltonian consists of two types of interactions:
One type consists of interactions which force the spins to be
aligned; every two neighboring sites gain an energy penalty of
say 4 if they are not aligned. The other type of term gives every
spin an energy penalty of 1 if it points upward. Starting from
the all-up string, a local move only increases the energy; thus,
local update rules cannot take the system to its ground state,
the all-down string. This example can of course be handled
by randomizing the initial string, for example, or increasing

*dorit.aharonov@gmail.com
†arad.itai@gmail.com
‡irani@ics.uci.edu

the window size; however, it demonstrates that DMRG has a
fundamental difficulty in addressing nonlocal characteristics
of the system. It is natural to ask if there is a general algorithm
that does not get stuck in local minima as DMRG does and
provably always find a good approximation of the ground state
of a given 1D system in a reasonable amount of time.

To answer this question, we first ask what is known
regarding the analogous question in the easier, classical, case.
It was Kitaev [7] who drew the important connection between
the problem of finding ground energy and ground states of
local Hamiltonians and the well-known classical constraint
satisfaction problem (CSP). The input to a CSP consists of
constraints {Hc}c on n q-state classical particles. Each Hc

acts on k particles (for some constant k) and is given as
a Boolean function on the possible assignments to those k

particles; when Hc = 1 the configuration is forbidden and
when Hc = 0 it is allowed. The problem is to determine
the maximum number of constraints that can be satisfied
or, alternatively, to minimize

∑
c Hc. The decision version

of this problem is to determine whether it is possible to
satisfy more than some given number of constraints. This is
one of the most well-known NP-complete (where NP denotes
nondeterministic polynomial) problems. CSP can clearly be
seen as a special case of the problem of finding ground
states and ground energies of local Hamiltonians, in which the
terms in the Hamiltonian are projections on local forbidden
configurations. This analogy has led over the past few years
to many interesting insights regarding the local Hamiltonian
problem (see, e.g., Refs. [7–12]).

Let us therefore see what the known classical results
regarding CSP in 1D can teach us about 1D local Hamiltonians
and their ground states. We recall that in the classical case,
1D CSPs (in which the particles are arranged in a line and
constraints are between k adjacent neighbors) are dramatically
easier than their higher-dimensional counterparts. While even
the 2D case is NP complete, the 1D problem can be solved

1050-2947/2010/82(1)/012315(14) 012315-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.012315

DORIT AHARONOV, ITAI ARAD, AND SANDY IRANI PHYSICAL REVIEW A 82, 012315 (2010)

in polynomial time. The reason for the tractability of the
problem in 1D is essentially that the problem can be divided
into subproblems, namely, the left- and the right-hand sides of
the chain, which interact only via the k particles on the border.
The fact that these particles can only be assigned a small
number of possible values makes it possible to handle the
problem by solving each subproblem separately for each fixed
possible assignment to the border particles and then gluing the
subsolutions together by picking the best choice for the middle
particles. We explain the algorithm in detail later; the outcome
is an algorithm which is linear in the number of particles in
the chain and quadratic in the number of states per particle.

Unfortunately, there is no hope of getting such a general
result for the 1D quantum problem. Aharonov et al. [10]
have shown that approximating the ground energy for general
1D quantum systems is as hard as quantum-NP. Even when
restricted to ground states that are well-approximated by MPSs
of polynomial bond dimension, the problem is NP-hard, as
was shown by Schuch et al. [13]. A related earlier result due
to Eisert [14] showed that optimizing a constant number of
matrices in the MPS representation subject to fixed values
in the other matrices is NP-hard. These results indicate that
the dichotomy between the computational difficulty of 1D
and 2D classical systems does not carry over to the quantum
setting, and it is highly unlikely that the quantum 1D problem
is tractable. Nevertheless, we show here that using the classical
1D algorithm as a template for an algorithm for the quantum
problem leads to a solution for a wide and interesting class of
local Hamiltonian problems, namely, for those cases in which
we can assume that the bond dimension is small.

A. Main result

We derive an efficient algorithm for approximating the
minimal energy of a 1D system among all states of a bounded
bond dimension D. The algorithm is exponential in D and thus
can be considered reasonable, though maybe not practical,
even for D, which is logarithmic in the size of the chain.
The algorithm also provides a description of an MPS with the
approximate minimal energy.

Theorem 1. Let H be a nearest-neighbor Hamiltonian on a
1D system of n d-dimensional particles. Let J be a bound on
the operator norm of each local term. There is an algorithm that
takes as input ε, H , and D and produces an MPS |�〉 of bond
dimension D, such that for any MPS |ψ〉 of bond dimension
D with nD2 � 12,

〈�|H |�〉 � 〈ψ |H |ψ〉 + 2JD2n2ε. (1)

The algorithm runs in time n · poly(d,D,N), where N =
O(144dD

ε
)D+2dD2

.

Several remarks are in place here. First, note that the
restriction that the interactions are nearest neighbor is done
without loss of generality since any 1D system can be reduced
to a 2-local 1D system with nearest-neighbor interactions by
grouping neighboring particles together.

Note also that the running time in the preceding theorem
is phrased as a linear function in n, the size of the system,
times some fixed amount of time spent per particle. The error,
however, scales with n2. One may want to apply the theorem
to derive an approximation with a fixed additive error δ, in

which case simply set ε = δn−2 in the preceding theorem to
get the running time as a function of δ.

This result shows that the problem of finding bounded
bond dimension MPSs can be done in polynomial time.
Unfortunately, the running time, though efficient in theory,
is quite impractical, as even for D = 2 and the error ε/n2

a constant, we get a running time which scales like n16. It
is hard to imagine that these running times are practical.
Nevertheless, it is very likely that the running time can be
improved; in particular, when solving specific problems with
certain symmetries, dramatic improvements may be possible.
Moreover, it is possible that this algorithm can be used to
boost DMRG in certain cases where it gets stuck or to create
the initial state of DMRG. All these improvements are left for
further research.

We now provide an overview of the algorithm. To under-
stand the general idea, we first recall how the classical 1D
algorithm works in detail. Consider the case of the classical
CSP on a line with k = 2, namely, the problem of minimizing
the energy function H = ∑n

i=1 Hi,i+1. An optimal assignment
can be found efficiently by a standard algorithmic technique
called dynamic programming. Define the partial problem up
to the (r + 1)th particle, Hr = ∑r

i=1 Hi,i+1. The algorithm
starts with the partial problem defined for r = 1 and creates
a list L2 of possible assignments to the first two particles as
follows: For each of the q possible assignments σ2 to particle
2, the algorithm finds an assignment σ1 to particle 1 which
minimizes H1(σ1,σ2). That optimal σ1 is called the tail of
σ2. For each σ2 the algorithm keeps its tail σ1 and also the
energy of this partial assignment, H1(σ1,σ2). L2 thus contains
the best possible partial assignment with each possible ending.
After r − 1 iterations, we assume the algorithm has a list Lr

consisting of an optimal tail σ1, . . . ,σr−1 for each of the q

possible assignments σr to the rth particle, where optimality is
measured with respect to Hr−1. In other words, the algorithm
has a solution to the subproblem confined to the first r particles,
with any possible ending. To include the next particle, and
create the next list Lr+1, the algorithm finds the optimal tail of
each assignment σr+1. This is done by considering all items in
the list Lr as possible tails for σr+1 and taking the tail which
minimizes Hr (σ1, . . . ,σr+1). In each of the n − 1 iterations,
the algorithm checks for each of the q possible assignments
σr , all q items in the list Lr−1. Thus, in time which is linear
in n and quadratic in q, we can derive the final list Ln−1. The
final solution is an assignment of minimal energy in that list.

The main idea in this atricle is to generalize the preceding
algorithm to MPSs by replacing assignments to particles
by possible values of MPS matrices. Since matrices are
continuous objects, we use an ε net over all possible matrices
of bond dimension D. The number of possible assignments to
one variable, q, will now be replaced by the number of points
in the ε net, denoted as N . We will move from one site to the
next, keeping track of the minimum-energy MPS state, which
ends in each MPS matrix for the rightmost particle that the
algorithm has reached.

In order to carry out this idea, it must not happen that
the choice of the MPS matrix of a later iteration can change
the optimality of the partial MPS state found in an earlier
iteration. To avoid this, we work with a restricted form of MPSs
called canonical MPSs, in which the energy of each term in

012315-2

EFFICIENT ALGORITHM FOR APPROXIMATING ONE- . . . PHYSICAL REVIEW A 82, 012315 (2010)

the Hamiltonian depends only on MPS matrices associated
with nearby particles. There are, however, various technical
issues we need to handle. In particular, we cannot use perfectly
canonical MPSs but only an approximated version of those,
which imposes further technicalities, and in particular, the
neighboring MPS matrices do not match perfectly (we call
this imperfect stitching). These technicalities make the error
analysis a bit subtle. Before we formally define canonical
MPSs and provide the details of the algorithm, we mention
an implication for a related problem.

B. Commuting Hamiltonians in 1D

A problem related to finding minimum-energy MPS states
is the complexity of calculating the ground energy of commut-
ing Hamiltonians in which all the local terms commute. Bravyi
and Vyalyi proved that for 2-local Hamiltonians the problem
lies inside NP [8]. For k-local commuting Hamiltonians with
k > 2, the complexity of the problem is still open. The
complexity of the 1D case was not studied before as far as
we know; an immediate corollary of Theorem 1 is that there is
an efficient classical algorithm for approximating the ground
energy of commuting Hamiltonians in 1D to within 1/poly(n).
This is because the ground state of a commuting Hamiltonian
in 1D is an MPS of constant D (this is a well-known
fact that we explain later for completeness), and therefore
Theorem 1 can be applied. In fact, the result can be improved to
an exact algorithm (up to exponentially good approximations
due to truncations of real numbers) for a certain general class
of problems. We prove the following.

