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We study quantum compression and decompression of light pulses that carry quantum information using a
photon-echo quantum memory technique with controllable inhomogeneous broadening of an isolated atomic
absorption line. We investigate media with differently broadened absorption profiles, transverse and longitudinal,
finding that the recall efficiency can be as large as unity and that the quantum information encoded into the
photonic qubits can remain unperturbed. Our results provide insight into reversible light-atom interaction and are
interesting in view of future quantum communication networks, where pulse compression and decompression
may play an important role in increasing the qubit rate or in mapping quantum information from photonic carriers
with large optical bandwidth into atomic memories with smaller bandwidth.
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I. INTRODUCTION

As any communication system, quantum communication
relies on preparing carriers of (quantum) information, trans-
mitting those carriers in a reliable way, and processing the
information. Obviously, in order to maximize the communi-
cation rate, the duration of the carriers, naturally photons,
should be as short as possible. However, while quantum
communication channels such as optical fibers or free-space
channels allow transmission of broadband, subnanosecond
photons, it is often impossible to generate or process such
carriers. Of particular concern are key elements for quantum
repeaters [1] such as certain entangled photon-pair sources
[2–4], or quantum memories [5], whose bandwidth is often
limited by material constraints.

In this article, we study temporal or bandwidth conversion
as a quantum-information-preserving transformation for pho-
tonic information carriers. On the one hand, increasing the
optical bandwidth in an efficient way, that is, decreasing
the duration of an information carrier, will allow increasing
the transmission rate over a single quantum channel when
time-multiplexing several small bandwidth photon sources
or photon pair sources. On the other hand, decreasing the
bandwidth will allow mapping of large-bandwidth photonic
carriers into quantum memories with limited spectral width. In
view of this transformation, we investigate a photon-echo-type
quantum memory approach based on controlled reversible
inhomogeneous broadening (CRIB) of a large ensemble of
atomic absorbers [6–10]. Relaxing the requirement of symmet-
ric inversion of atomic detunings � → −� during absorption
of the light and recall, respectively, in a more general version
with nonsymmetric inversion � → −η� with compression
factor η �= 1, we find accelerated (decelerated) rephasing of
atomic coherences and thus temporal compression (decom-
pression) of the re-emitted light field. We analytically analyze
the proposed scheme in optically thick atomic media with
transverse and longitudinal inhomogeneous broadenings for
recall efficiency, fidelity, and gain of the transmission rate

over a single channel through multiplexing. In transverse
inhomogeneously broadened media, the atomic resonance
frequencies vary normal (transverse) to the spatial coordinate
z measured along the propagation direction of the light, and
the absorption profile is independent of z. In longitudinal
inhomogeneously broadened media, the resonance frequencies
depend linearly on z. Assuming large optical depth for storage
and retrieval, we find, for the case of transverse broadening,
that the recall efficiency is limited by the compression factor
η, while it reaches unity in the case of a longitudinal
broadened medium. We also find, for transverse broadening,
that the fidelity of a recalled photonic time-bin qubit with
the original qubit is one, regardless the compression factor,
but that it is limited in the case of longitudinal broadening.
We point out that optical pulse compression has previously
been considered using traditional photon echos and chirped
excitation pulses [11–13]. However, similar to data storage
[14,15], this approach is not suitable for temporal compression
of quantum data. Quantum compression using CRIB was
first discussed in [16], and the first observations as well as
numerical studies for the case of longitudinal broadening have
recently been reported [17,18].

This article is organized in the following way. We first
discuss the figures of merit chosen to assess the performance
of quantum compression. We then introduce photonic time-
bin qubits and present two ways of describing this basic
unit of quantum information. This part is followed by a
description of the standard CRIB-based quantum memory
protocol, which employs a hidden symmetry in the equations
describing the atom-light interaction during storage and recall.
In order to assess the change in the recalled photonic quantum
state for CRIB-based quantum compression, which does not
involve time-reversed quantum dynamics, we have to solve
the equations of motion. This is done in the next section,
where we also derive the efficiency, fidelity, and gain of
quantum compression for the examples of transverse and
longitudinal broadening. This is the main part of this article.
It is followed by a brief feasibility study of our protocol in
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rare-earth-ion-doped crystals. The article terminates with a
conclusion.