Theorem 2. Given is a 1D Hamiltonian whose terms
commute. There is an efficient algorithm that can compute
the ground energy of this Hamiltonian to within any desired
accuracy ε in time polynomial in n and in 1

ε
. If we may

assume also that the ground space of the total Hamiltonian
is well separated from the higher excited states, by a spectral
gap which is at least 1/poly(n), then the algorithm can find
both the ground energy and a description of an MPS for the
ground state exactly (i.e., up to exponentially small errors due
to handling of real numbers).

The basic idea for the exact algorithm can be illustrated
when the terms in the Hamiltonian are all projections and the
ground state is unique. Since the terms commute, the ground
state is an eigenstate of each term separately, with eigenvalue
either 0 or 1. We start by applying the dynamic programming
algorithm, to create a good approximation of the ground state.
From this approximation we can deduce the correct eigenvalue
(0 or 1) for each of the terms. The projections on the relevant
eigenspaces can then be applied to the MPS of the approximate
state to make it exact. One gets a tensor network of small depth,
which can be converted into an MPS again. It can be shown that
applying the projections does not increase the bond dimension
of the MPS too much with respect to the approximating state.
The details are fleshed out in the proof (Sec. V).

Handling the degenerate case is very easy; essentially, we
force the dynamic algorithm to choose one state of the various
possible states. The assumption on the spectral gap ensures
that the errors created by the ε-net approximations would not
cause a confusion between the ground space and some excited
states.

We provide an alternative proof of Theorem 2, which
also uses dynamic programming. In fact, this proof holds
for a somewhat stronger version of the theorem, in which
the conditions on the spectrum are far less restrictive. In the
algorithm given by this approach, the state is not provided
as an MPS but rather as a tensor product of two-particle
states. The construction is based on the work of Ref. [8],
in which it is proved that the ground states of 2-local
commuting Hamiltonians have this special structure. Bravyi
and Vyalyi use this structure to show that general 2-local
commuting Hamiltonians are in NP. Since 1D chains with
k-local interactions can always be made 2-local by treating
nearby particles as one particle of a larger dimension, Ref. [8]
implies that the 1D commuting problem lies in NP. However,
by exploiting the special form of these ground states, dynamic
programming can be applied to find the solution efficiently
in a very similar manner to the 1D CSP, in which the NP
witness is found using the 1D structure. Unfortunately, in this
approach too, it seems that one cannot avoid some assumption
on the spectrum of the total Hamiltonian, albeit a significantly
less restrictive one. Throughout its execution, the dynamic
programming algorithm compares various partial energies.
If these are too close, and cannot be distinguished even by
computations performed with exponentially good precision,
then the algorithm might get confused between the ground
energy and a slightly excited state. A sketch of the alternative
proof of Theorem 2, providing the stronger version of it, and a
discussion of the preceding precision issue are given in Sec. V.

We mention that this latter proof (and in particular the
observation that dynamic programming can be useful for 1D
quantum systems and not only for 1D classical systems) was
the inspiration for the current article, rather than its corollary.

C. Discussion and open questions

It is natural to ask how much the results in this article can be
improved. By Ref. [13], we know that no polynomial algorithm
exists for finding optimal approximations of polynomial bond
dimension (unless P = NP). However, the difficult instances
of Ref. [13] have a spectral gap of 1/poly(n). Hastings has
shown that ground states of 1D quantum systems with a
constant gap can be approximated by MPSs with polynomial
bond dimension [15]. However, this is too large to immediately
yield an efficient algorithm from our result. It may still be
true, however, that under the additional restriction that the
Hamiltonian has a constant gap, a polynomial time algorithm
exists, even when the bond dimension is as large as polynomial.

It is very likely that the efficiency of our algorithm can be
significantly improved even for the general case. In particular,
a factor of n would be shaved from the error in Theorem 1 if we
could use an ε net which is both exactly canonical and enables
perfect overlap between matrices at neighboring particles, as
we later explain. Unfortunately, even if this can be done, the
running time for this general algorithm is still quite large.

As mentioned earlier, we leave for further research the
question of how this algorithm can be used in combination
with DMRG and how certain symmetries in the problem can be
utilized to enhance its performance time for specific interesting
cases.

012315-3

DORIT AHARONOV, ITAI ARAD, AND SANDY IRANI PHYSICAL REVIEW A 82, 012315 (2010)

Γ[1]

|i1〉

Γ[2]

|i2〉

Γ[3]

|i3〉

Γ[n−1]

|in−1〉

Γ[n]

|in〉

λ[2] λ[3] λ[4] λ[n]

FIG. 1. MPS as a tensor network.

We note that very similar results to those presented in this
article were derived independently by Schuch and Cirac [16].

D. Paper organization

Section II starts by defining tensor networks, MPSs, and
canonical MPSs. In Sec. III we describe the algorithm. This
is where the ε nets are defined and an algorithm to generate
them is given. Also in Sec. III, we show how they are used in
the dynamic programming algorithm. Section IV provides an
exact analysis of the error accumulated in the algorithm. The
complexity is analyzed as a function of the desired error. In
Sec. V we provide the proof regarding the approximate and
exact solutions for the commuting 1D case. We defer several
technical lemmas to the Appendix.

II. TENSOR NETWORKS AND MATRIX
PRODUCT STATES

A. Tensor networks

We start with some background on tensor networks, since
MPSs are a special case of those. A detailed introduction to the
use of tensor networks in the context of quantum computation
can be found in Refs. [17–19].

A tensor network is a graph in which we allow some of
the edges to be incident to only one node. These edges are
called the legs of the network. Each node is assigned a tensor
whose rank (number of indices) is equal to the degree of the
node. Each index of the tensor corresponds to one edge that is
incident to that node. To each edge (or index) we also assign
a positive integer which indicates the range of the index. The
indices associated with some of the edges in the tensor network
may be assigned fixed values. The other edges are called free
edges.

We call an assignment of values to the indices of the free
edges in the network a configuration. With all the indices fixed,
the tensor at each node in the network yields a particular value.
We say that the value of the configuration is the product of the
values for each of the nodes.

The value of the network is in general a tensor, whose rank
is equal to the number of legs in the network. If there are
no such legs, the value is simply a number (a scalar). Each
assignment of values to the indices associated with the legs of
the network gives rise to a value for the network tensor. We
compute the tensor value for this assignment by summing over
all configurations which are consistent with that assignment
the value of each such configuration.

We note that often in the literature, one assigns values not to
entire edges but to the two sides of an edge separately (where
each side inherits its range of indices from the tensor associated
with the node on that side). In the evaluation of the network,
we require that the values on the two sides of one edge are
equal, or else the entire configuration contributes zero to the
sum.

Tensors will be denoted as bold-face fonts: λ,�,µ. Their
contraction will be denoted as an expression like λ�µ, when
it is clear from the context along which indices the contraction
is performed.

It is possible to restrict a tensor of rank k to a tensor of
rank k − 1 by assigning a fixed value to one of its legs. For
example, �α is the restriction of the tensor � to the case in
which the relevant edge associated with the index α is given
some value (which, by the usual abuse of notation of variables
and their values, will also be denoted as α).

It is convenient to associate with every tensor (which can
be given as a contraction of a tensor network) a quantum state.
For example, let � = �i

α,β be a rank-3 tensor. Then we define

|�〉 def= ∑
i,α,β �i

α,β |α〉 ⊗ |i〉 ⊗ |β〉.

B. Matrix product states

We work in the notation of Vidal [20] for MPSs, with minor
changes. A MPS of a chain of n d-dimensional particles, with
bond dimension D, is a tensor network with a 1D structure
as in Fig. 1. Horizontal edges correspond to indices ranging
from 1 to the bond dimension D and are denoted with α,β, . . . ,

while vertical edges correspond to indices ranging from 1 to the
physical dimension d. (In our description, the end particles will
actually have a different physical dimension, denoted dend. This
is required due to a technical reason described in Sec. II C.)
The indices of vertical edges are denoted with i,j, . . . The
figures show two types of nodes: black and white. The tensors
of black nodes are typically of rank 3 (except for the boundary
tensors, which are of rank 2), and we denote them with �’s.
For example, when the tensor that is second from left is written
with its indices, it is denoted as �[2]i

α2,α3
, where the index [2] in

brackets corresponds to its location in the graph. The tensors
associated with white nodes are always of rank 2 and are
denoted with λ’s. They are required to be diagonal and hence
are given only one index (i.e., λ[2]

α2
). Without loss of generality,

we will also demand that the entries of λ are nonnegative since
the phases can be absorbed in the neighboring � tensors.

The MPS defined by this network is |ψ〉 =∑
i1,...,in

Ci1,...,in |i1〉 · · · |in〉, with

Ci1,...,in

def=
∑

α2,...,αn

�[1]i1

α2
λ[2]

α2
�[2]i2

α2α3
λ[3]

α3
· · · λ[n]

αn
�[n]in

αn
.

In the language of tensor states, |ψ〉 is exactly the tensor
state of the contraction �[1]λ[2]�[2] · · ·λ[n]�[n].

C. Canonical MPSs

An MPS is in canonical form if every cut in the chain
induces a Schmidt decomposition (as in Fig. 2). In other
words, we can rewrite the MPS by changing the order of
summation to sum last over the index β of the j th λ tensor:
|ψ〉 = ∑

β λ
[j]
β |L[j]

β 〉 ⊗ |R[j]
β 〉, where L[j]

β (R[j]
β) denote the

012315-4

EFFICIENT ALGORITHM FOR APPROXIMATING ONE- . . . PHYSICAL REVIEW A 82, 012315 (2010)

β
Γ[j−1]Γ[j−2] λ[j−1]

β
Γ[j] Γ[j+1]λ[j+1]λ[j]

|L [j]
β 〉

︷ ︸︸ ︷

|R [j]
β 〉

︷ ︸︸ ︷

FIG. 2. (Color online) A description of a canonical MPS. The tensors are chosen such that cutting a MPS between the j − 1th and j th
particles corresponds to the Schmidt decomposition between the left and right parts: |ψ〉 = ∑

β λ
[j]
β |L[j]

β 〉 ⊗ |R[j]
β 〉.

contraction of the all the tensors to the left (right) of the
cut with fixed β and |L[j]

β 〉 (|R[j]
β 〉) are their corresponding

states. Then the canonical conditions are that for all j from
2 to n,

∑
β(λ[j]

β)2 = 1 and 〈L[j]
α |L[j]

β 〉 = 〈R[j]
α |R[j]

β 〉 = δαβ . In
addition, for normalization, we require that the entire MPS
state is normalized, which is guaranteed by the normalization
requirement on the λ[j] tensors.

There is a small technical issue that needs attention: The
canonical conditions cannot be satisfied at the boundaries if
d < D. Consider for example the left boundary; there are not
enough dimensions in the Hilbert space of the left particle
for an orthonormal set of vectors |L[2]

α 〉 to exist. This issue
remains a problem even as we move away from the boundary
by one particle, as the dimension of the left-side Hilbert space
increases to d2 which may still be smaller than D. There are
many ways of handling this technicality; here we choose to
assume that the particles at the end of the chain have dimension
of at least D. This will ensure that at any cut along the chain, the
Hilbert space of the subsystems on each side have dimension
of at least D. We can achieve this by grouping s particles at
each end of the chain into a single particle, where s is chosen
to be the smallest integer such that ds � D. Denote ds as dend,
the dimensionality of each of those end particles. Note that
dend = ds � Dd. The dimension of the rest of the particles
will remain d. We renumber the particles after the grouping,
so that the new H1,2 is now the sum of the old Hi,i+1 for i

ranging from 1 to s. The term in the Hamiltonian for the last
two particles is adjusted in a similar manner. We will assume
from now on that the Hamiltonian is given in this form.

Let us now see how the canonical conditions can be stated in
a local manner. Graphically, the second condition is equivalent
to

〈L[j]
β |L[j]

α 〉 =

Γ[1] λ[2] λ[j−1] Γ[j−1]

α

β

=
α

β

= δαβ , (2)

and similarly from the other side. Here the upper part of the
network corresponds to |L[j]

α 〉, and the lower part corresponds
to 〈L[j]

β |. Notice that the canonical conditions imply that we
can “collapse” the network both from the left side and from the
right side. Moreover, as this condition holds at every bond, it
is not difficult to see that a necessary and sufficient condition
for an MPS to be canonical consists of the following local
conditions on (λ[j],�[j],λ[j+1]): For every j = 2, . . . , n − 1,

〈(λ[j]�[j])α|(λ[j]�[j])β〉 = δαβ (left canonical), (3)

〈(�[j]λ[j+1])α|(�[j]λ[j+1])β〉 = δαβ (right canonical). (4)

For j = 1 and j = n, for 1 � α, β � D,〈
�[1]

α

∣∣�[1]
β

〉 = 〈
�[n]

α

∣∣�[n]
β

〉 = δαβ

(boundary canonical conditions). (5)

We also require that the λ’s are normalized, namely, that
for every j from 2 to n,

〈λ[j]|λ[j]〉 = 1. (6)

Graphically, these conditions are summarized in Fig. 3.
Any triplet (λ[j],�[j],λ[j+1]) = (λ,�,µ) that satisfies the

normalization and the left and right canonical conditions
[Eqs. (3), (4), and (6)] is called a canonical triplet. Such
a triplet can be associated with a quantum state on three
particles |ψ〉 = |λ�µ〉 = ∑

α,i,β λα�i
αβµβ |α〉|i〉|β〉, with the

following properties: ‖ψ‖ = 1; the Schmidt basis of the first
particle is the standard basis, with Schmidt coefficients {λα};
and the Schmidt basis of the third particle is the standard
basis, with Schmidt coefficients {µβ}. A canonical MPS can
thus be described as a set of canonical triplets (or equivalently
three-particle states) such that the right µ tensor of one state
is equal to the left λ tensor of the next canonical triplet.

Instead of describing a canonical MPS in terms of canonical
triplets (λ,�,µ), we will often describe it using canonical pairs
(λ,B), where

B
def= �µ.

The advantage is that for canonical MPSs, the elements in
B are always bounded (since the L2 norm of B satisfies
‖B‖ = √

D; see Sec. II D), unlike � whose entries can
approach infinity when the corresponding µ entries approach
zero.

An MPS that is described by the contraction
�[1]λ[2]�[2]λ[3] · · · λ[n]�[n] can also be denoted as
�[1]λ[2] B[2] B[3] · · · B[n−1]�[n]. No information is lost
since µ can always be recovered from (λ,B): µβ is the norm
(see Sec. II D) of the tensor state (λB)β :1

µβ =
(∑

i,α

∣∣λαBi
αβ

∣∣2

)1/2

.

We define µ
def= µ(λ,B) this way also for noncanonical pairs.

1Recall that µβ corresponds to a Schmidt coefficient in a Schmidt
decomposition that coincides with the standard basis.

012315-5

DORIT AHARONOV, ITAI ARAD, AND SANDY IRANI PHYSICAL REVIEW A 82, 012315 (2010)

λ[j]

λ
∗[j]

= 1

(a)

=
α

β

Γ[j]

Γ
∗[j]

λ[j]

λ
∗[j]

α

β

α

β

=

Γ[j]

Γ
∗[j]

λ[j+1]

λ
∗[j+1]

α

β

(b)

α

β

Γ[1]

Γ
∗[1]

=
α

β

α

β

=
α

β

Γ[n]

Γ
∗[n]

(c)

FIG. 3. (a) The normalization condition for j = 2, . . . , n. (b) The left-right canonical conditions for j = 2, . . . , n − 1 [see Eqs. (3) and
(4)]. (c) The boundary canonical conditions for j = 1 and j = n [see Eq. (5)].

The advantage of working with the canonical form is
that the energy of local Hamiltonians involves only the local
tensors, as the following figure illustrates:

Hj−1,j

Γ[j−1] Γ[j]λ[j]Γ[1] λ[2] Γ[n]λ[n]

= Hj−1,j

Γ [j−1] Γ[j]λ[j]

λ[j−1] λ[j+1]

The preceding equality was obtained using the canonical
conditions that are described in Eq. (2). Consequently, the
energy 〈ψ |Hj−1,j |ψ〉 only involves five tensors: λ[j−1], �[j−1],
λ[j], �[j], and λ[j+1]. Similarly, H1,2 only depends on �[1], λ[2],
�[2], λ[3], and Hn−1,n only depends on λ[n−1], �[n−1], λ[n], and
�[n]. It is important that each energy term does not involve
tensors further to the right in the chain since the algorithm
attempts to compute (or approximate) the optimal MPS up
to a certain point. We would like to be able to grow the
description of the state from left to right, without affecting
the energies we have already computed. If matrices in the
right side of the chain affected energies of terms in the left
side, we would need to go back and change the MPS matrices
of the particles we have already handled after we make new
assignments to particles on the right. This would ruin the entire
idea of dynamic programming.

Fortunately, any MPS representing a normalized state can
be written as a canonical MPS with no increase in bond
dimension. This follows from Ref. [20], in which it is shown
that any state with Schmidt rank of at most D across any cut
can be written as a canonical MPS with bond dimension D.

D. Tensor norms and distances

We use the L2 norm on tensors ‖X‖2 def= ∑
i1...ik

|Xi1...ik |2.
This norm of course induces a metric, namely, a way of
defining the distance between tensors of the same rank. It is
easy to see that the norm of a tensor C is equal to the Eucledian
norm of its corresponding state |C〉. Also, for a rank-2 tensor
(which can be viewed as a matrix), it is known that its operator
norm is not larger than its tensor norm (which in this case is
simply the Frobenious norm).

It is true that for any three tensors, B1,B2,B, we have
‖B1 B − B2 B‖ � ‖B1 − B2‖ · ‖B‖. In fact, many times in
the context of MPSs, a much stronger inequality holds. Assume
B connects with B1 or B2 along one edge, indexed by α.
Assume further that ‖Bα‖ = 1 for every α (in the context of
canonical MPSs, it will often be the case that we consider the
contraction of one side of the chain with a fixed index α of
the cut edge, and this contraction is indeed of norm 1 by the
canonical conditions). In this case, we have a much stronger
inequality, which can be easily verified:

‖B1 B − B2 B‖ = ‖B1 − B2‖. (7)

We can apply this to cases of interest when we compare
contractions of tensors which differ in only a single term. For
example, consider vector λα with norm 1 and two tensors
Bα,i1,...,ik and Aα,j1,...,jl

such that when α is fixed, the resulting
tensors Aα and Bα have norm 1. Let λ̂, Â, and B̂ be tensors
with the same rank and dimensions as λ, A, and B. We have,
by Eq. (7),

‖AλB − Aλ̂B‖ = ‖λ − λ̂‖, (8)

and also

‖AλB − Âλ̂B‖ = ‖Aλ − Âλ̂‖. (9)

And similarly,

‖AλB − AλB̂‖ = ‖λB − λB̂‖

=
[∑

α

|λα|2‖(Bα − B̂α)‖2

]1/2

� max
α

‖Bα − B̂α‖. (10)

III. THE ALGORITHM

As discussed earlier, in order to carry out the outline
described in Sec. I A, we would like to work with canonical
MPSs. Additionally, since the tensor pairs (λ,B) for neighbor-
ing nodes overlap, we would like an ε net over canonical pairs
such that µ(λ,B) could be equal to the λ of the next pair (we

012315-6

EFFICIENT ALGORITHM FOR APPROXIMATING ONE- . . . PHYSICAL REVIEW A 82, 012315 (2010)

call this perfect stitching). We do not know how to efficiently
construct an ε net that satisfies those conditions exactly; we
resort to approximately canonical MPSs with approximate
stitching.