II. FIGURES OF MERIT

Temporal compression of quantum data is of importance to
quantum communication, similar to temporal compression of
classical data and classical (tele) communication. However, the
criteria imposed on a “good” compression procedure are much
more severe in the quantum case: Reduced efficiency impacts
irreversibly on the quantum information rate through photon
loss, in opposition to amplitude loss in the classical case,
which can be compensated by means of optical amplifiers (note
that amplification is unsuitable for quantum communication,
as stated in the no-cloning theorem [19,20]). Furthermore,
unpredictable modification of the input photonic quantum state
|ψin〉p during compression results in an increased quantum
bit error rate (QBER) or requires compensation via not-yet-
practical quantum error correction [21,22]. In opposition,
classical information, due to its digital nature, is much more
tolerant to noise. In this article we therefore use the efficiency
ε, the fidelity F (which specifies the unpredictable change of
an input quantum state), and the gain G (which derives from
the efficiency and the compression parameter) as figures of
merit to analyze the performance of quantum compression.

In the following, we assume pure photonic qubit input
states. The compression operation yields a (possibly mixed)
compressed photonic output state that is obtained from the total
density matrix by tracing over the degrees of freedom related
to the atomic system and possibly noncompressed photonic
modes. Ignoring vacuum components, this results in a gener-
ally not normalized density matrix ρout,p. This mathematical
procedure reflects the possibility of experimentally restricting
detection to photons in compressed modes (for other examples
involving nonnormalized density matrices, see, e.g., [23]).
Accordingly, we define the efficiency ε of the compression
as

ε = tr(ρout,p). (1)

The index p denotes “photon” and is added henceforth to avoid
confusion of photonic with atomic states. Furthermore, we use
the following definition of the fidelity F :

F =p 〈ψin|ρ ′
out,p|ψin〉p, (2)

where ρ ′
out,p is the renormalized and unitarily transformed

density matrix

ρ ′
out,p = 1

ε
Uρout,pU+. (3)

Note that we allowed for deterministic unitary operations U

composed of rotations around σx , σy , or σz in the qubit Hilbert
space to maximize the fidelity. This is similar to quantum
teleportation [24], where, depending on the result of the Bell
state measurement, bit flip, phase flip, or bit and phase flip
operations have to be applied to the teleported state to recover
the initial state.

Finally, in order to characterize the usefulness of quantum
compression in view of enhanced qubit transmission rate, we

define the gain as

G = εη. (4)

This reflects that the detection rate of qubits increases
linearly with both the compression efficiency ε as well as
the factor η by which a qubit can be compressed, that is, the
number of qubits per unit time.

III. PHOTONIC TIME-BIN QUBITS

We are concerned with encoding of quantum information
into qubits, that is, quantum states that are described by

|ψ〉 = α|0〉 + eiφβ|1〉. (5)

The coefficients α, β, and φ are real, α2 + β2 = 1, and the
kets |0〉 and |1〉 form an orthogonal basis in a two-dimensional
Hilbert space (〈i|j 〉 = δij ,i,j = [0,1]).

In this article, we are specifically interested in so-called
time-bin qubits, where the basis states |0〉 and |1〉 describe
photon wave packets localized at a particular position z at
early and late times t = z/c and t ′ = z/c + τo, respectively.
Differently stated, at a given time t , the photon is in a
superposition of being at positions z and z′ = z − zo, with z0 =
cτo (see Fig. 1). We use these two pictures interchangeably in
our analysis. Time-bin qubits have been shown to be very well
suited for quantum communication over telecommunication
fibers [25,26]. In the following, we derive a description of
time-bin qubits using a physical representation of the abstract
qubit Hilbert space. We limit ourselves to one polarization
mode.

A general photonic wave packet is described in momentum
space as [27,28]

|ψ(t)〉p =
∫ ∞

−∞
dkg̃(k,t)â†

k|∅〉, (6)

where â
†
k (âk) denotes the creation (annihilation) operator for

a photon with wave vector k, [âk,â
†
k′ ] = δ(k − k′), and |∅〉 is

the vacuum state of light. For a more suitable description of
our qubit states, we define operators creating forward- and
backward-propagating photons at a particular position:

â+
σ (z) =

√
1/2π

∫
dκâ

†
κ+σko

exp{−i(κ + σko)z}, (7)