A. ε nets

We fix ε > 0 (to be determined later) and define two ε nets.
We start with discretizing �[1] and �[n].

Definition 1 (the Gend ε net). Gend is a set of canonical
boundary tensors [see Eq. (5)] such that for any canonical
boundary tensor �̂, there is � ∈ Gend such that for each α,
‖�̂α − �α‖ � ε.

We now define an ε net over the intermediate tensors or,
more precisely, for the pairs (λ,B).

Definition 2 (the G ε net). G is a set of pairs of tensors
(λ,B) such that:

(1) λ is positive and normalized. For all αλα � 0 and
〈λ|λ〉 = 1.

(2) G is an ε net. For every canonical triplet (λ̂,�̂,µ̂), there
is (λ,B) ∈ G such ‖λ̂�̂µ̂ − λB‖ � ε.

(3) B is perfectly right canonical. For every α,α′,
〈Bα|Bα′ 〉 = δαα′ (here α,α′ are the left Greek indices of B).

(4) (λ,B) are approximately left canonical. For every β �=
β ′,

|〈(λB)β |(λB)β ′ 〉| � 3ε. (11)

B. ε-net generators

We now explain how to construct such nets efficiently. Both
generators for the ε nets will make use of the following general
lemma.

Lemma 1. For any positive integers a � b and any ν in
the range (0,1/

√
a], we can generate a set of a × b matrices

Sab over the complex numbers such that for any A ∈ Sab,
the rows of A are an orthonormal set of length b vectors.
Furthermore, for any a × b matrix B whose rows form a set of
orthonormal vectors, there is a matrix A ∈ Sab such that each
row of A − B has L2 norm at most ν. The size of Sab is at most
O((72b/ν)2ab). The time to generate Sab is O(a2b(72b/ν)2ab).
If a = 1, we can generate a set of vectors with real nonnegative
entries, rather than complex. The size of the net is O((72b/ν)b)
and the time to generate it is O(b(72b/ν)b).

The proof appears in the Appendix.

1. Generating Gend

Invoke Lemma 1 with ν = ε, a = D, and b = dend. For
every A ∈ SD,dend , add a � to the ε net, where Aα,i = �i

α . Note
that the conditions of Lemma 1 are satisfied if ε � 1/

√
D.

Since dend � Dd, the size of the net is at most (72Dd/ε)2dD2

and the time to generate it is O(dD3) times the size of the set.

2. Generating G

We generate G by first generating an ε/2 net over the λ’s and
an ε/2 net over the B’s. To generate the net of the λ’s, invoke
Lemma 1 with a = 1, b = D, and the ν in the lemma set to
ε/2. Note that we would like to have a λ with nonnegative real
entries. According to Lemma 1, this actually requires fewer

items in our net since we are omitting the phases in each entry
in the tensor. The resulting net for the λ’s has size (144D/ε)D

and can be generated in time O(D(144D/ε)D).
To generate the net over the B’s, we invoke Lemma 1 with

a = D, b = dD, and ν = ε/2. Note that in order to invoke
Lemma 1, we require that ε � 2/

√
D. For any matrix Aα,(i,β)

in the set, we generate a tensor B where Bi
α,β = Aα,(i,β). This

way we generate a set of pairs (λ,B) which satisfies both the
normalization condition [condition (1) of Definition 2] and the
condition of being perfect right canonical [condition (3) of
Definition 2].

To see that we in fact have an ε net [i.e., condition (2) is
satisfied], consider a perfectly canonical pair (λ,B), and let us
find a pair (λ̂,B̂) in the net that is ε close to it. We first replace
λ with a λ̂ from the first net and then replace B with a B̂ from
the second net. Using Eq. (8), we have that

‖λB − λ̂B‖ = ‖λ − λ̂‖ � ε

2
.

Using Eq. (10), we also have

‖λ̂B − λ̂B̂‖ � max
α

‖Bα − B̂α‖ � ε

2
.

Next, we discard all tensors (λ,B) that are not approx-
imately left canonical, namely, those that violate condition
(4). It remains to show that the remaining tensors still satisfy
condition (2), that is, the ε-net condition. We do that by
showing that a pair (λ,B) that is ε close to a canonical triplet
must necessarily be approximately left canonical. Therefore,
such a pair would not have been eliminated.

To see this, let the tensor A = λ�µ be the contraction of
the canonical triplet and C be the contraction of λ̂B̂ from
the net such that ‖A − C‖ � ε. The fact that A is perfectly
left canonical is expressed in the fact that for every β �= β ′,
〈Aβ |Aβ ′ 〉 = 0. To prove that C is approximately left canonical,
we need to show |〈Cβ |Cβ ′ 〉| � 3ε. Indeed, ‖A − C‖ � ε

implies ‖Aβ − Cβ‖ � ε for every β. Assume β �= β ′. Then

|〈Cβ |Cβ ′ 〉| = |〈Aβ + (Cβ − Aβ)|Aβ ′ + (Cβ ′ − Aβ ′)〉|
� |〈Aβ |Aβ ′ 〉| + |〈Aβ |Cβ ′ − Aβ ′ 〉|

+ |〈Cβ − Aβ |Aβ ′ 〉| + |〈Cβ − Aβ |Cβ ′ − Aβ ′ 〉|
� ‖Aβ‖‖Cβ ′ − Aβ ′ ‖ + ‖Aβ ′ ‖‖Cβ − Aβ‖

+‖Cβ − Aβ‖‖Cβ − Aβ‖
� 2ε + ε2 � 3ε.

This concludes the proof that G is indeed an ε net according
to Definition 2.

3. Complexity of generating G and Gend

By Lemma 1, N
def= |G|, the size of the ε net G is

N = O

(
144dD

ε

)D+2dD2

. (12)

This is the size of the set formed by taking all pairs (λ,B),
where each λ and B come from their respective nets. The
time required to generate the original net (before tensors are
discarded) is O(dD3N). The cost of checking whether a (λ,B)
pair is approximately left canonical is O(dD3), so the total cost
of generating the net is O(dD3N).

012315-7

DORIT AHARONOV, ITAI ARAD, AND SANDY IRANI PHYSICAL REVIEW A 82, 012315 (2010)

For Gend, both the number of points and the running time
which were determined in Sec. III B1, are bounded above by
the corresponding bounds of G.

C. The algorithm

When processing particle j , the algorithm creates a list Lj

of partial solutions, one for each (λ,B) pair in G. For each
such partial solution, a tail (i.e., the tensors to the left of the
j th particle) and energy is kept.

First step. Create the first list L2: For each (λ[2],B[2]) ∈
G, find its tail, namely, the �[1] ∈ Gend which minimizes the
energy with respect to H1,2 of the tensor �[1]λ[2] B[2]. Denote
this minimal energy as E2(λ[2],B[2]). We keep both the tail and
the computed energy, for each pair (λ[2],B[2]) ∈ G.

Going from j = 3 to j = n − 1. We assume we have
created the list Lj−1. For each pair (λ[j−1],B[j−1]) ∈ G there
is a tail in Lj−1,

�[1],(λ[2],B[2]),(λ[3],B[3]), . . . ,(λ[j−2],B[j−2]),

and an energy value that we denote as Ej−1(λ[j−1],B[j−1]). To
create Lj , we find a tail for each (λ[j],B[j]) ∈ G. We require
that the tail for a given (λ[j],B[j]) is an item in Lj−1 which
satisfies the “stitching” condition:

‖µ(λ[j−1],B[j−1]) − λ[j]‖ � 2ε. (13)

We pick the tail for (λ[j],B[j]) to be an item in
Lj−1 which satisfies the stitching condition and minimizes
Hj−1,j (λ[j−1] B[j−1] B[j]) + Ej−1(λ[j−1],B[j−1]). The mini-
mum such value is defined to be Ej (λ[j],B[j]).

Final step. The final step, j = n, is exactly as in the
intermediate steps except the algorithm goes over �[n] ∈ Gend,
rather than over pairs from G and there is no stitching
constraint. More precisely, we pick the tail for �[n] to be
the item in Ln−1 which minimizes Hn−1,n(λ[n−1] B[n−1]�[n]) +
En−1(λ[n−1],B[n−1]). The minimal value is defined to be
En(�[n]).

Finally, we choose �[n] which minimizes En(�[n]). We
output the MPS that is defined by �[n] and its tail,

|�〉 def= |�[1]λ[2] B[2] B[3] · · · B[n−1]�[n]〉, (14)

together with the energy which the algorithm calculated:

Ealg(�)
def= En(�[n]). (15)

Note that since each (λ[j],B[j]) is perfectly right canonical,
the state |�〉 is normalized. This can be seen by contracting
the tensor network corresponding to the inner product 〈�|�〉
from right to left.

Unlike in the classical case, our algorithm does not search
all states due to the discretization. Moreover, it does not
optimize over the real energy of the states that it does check,
but rather over Ealg(�) = ∑

j Hj−1,j (λ[j−1] B[j−1] B[j]). Ealg

is different from the true energy E because the states are not
exactly canonical. Note that the output Ealg(�) is thus just an
approximation of the real energy E(�) of the output MPS |�〉.
We output Ealg(�) anyway, since our guarantee on its error
is somewhat better than on the error for E(�), as we see in
Sec. IV.

The following claim easily follows from the same reasoning
as for the classical dynamic programming algorithm:

Claim 1. The algorithm finds the state which minimizes Ealg

among all MPSs of the form �[1]λ[2] B[2] B[3] · · · B[n−1]�[n]

such that �[1],�[n] ∈ Gend, (λ[j],B[j]) ∈ G for all j ∈
{2, . . . ,n − 1}, and the stitching conditions [Eq. (13)] are all
satisfied.

IV. ERROR AND COMPLEXITY ANALYSIS

In order to finish the proof of Theorem 1, we will prove
the theorem in what follows. As noted earlier, this theorem
actually gives a better error bound on Ealg(�) than the bound
on E(�) that is given in Theorem 1.

Theorem 3 (error bound). Let E0 be the minimal energy
that can be achieved by a state with bond dimension D and J

the maximal operator norm ‖Hj,j+1‖ over all terms. Then

Ealg(�) − 6Jnε � E0 � E(�) � Ealg(�) + 3
2JD2n2ε.

(16)

It is easy to verify that as long as nD2 � 12, Eq. (16) implies
Eq. (1) of Theorem 1 .

Proof. By definition, E0 � E(�). We first prove that
Ealg(�) − 6Jnε � E0. Let

|ψ〉 = |�̂[1]
λ̂

[2]
�̂

[2] · · · λ̂[n]
�̂

[n]〉
be a state with E(ψ) = E0 of bond dimension D, written
as a canonical MPS. For every triplet (λ̂

[j]
,�̂

[j]
,λ̂

[j+1]
) for

j = 2, . . . n − 1, we associate a pair (λ̃
[j]

,B̃
[j]

) ∈ G which is
ε close to that triplet. In addition, we find �̃1 ∈ Gend close to
�̂1 and �̃n ∈ Gend close to �̂n. We define the state

|φ〉 = |�̃1λ̃2 B̃2 B̃3 · · · B̃n−1�̃n〉.
Just like |�〉, this state is normalized due to the fact that the

tensors in Gend and G are perfectly right canonical.
To show that Ealg(�) − 6Jnε � E0, we will first show

that Ealg(�) � Ealg(φ) and then that |Ealg(φ) − E0| � 6Jnε.
The first inequality follows from the fact that |φ〉 belongs to
the set of states over which the dynamic algorithm searches
(see Claim 1), since the λ̃

[j−1]
B̃

[j−1]
and λ̃

[j]
B̃

[j]
satisfy the

stitching condition (13), as promised by the following lemma.
Lemma 2. For every j = 3, . . . ,n − 1,

‖µ(λ̃
[j−1]

,B̃
[j−1]

) − λ̃
[j]‖ � 2ε. (17)

Proof. We use the fact (established in Lemma 4 in the
Appendix) that for any two bipartite states, |A〉 = ∑

i ai |i〉|Ai〉
with normalized |Ai〉, |B〉 = ∑

i bi |i〉|Bi〉 with normalized
|Bi〉, we have

∑
i |ai − bi |2 � ‖A − B‖2.

The tensors λ̂
[j]

�̂
[j]

λ̂
[j+1]

and λ̃
[j]

B̃
[j]

represent two quan-
tum states on three particles, where in both states, the Schmidt
basis of the first particle is the standard basis, and the perfect
right canonical condition of Definition 2 [or, alternatively, the
condition of Eq. (4)] holds. The Schmidt coefficients are given
as {λ̂[j]

α } and {λ̃[j]
α }, respectively. According to the preceding

fact (Lemma 4),

‖λ̂[j] − λ̃
[j]‖ � ‖λ̂[j]

�̂
[j]

λ̂
[j+1] − λ̃

[j]
B̃

[j]‖ � ε. (18)

012315-8

EFFICIENT ALGORITHM FOR APPROXIMATING ONE- . . . PHYSICAL REVIEW A 82, 012315 (2010)

Similarly, we know that ‖λ̂[j−1]
�̂

[j−1]
λ̂

[j] −
λ̃

[j−1]
B̃

[j−1]‖ � ε. Consider now these three-particle states
expanded in terms of the basis vectors |β〉 of the third particle.
Denote these expansions as

∑
β aβ |vβ〉|β〉 with normalized

|vβ〉 and
∑

β bβ |wβ〉|β〉 with normalized |wβ〉, respectively.

Then, by definition, aβ = λ̂
[j]
β and bβ = µβ(λ̃

[j−1]
,B̃

[j−1]
).

We can therefore apply again Lemma 4 and get

‖µ(λ̃
[j−1]

,B̃
[j−1]

) − λ̂
[j]‖ � ε. Together with Eq. (18),

we therefore obtain ‖µ(λ̃
[j−1]

,B̃
[j−1]

) − λ̃
[j]‖ � 2ε. �

Thus far, we have established that Ealg(�) � Ealg(φ).
To finish the proof that Ealg(�) − 6Jnε � E0, we will
show that |Ealg(φ) − E0| � 6Jnε. Observe that each energy
term in E0 depends solely on two overlapping triplets

λ̂
[j]

�̂
[j]

λ̂
[j+1]

�̂
[j+1]

λ̂
[j+2]

. The corresponding energy term in
Ealg(φ) depends only on λ̃

[j]
B̃

[j]
B̃

[j+1]
. We now bound the

distance between these two tensors. We have

λ̃
[j]

B̃
[j]

B̃
[j+1] − λ̂

[j]
�̂

[j]
λ̂

[j+1]
�̂

[j+1]
λ̂

[j+2]

= (λ̃
[j]

B̃
[j] − λ̂

[j]
�̂

[j]
λ̂

[j+1]
)B̃

[j+1]

+ λ̂
[j]

�̂
[j]

(λ̂
[j+1] − λ̃

[j+1]
)B̃

[j+1]

+ λ̂
[j]

�̂
[j]

(λ̃
[j+1]

B̃
[j+1] − λ̂

[j+1]
�̂

[j+1]
λ̂

[j+2]
).

Taking the left-hand side and right-hand side of the
preceding equation, and using Eqs. (8) and (9), we have that

‖λ̃[j]
B̃

[j]
B̃

[j+1] − λ̂
[j]

�̂
[j]

λ̂
[j+1]

�̂
[j+1]

λ̂
[j+2]‖

� ‖λ̃[j]
B̃

[j] − λ̂
[j]

�̂
[j]

λ̂
[j+1]‖ + ‖λ̂[j+1] − λ̃

[j+1]‖
+‖λ̃[j+1]

B̃
[j+1] − λ̂

[j+1]
�̂

[j+1]
λ̂

[j+2]‖.
The first and third terms in the above sum can be bounded by
ε because of the condition of the ε net G. The norm of the
middle term is bounded in Eq. (18). Therefore, the norm of
the difference between the tensors is at most 3ε. It follows that
the difference between the two energy contributions is at most
6ε‖Hj,j+1‖ � 6εJ .

We illustrate the boundary cases by working through
the analysis for the left end of the chain. We

want to bound ‖�̂[1]
λ̂

[2]
�̂

[2]
λ̂

[3] − �̃
[1]

λ̃
[2]

B̃
[2]‖. Note that

‖�̂[1]
(λ̂

[2]
�̂

[2]
λ̂

[3] − λ̃
[2]

B̃
[2]

)‖ is bounded by ε because of the
conditions on the ε net and Eq. (7). Using Eq. (10), we have
that

‖(�̂
[1] − �̃

[1]
)λ̃

[2]
B̃

[2]‖ � max
α

‖�̂[1]
α − �̃

[1]
α ‖ � ε.

Hence, the overall bound on the difference is 2ε. It follows
that the difference between the two energy contributions is it
most 4ε‖H1,2‖ � 4εJ . A similar argument holds for Hn−1,n.

We now prove the right inequality in Theorem 3 by showing
that |E(�) − Ealg(�)| � 3

2JD2n2ε. We bound the difference
in energy for each term Hj−1,j . The contribution of this term to
Ealg(�) is calculated from λ[j−1] B[j−1] B[j]. The true energy,
however, depends on �[1]λ[2] B[2] B[3] · · · B[j] since |�〉 is
only approximately left canonical. We will show that the
error accumulates linearly as we sweep from left to right,
summing up to 3jJD2ε for Hj−1,j . Therefore, the total error
is |Ealg(�) − E(�)| � 3

2JD2n2ε.

We now provide a more accurate argument. The energy
estimate for the term Hj−1,j is calculated from the contraction
λ[j−1] B[j−1] B[j]. Graphically, this contribution is given as

Hj−1,j

B[j−1] B[j]

λ[j−1]

The true energy, however, is calculated from the contraction
of λ[2] B[2] B[3] · · · B[j]. Graphically, this is given as

Hj−1,j

B[j−1] B[j]B[j−2]B[3]B[2]

λ[2]

[Notice that we have collapsed the �[1] terms because of the
canonical condition (5); see Fig. 3(b).]

Had the state |�〉 been perfectly left canonical, the two
would have been the same. However, since it is only approx-
imately canonical from the left, there is some difference that
can be bounded. The analysis is done iteratively from left to
right. We start by writing

B[2]

λ[2]
β

β′

=
µ[2]

β

β′

+

β

β′

R
=

λ[3]
β

β′

+

β

β′

∆

In this picture, the tensor Rββ ′ is defined to be off diagonal
(i.e., equal to zero on the diagonal: Rββ = 0) and for the β �=
β ′ terms, it is defined by Rββ ′ = 〈(λ[2] B[2])β |(λ[2] B[2])β ′ 〉 =∑

α,i |λ[2]
α |2B[2]i

αβ (B[2]i
αβ ′)∗. � is defined as

�ββ ′
def= Rββ ′ + δββ ′

(∣∣λ[3]
β

∣∣2 − ∣∣µ[2]
β

∣∣2)
.

Using the fact that (λ[2],B[2]) is approximately left canonical
[see Eq. (11)] and the stitching conditions of λ[3] and µ[2] [see
Eq. (13)], it is easy to see that for every β,β ′,

|�ββ ′ | � 3ε. (19)

We may therefore write the true energy contribution as the sum
of

Hj−1,j

B[j−1] B[j]B[j−2]B[3]

λ[3]

and

Hj−1,j

B[j−1] B[j]B[j−2]B[3]

∆
.

The analysis of the first term is done in the next iteration
step. The second term can be seen as the error introduced by the
fact that (λ[2] B[2]) is approximately left canonical. To estimate
its size, notice that it can be viewed as the expectation value of

012315-9

DORIT AHARONOV, ITAI ARAD, AND SANDY IRANI PHYSICAL REVIEW A 82, 012315 (2010)

the operator � ⊗ Hj−1,j (here � is viewed as a matrix), with
respect to the MPS that is described by |B[3] B[4] · · · B[j]〉.
Using Eq. (19) and the assumption ‖Hj−1,j‖ � J , it is easy to
see that ‖� ⊗ Hj−1,j‖ � 3JDε. Here, in both cases, we used
‖ · ‖ to denote the operator norm of � ⊗ Hj−1,j , instead of the
usual tensor norm; we can do this since the operator norm is at
most as large as the tensor norm, and the tensor norm of � is at
most 3Dε. Moreover, the norm of the MPS |B[3] B[4] · · · B[j]〉
is exactly

√
D (it would have been exactly 1 had there been a

λ[3] term before B[3]), and therefore the amplitude of second
term is upper bounded by 3JD2ε.

Carrying the same analysis all way to (λ[j−2],B[j−2]), we
end up with a term that is identical to the energy estimation
of the algorithm, plus some error term whose amplitude is at
most 3jJD2ε. Therefore, by simple algebra, we have that for
the total system,

|Ealg − E(�)| � 3
2JD2n2ε. (20)

This conclude the proof of Theorem 3. �

For a target error δ, we select ε � δ
2JD2n2 . Using the bound

from Eq. (12), we get that the size of the net for the interior
particles is

N = O

((
144JdD3n2

δ

)D+2dD2)
. (21)

Note that in using Lemma 1, we required that ε � 1/
√

D.
It is reasonable to expect that δ/Jn < 1 (meaning that the
desired error is at most the maximum energy in the system),
which implies that this condition is met. The algorithm has n

iterations in which O(N2) possible extensions for the MPS are
considered. For each such possibility, we perform a contraction
of tensors (λ,B,B′) in order to evaluate the energy of a
particular term. This contraction takes time O(D3d2). Thus,
the total running time is O(nN2D3d2).

V. COMMUTING HAMILTONIAN IN 1D

We now prove Theorem 2. Let us first notice that
Theorem 1 immediately implies the first claim in Theorem 2,
namely, that approximating the ground state and ground energy
of a commuting Hamiltonian in 1D to within polynomially
good accuracy can be done efficiently. This follows from
the well-known fact that the ground state of a commuting
Hamiltonian in 1D can be described by an MPS of constant
bond dimension. We can therefore apply Theorem 1 to the
problem, and hence approximate both the ground state and the
ground energy efficiently.

For completeness, here is a sketch of a proof of this fact:
Assume we have a 2-local commuting Hamiltonian in 1D. If
the Hamiltonian is k-local for k > 2, just combine adjacent
particles together. To see that there is a ground state which
is described by an MPS of constant bond dimension, notice
that for any commuting Hamiltonian, there is a ground state
|ψ〉 which is an eigenvector of each of the terms in the
Hamiltonian, with some well defined eigenvalue for each term.
For each term, consider the projection onto the eigenspace
corresponding to that eigenvalue. For any state with nonzero
projection on the ground state, applying these projections (no
matter the order) would result in a ground state. Since there

is always a computational basis state |w〉 that has a nonzero
projection on the ground state, we can express a ground state
as the projection of all these local terms applied to |w〉. We first
apply the projections which interact the pairs of particles (1,2),
(3,4), etc.; we then apply the projections that interact the pairs
of particles (2,3), (4,5), etc. This sequence of operations can be
viewed as a tensor network of depth 2. We can thus represent
the ground state as the contraction of a tensor network of depth
2. It can be easily seen that such a state must have a constant
Schmidt rank along any cut between the left and right sides;
to move to an MPS of a constant bond dimension, use Vidal’s
result [20].

We now give the full proof of Theorem 2.
Proof: We assume that the ground. In other words, we are

promised that the ground energy is separated from the rest
of the eigenvalues of the Hamiltonian by a gap � � 1/nc for
some constant c. Notice that we do not assume a unique ground
state.

The first step of the proof would be to use Theorem 1
to find an MPS |�〉 of constant bond dimension such that
〈�|H |�〉 � E0 + �/3. From the preceding discussion, it is
clear that this can be done in polynomial time. Next, we
would like to project this MPS sequentially on some chosen
eigenspaces of the Hamiltonians along the chain. As we are in a
commuting system, this would result in a common eigenvector
of all Hamiltonians, and therefore an eigenvector of H itself.
If we manage to do this without increasing the energy above
E0 + �, then by the existence of the gap, we are promised to
have reached a ground state.

To do this, we rely on the following lemma.
Lemma 3. Let H = ∑

i Hi be a commuting local Hamil-
tonian system with ground energy E0, and let |ψ〉 be a
state such that 〈ψ |H |ψ〉 = E0 + h. Consider one term Hi

in H with k eigenvalues and projections P1, . . . ,Pk into the
corresponding eigenspaces. For every j = 1, . . . ,k, let |ψj 〉
be the normalization of Pj |ψ〉, and let cj = 〈ψ |Pj |ψ〉. Then
for any n > 2 there is always a j such that cj � 1

kn2 and
〈ψj |H |ψj 〉 � E0 + (1 + 1

n
)h.

Proof. As the {Hi} terms are commuting, it follows that

〈ψ |H |ψ〉 = 〈ψ |P1HP1|ψ〉 + 〈ψ |P2HP2|ψ〉
+ · · · + 〈ψ |PkHPk|ψ〉

= c1〈ψ1|H |ψ1〉 + c2〈ψ2|H |ψ2〉
+ · · · + ck〈ψk|H |ψk〉,

with
∑k

j=1 cj = 1. Assume, by contradiction, that for every

j , either cj < 1
kn2 or 〈ψj |H |ψj 〉 > E0 + (1 + 1

n
)h. Then

partition the k eigenspaces into two subsets: subset A, in which
the first condition holds, and subset B, in which the second
condition holds. Then

E0 + h = 〈ψ |H |ψ〉
=

∑
A

cj 〈ψj |H |ψj 〉 +
∑
B

cj 〈ψj |H |ψj 〉

� E0

∑
A

cj +
[
E0 +

(
1 + 1

n

)
h

]∑
B

cj

= E0 +
(

1 + 1

n

)
h

∑
B

cj ,

012315-10

EFFICIENT ALGORITHM FOR APPROXIMATING ONE- . . . PHYSICAL REVIEW A 82, 012315 (2010)

using
∑

j cj = 1. Since
∑

A cj � k
kn2 = 1

n2 , we have that∑
B cj � 1 − 1

n2 . Plugging this into the preceding equality
implies h > h(1 + 1

n
)(1 − 1

n2), which is a contradiction for
n > 2. �

We now apply the lemma sequentially to project the
approximate state |�〉 on the relevant local eigenspaces. We
start with H1,2, where we use h = �/3 in the lemma. The
lemma promises the existence of a subspace indexed j (out of
k possible j ’s) which, if we project |�〉 onto that subspace, the
projection will not have too-large energy. We denote cj and
Pj as c12 and P12, respectively. (In what follows, we explain
how all calculations required for finding the promised j can be
done efficiently.) We proceed to find c23 and P23 for the next
term H2,3, using the newly projected state, and so on up to
Hn,n−1. After applying the n − 1 projections, using the lemma
n − 1 times, we arrive at a state |ψ〉 given as

|ψ〉 = 1√
c12c23 · · · cn−1,n

P12P23 · · · Pn−1,n|�〉,

which satisfies

〈ψ |H |ψ〉 � E0 +
(

1 + 1

n

)n−1
�

3
� E0 + e�

3
.

Using the assumption of the gap and the fact that |ψ〉 is an
eigenvector of H , it must be that |ψ〉 is a ground state and
〈ψ |H |ψ〉 = E0.

We now argue why finding the j whose existence is
promised by the lemma can be done efficiently. Consider, for
example, the term Hm,m+1. To find the relevant j , we have to
compute, for the current state |ψ〉, both the norms squared
cj = 〈ψ |Pj |ψ〉 and the expectation values 〈ψj |H |ψj 〉 =
1
cj

〈ψ |PjHPj |ψ〉 for all eigenspaces Pj of Hm,m+1. Note first
that we are handling here real numbers; the projections Pj

on the eigenspaces of Hm,m+1 may require infinite precision
to describe exactly in binary (or any other) representation.
We truncate the entries in the projections to exponentially
good precision, using polynomially many bits, so that all the
calculations can be performed efficiently. This introduces an
exponentially small error.

The expressions we are interested in calculating are all of
the form

〈�|P12 · · ·Pm,m−1 · PjOPj · Pm,m−1 · · · P12|�〉, (22)

where O can be either a local Hamiltonian Hi,i+1 or the identity
and the Pi,i+1 are projections on eigenspaces of the local terms.
Recalling that |�〉 is a constant-bond MPS, and using the fact
that the projections commute between themselves, we can
write Eq. (22) as a constant depth-tensor network. This is done
by partitioning the projections into two layers: In one layer
the projections that work on the sites (1,2),(3,4),(5,6), . . . ,
and on the other, the projections that act on the sites
(2,3),(4,5),(6,7), The resultant tensor network is shown
in Fig. 4. One dimensional tensornetworks with constant depth
can be efficiently calculated on a classical computer because

Hj,j+1

P12 P34 P56 P78
P23 P45 P67

FIG. 4. An illustration of how the expression in Eq. (22) is
given as a tensor network with a constant number of horizontal
layers. Specifically, the figure describes the tensor network of
〈�|P12P23 · · · Hj,j+1 · · · P23P12|�〉.

their bubble width is constant when swallowed from left to
right [18].2

Thus, all calculations (under our assumptions of polyno-
mially many bits of precision of the Pj ’s) can be performed
efficiently. The resulting state is given by a tensor network of
constant depth (namely the original |�〉 on which the chosen
projections are applied.) As before, this can be modified to
a MPS of constant bond dimension using Vidal’s result [20],
concluding the proof. �

A. A proof for the commuting Hamiltonians case,
based on Ref. [8]

First we describe the alternate algorithm assuming we
have the ability to perform arithmetic operations with infinite
precision and then discuss the consequences of limited
precision. Reference [8] proves certain properties about the
ground states of 2-local commuting Hamiltonians in which
the interaction graph is a general graph. We express those
properties for the special case of interest here in which the
graph is a line. Let Hj be the Hilbert space of particle j . It
is shown in Ref. [8] that when the terms of the Hamiltonian
commute, the Hilbert space of each particle can be expressed
as a direct sum, Hj = ⊕αj

H(αj)
j , such that each H(αj)

j can then
be expressed as a tensor product of three spaces,

H(αj)
j = H(αj)

L,j ⊗ H(αj)
C,j ⊗ H(αj)

R,j .

This structure has the property that Hj,j+1 leaves the subspaces

H(αj)
j ⊗ H(αj+1)

j+1 invariant, and moreover, when restricted to

such a subspace, Hj,j+1 acts nontrivially only on H(αj)
R,j ⊗

H(αj+1)
L,j+1 [the right part of H(αj)

j and the left part of H(αj+1)
j+1].

Consequently, there exists a ground state which resides in
some subspaceH(α) = ⊗jH(αj)

j , for some choice of α1, . . . ,αn.
Moreover, within the subspace H(α) the state can be written as
a tensor product of two-particle states living in the spaces
of the form H(αj)

R,j ⊗ H(αj+1)
L,j+1, tensored with some arbitrary

single-particle states living in the H(αj)
C,j spaces.

If the algorithm knows the correct choice of indices
α1, . . . ,αn, it can find such a ground state efficiently, as
follows. Note that the descriptions of both the spaces H(αj)

j and

2This can also be seen by analyzing the tree width of that tensor
network and using the analysis of Ref. [17].

012315-11

DORIT AHARONOV, ITAI ARAD, AND SANDY IRANI PHYSICAL REVIEW A 82, 012315 (2010)

their divisionsH(αj)
j = H(αj)

L,j ⊗ H(αj)
C,j ⊗ H(αj)

R,j are derived from
local properties of Hj imposed by the two local Hamiltonians
Hj−1,j and Hj,j+1. The subdivision of Hj in this way can
be expressed as a solution to a set of quadratic homogeneous
constraints. Since the dimension of Hj and hence the number
of variables is constant, it can be efficiently computed. If the
algorithm knows the αj ’s, it therefore knows the description of

the subspaces H(αj)
L,j ⊗ H(αj)

C,j ⊗ H(αj)
R,j and the restriction of the

Hj,j+1 to those spaces; it therefore just needs to find a ground
state of linearly many two-particle Hamiltonians, which is an
easy task. It is therefore enough for the algorithm to find the
correct α1, . . . ,αn indices.

We do this using dynamic programming. The critical
point in using dynamic programming here is that the energy
contribution of H,+1 depends only on the choice of α

and α+1, so the choice of αk for k � j − 1 does not affect
the energy of the H,+1 terms for any � j . Using this
observation, the algorithm proceeds from left to right as
follows. For the first term H1,2, the algorithm finds the division
into a direct sum of subspaces for particles 1 and 2. The
algorithm keeps an optimal state (choice of α1) and energy
for each possible α2.

Then, in a general step, we assume at particle i that we have
the following information for each index αi : a list of indices
α1, . . . ,αi−1 such that the ground energy of the Hamiltonian
of particles 1, . . . ,i restricted to the subspaces H(α1)

1 ⊗ · · · ⊗
H(αi)

i is minimal. To continue to the next particle, we first
compute the division into subspaces for particle i + 1, indexed
as αi+1, and optimize for each subspace in turn. For each
subspace, we consider all items in the previous list; for each
item, we have a list of subspaces, one for each particle.
We compute the minimal energy for each such restriction,
including now the Hi,i+1 term in the calculation of the energy,
restricted according to subspaces αi+1 and αi , the last choice
coming from the list. We pick the tail of the subspace of the
i + 1 particle to be the one which minimizes the terms up to
that point.

Notice that in each step the dynamic program compares
partial energies emerging from restricting the state to a
different sector in the Hilbert space. These energies can be
computed efficiently with polynomially many bits, namely up
to exponentially good precision. Thus, this second algorithm
achieves exact results for a somewhat larger set of Hamilto-
nians than our first algorithm, namely, those for which the
partial energies will not be confused if the computations are
done with exponentially good precision.

Note that even with this extremely good resolution, it
might be the case that the ground energy is confused with
a slightly excited energy which is, say, doubly exponentially
close. We do not know of a good condition which would rule
out the possibility of such very close energies, except for some
very trivial assumptions such as requiring that all eigenvalues
are integer numbers. For example, even if we require that
the different entries in the terms in the Hamiltonian are all
rationals smaller than 1 with denominator upper bounded by
a constant, it is still not known how to rule out the possibility
that two eigenvalues of the overall Hamiltonian are doubly
exponentially close. This issue touches upon an open question
in number theory related to sums of algebraic numbers; see the

open problem described in Ref. [21], which can be traced back
to Ref. [22] (if not earlier), and also Ref. [23] and references
therein.

ACKNOWLEDGMENTS

Dorit Aharonov is partially supported by ISF Grant
Nos. 039-7549 and 039-8066, ARO Grant No. 030-7799,
and SCALA Grant No. 030-7811. Sandy Irani is partially
supported by NSF Grant No. CCF-0916181. Itai Arad ac-
knowledges support by the ERC Starting Grant of Julia Kempe
(PI). The main progress on the results reported on in this paper
was made while the three authors were visiting the Erwin
Schrödinger International Institute for Mathematical Physics
(ESI) in Vienna, Austria.

APPENDIX: PROOF OF THE LEMMAS

Proof of Lemma 1. Let δ = ν/72b. We will occasionally
use the assumption that δ � 1/72b.

First we create a set R(δ) of real numbers in the interval
[0,1] such that for any real number in the range [0,1], it is
within δ of some element in R(δ). R(δ) will have �1/2δ�
elements. To create R(δ), we add (2j + 1)δ for each integer j

in the range from 0 through �1/2δ� − 2. Note that the largest
point in R(δ) so far is in the range [1 − 3δ, 1 − δ). Then we
add 1 − δ to R(δ).

Then using R(δ), we create a set C(δ) which is a set of
complex scalars which form a net over all complex scalars
with norm at most 1. Include xei2πy for every x,y ∈ R(δ).
There are �1/2δ�2 � (1/δ)2 points in C(δ). For any complex
number c if norm at most 1, there is a number c′ in C(δ) such
that |c − c′| � 2δ.

To generate Sa,b, consider first the set S1 of of all possible
a × b matrices with entries from C(δ). This set contains
|C(δ)|ab matrices. In the case where a = 1 and we only want
entries with real, non-negative coefficients, we use R(δ) for the
entries instead of C(δ) and the set contains |R(δ)|b matrices
(in fact, vectors). Then

1. remove any matrix from S1 which has a row whose norm
is greater than 1 + √

b2δ or less than 1 − √
b2δ, to get S2;

2. renormalize each row in every matrix in S2 to get S3;
3. remove any matrix from S3 which has any two rows

whose inner product is more than 9
√

bδ;
4. for any matrix in S3, apply the Gram-Schmidt procedure

to the rows to form an orthonormal set.
We claim that the final set is the desired Sa,b. Note that

the number of matrices is O((1/δ)2ab) = O((72b/ν)2ab), and
the running time to produce the set is O(a2b(1/δ)2ab) =
O(a2b(72b/ν)2ab), as required. What remains to show is that
if A is any a × b matrix whose rows form an orthonormal set,
then we can find a matrix B in Sa,b which is close to it.

Let W be an a × b matrix. We will denote its ith row as
Wi . Define the distance between two matrices d(W,W ′) to be
maxi‖Wi − W ′

i ‖. Let X be the matrix obtained by rounding
every entry in A to the nearest complex number in C(δ). Let Y

be the matrix obtained after the rows of X are normalized and
let Z be the matrix obtained after the rows of Y are transformed
into an orthonormal set via the Gram-Schmidt procedure. We
need to prove that d(A,Z) � ν and to show that Z ∈ Sa,b,

012315-12

EFFICIENT ALGORITHM FOR APPROXIMATING ONE- . . . PHYSICAL REVIEW A 82, 012315 (2010)

which would imply together that we can choose B in the
lemma to be equal to Z.

We will now prove both of the above claims. For the second
part we need to prove that X survives step 1 and Y survives
step 3.

X survives step 1. Since each entry in A − X has magnitude
of at most 2δ, we know that d(A,X) �

√
b2δ. In order to bound

the norm of Xi , observe that

√
b2δ � ‖Ai − Xi‖ � |‖Ai‖ − ‖Xi‖|.

Since ‖Ai‖ = 1, it follows that ‖Xi‖ lies in the range from
1 − √

b2δ to 1 + √
b2δ and it will survive step 1. We have

d(X,Y) � max
i

∥∥∥∥∥Ai − 1

1 − √
b2δ

Ai

∥∥∥∥∥
=

√
b2δ

1 − √
b2δ

�
√

b2δ(36/35).

The latter inequality uses the assumption that δ � 1/72
√

b.
Using the triangle inequality for our distance d(·), we have
that for any i‖Ai − Yi‖ � (4 + 2

35)
√

bδ.
Y survives step 3. Now we need to bound the inner product

of any two rows of Y in order to establish that it is not removed
in step 3:

|〈Yi |Yj 〉| = |〈Ai + (Yi − Ai)|Aj + (Yj − Aj)〉|
� |〈Ai |Aj 〉| + |〈Yi − Ai |Yj − Aj 〉|

+ |〈Yi − Ai |Aj 〉| + |〈Ai |Yj − Aj 〉|
� ‖Yi − Ai‖‖Yj − Aj‖ + ‖Yi − Ai‖‖Aj‖

+‖Ai‖‖Yj − Aj‖

�
[(

4 + 2

35

)2 √
bδ + 2

(
4 + 2

35

)] √
bδ

� 9
√

bδ.

The second inequality uses the Chauchy-Schwartz inequal-
ity. The last inequality uses the fact that

√
bδ � 1/72.

Bounding the distance d(A,Z). Finally, we need to consider
how much the matrix shifts as a result of the Gram-Schmidt
procedure, to bound d(Y,Z). Let µ = 9

√
bδ = 9ν/72

√
b.

Since a � b, by assumption in the lemma, we know that
µ � 9ν/72

√
a. We use this latter bound in the next part of

the proof since we are bounding quantities by a function
of a instead of b. Since we assume that ν � 1/

√
a, we

can assume that aµ � 9/72. Recall that the Gram-Schmidt
procedure starts with Z1 = Y1. Then each Zi is determined by
first creating an un-normalized state Z̃i :

Z̃i = Yi −
i−1∑
j=1

〈Zj |Yi〉Zj .

Then Z̃i is normalized to 1. We will prove the following two
properties by induction in i:

1. |〈Zi |Yj 〉| � 2µ for all j such that j > i,
2. 1 − 2

√
aµ � ‖Z̃i‖ � 1 + 2

√
aµ.

Z̃1 is not defined, but we can take it to be Z1. The two
properties clearly hold for Z1. Now by induction,

‖Z̃i‖ =
∥∥∥∥∥Yi −

i−1∑
j=1

〈Zj |Yi〉Zj

∥∥∥∥∥
� ‖Yi‖ +

∥∥∥∥∥
i−1∑
j=1

〈Zj |Yi〉Zj

∥∥∥∥∥
= 1 +

⎛
⎝ i−1∑

j=1

〈Zj |Yi〉〈Yi |Zj 〉
⎞
⎠

1/2

� 1 + 2
√

aµ.

A similar argument can be used to show that 1 − 2
√

aµ �
‖Z̃i‖. Next we establish Property 1:

|〈Yk|Zi〉| = 1

‖Z̃i‖

∣∣∣∣∣∣〈Yk|Yi〉 −
i∑

j=1

〈Zj |Yi〉〈Yk|Zj 〉
∣∣∣∣∣∣

� 1

1 − 2
√

aµ

⎡
⎣µ +

i−1∑
j=1

4µ2

⎤
⎦

� µ(1 + 4aµ)

1 − 2
√

aµ
� 2µ.

The first inequality follows from the inductive hypothesis. The
last inequality make use of the fact that aµ � 9/72. Finally,
to bound ‖Yi − Zi‖, we have

|‖Yi − Zi‖| �
(

1 − 1

‖Z̃i‖
)

‖Yi‖ + 1

‖Z̃i‖

∥∥∥∥∥
i−1∑
j=1

〈Zj |Yi〉Zj

∥∥∥∥∥
� 2

√
aµ‖Yi‖

1 − 2
√

aµ
+ 1

1 − 2
√

aµ

⎛
⎝ i−1∑

j=1

|〈Zj |Yi〉|2
⎞
⎠

1/2

� 4
√

aµ

1 − 2
√

aµ
� 6

√
aµ.

The last inequality uses again the fact that
√

aµ � 9/72.
The total distance between A and Z is at most 5

√
bδ + 6

√
aµ.

Plugging in µ = 9
√

bδ and using the fact that a � b, we get
an upper bound of 59bδ � ν on the distance of A to Z, using
the definition of δ. �

Lemma 4. Let |A〉, |B〉 be two two-particle states and expand
them in the standard basis of the first particle,

|A〉 =
∑

i

ai |i〉|Ai〉,

|B〉 =
∑

i

bi |i〉|Bi〉,

such that |Ai〉 are normalized but not necessarily orthogonal
to themselves and similarly the |Bi〉. Then

‖a − b‖ =
(∑

i

|ai − bi |2
)1/2

� ‖A − B‖. (A1)

012315-13

DORIT AHARONOV, ITAI ARAD, AND SANDY IRANI PHYSICAL REVIEW A 82, 012315 (2010)

Proof.

‖a − b‖2 =
∑

i

|ai − bi |2

�
∑

i

‖ai |Ai〉 − bi |Bi〉‖2

=
∥∥∥∥∥

∑
i

|i〉(ai |Ai〉 − bi |Bi〉)
∥∥∥∥∥

2

= ‖|A〉 − |B〉‖2.

�

[1] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[2] S. R. White, Phys. Rev. B 48, 10345 (1993).
[3] S. Östlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995).
[4] S. Rommer and S. Östlund, Phys. Rev. B 55, 2164 (1997).
[5] I. Peschel, X. Wang, M. Kaulke, and K. H., eds., Density-

Matrix Renormalization—A New Numerical Method in Physics
(Springer-Verlag, Berlin, 1998), Lecture Notes in Physics,
Vol. 528.

[6] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[7] A. Kitaev, A. Shen, and M. Vyalyi, Classical and Quantum

Computation (AMS, Providence, RI, 2002).
[8] S. Bravyi and M. Vyalyi, Quantum Inf. Comput. 5(3), 187

(2005).
[9] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and

O. Regev, SIAM J. Comput. 37, 166 (2007).
[10] D. Aharonov, D. Gottesman, S. Irani, and J. Kempe, Commun.

Math. Phys. 287(1), 41 (2009).
[11] D. Aharonov, I. Arad, Z. Landau, and U. Vazirani, in Pro-

ceedings of the 41st Annual ACM Symposium on Theory of
Computing (ACM, New York, NY, USA, 2009), p. 417.

[12] C. R. Laumann, R. Moessner, A. Scardicchio, and S. L. Sondhi,
Quantum Inf. Comp. 10, 1 (2010).

[13] N. Schuch, I. Cirac, and F. Verstraete, Phys. Rev. Lett. 100,
250501 (2008).

[14] J. Eisert, Phys. Rev. Lett. 97, 260501 (2006).
[15] M. B. Hastings, J. Stat. Mech. (2007) P08024.
[16] N. Schuch and J. I. Cirac, Phys. Rev. A 82, 012314 (2010).
[17] I. Markov and Y. Shi, SIAM J. Comput. 38, 963

(2008).
[18] D. Aharonov, Z. Landau, and J. Makowsky, e-print

arXiv:quant-ph/0611156.
[19] I. Arad and Z. Landau, SIAM J. Comput. 39, 3089

(2010).
[20] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
[21] J. D. Demaine, J. S. B. Mitchell, and J.

O’Rourke, The Open Problems Project, Problem 33
[http://maven.smith.edu/∼orourke/TOPP/Welcome.html].

[22] J. O’Rourke, Am. Math. Monthly 88, 769 (1981).
[23] J. Qian and C. Wang, Inf. Process. Lett. 100, 194

(2006).

012315-14

http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/PhysRevLett.75.3537
http://dx.doi.org/10.1103/PhysRevB.55.2164
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1137/S0097539705447323
http://dx.doi.org/10.1007/s00220-008-0710-3
http://dx.doi.org/10.1007/s00220-008-0710-3
http://dx.doi.org/10.1103/PhysRevLett.100.250501
http://dx.doi.org/10.1103/PhysRevLett.100.250501
http://dx.doi.org/10.1103/PhysRevLett.97.260501
http://dx.doi.org/10.1088/1742-5468/2007/08/P08024
http://dx.doi.org/10.1103/PhysRevA.82.012314
http://dx.doi.org/10.1137/050644756
http://dx.doi.org/10.1137/050644756
http://arXiv.org/abs/arXiv:quant-ph/0611156
http://dx.doi.org/10.1137/080739379
http://dx.doi.org/10.1137/080739379
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://maven.smith.edu/%7Eorourke/TOPP/Welcome.html
http://dx.doi.org/10.1016/j.ipl.2006.05.002
http://dx.doi.org/10.1016/j.ipl.2006.05.002