δz α

zzo

FIG. 1. (Color online) Schematic representation of a photonic
time-bin qubit |ψ〉 = α|0〉 + βeiφ |1〉, where α and β are the am-
plitudes of photon wave packets propagating along the +z axis
with relative phase φ; δz = cδt , and zo = cτo. δt and τo denote the
temporal duration of the wave packets and the relative time delay,
respectively.
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where, ko = ωeg/c, σ = + denotes forward (f)-propagating
light modes, σ = − backward (b)-propagating modes, and
[âσ ′(z′),â†

σ (z)] ∼= δσ ′,σ δ(z′ − z).
The associated annihilation operators are defined by

âσ (z) = [â†
σ (z)]†, satisfying the usual bosonic commutation

relations. With these new operators, the basis states of a
time-bin qubit can be expressed via the center z = σct and
z − zo = σc(t − τo) of the wave packets, respectively, their
extension δz and carrier frequency ωσ :

|0〉σ,p =
∫ ∞

−∞
dz′ exp{−iωσ (t − σz′/c)}

× g(ct − σz′,δz)â†
σ (z′)|∅〉,

≡ |t,δz,ωσ 〉σ,p, (8)

|1〉σ,p =
∫ ∞

−∞
dz′ exp{−iωσ (t − τo − σz′/c)}

× g(ct − cτo − σz′,δz)â†
σ (z′)|∅〉,

≡ |t − τo,δz,ωσ 〉σ,p, (9)

where g(ct − z′,δz) is the normalized envelope of the photon
wave packet with length δz, which is related to its spec-
tral function ḡ(k,δk) by Fourier transformation: g(z,δz) =√

1/2π
∫∞
−∞ dkḡ(k,δk) exp{−ikz}. Note that the identification

of the states |t,δz,ωσ 〉σ,p and |t − τo,δz,ωσ 〉σ,p with |0〉σ and
|1〉σ , respectively, requires δz � zo = cτ0 so that the states are
orthogonal and normalized. Using this notation, the general
photonic wave packet can then be expressed as

|ψ(t)〉p = |ψ(t)〉f,p + |ψ(t)〉b,p

=
√

1/2π
∑

σ

∫
dz′Aσ (t,z′)

× exp{−iωσ (t − σz′/c)}â†
σ (z′)|∅〉. (10)

In the case of the initial, forward-propagating time-bin qubit,
the amplitude A+ takes on the form

A+(t → −∞,z) =
√

2π{αg(ct − z,δz) + exp{iω+τo + iφ}
×βg(ct − z − cτo,δz)} (11)

and A−(t → −∞,z) = 0, with
∫∞
−∞ dz|Aσ=+(t →

−∞,z)|2 = 1, identifying |Aσ=+(t,z)|2dz as the probability
of detecting a photon at time t within the space coordinates z

and z + dz. Hence,

|ψin(t)〉p = α|t,δz,ω+〉f,p + eiφβ|t − τo,δz,ω+〉f,p. (12)

A schematical representation of a time-bin qubit assuming
Gaussian shapes of the basis wave packets is given in
Fig. 1.

IV. QUANTUM-STATE STORAGE BASED
ON SYMMETRIC CRIB

An extensively investigated approach to quantum-state
storage is based on CRIB of an isolated absorption line [6–10].
It has recently led to storage efficiencies up to 69% [29],
and the possibility for random access quantum memory has
been demonstrated [17]. In the ideal, standard CRIB scheme,
the optical input data is launched along the forward (+z)

direction into a resonant, optically thick atomic medium
(αL → ∞, where α is the resonant absorption coefficient and
L is the length of the atomic medium). The spectral width
δωin of the input light should be narrow in comparison with
the inhomogeneous broadening �inh of the resonant atomic
transition 1 ↔ 2, that is, δωin < �inh, and larger than the
homogeneous line width γeg of the optical transition, that is,
δωin > γeg .

All atoms are initially prepared in the pure state |g〉 =∏N
j=1 ⊗|g〉j [where |g〉j is a long-lived (ground) state of the

j th atom]. Thus the initial light-atom state, denoted using the
capital letter �, (for t → −∞) is

|�(t → −∞)〉f = |ψin(t)〉f,p ⊗ |g〉. (13)

After absorption of the light, the atomic coherences acquire
phase factors exp{−i(�j + ωeg)t}, where �j is the detuning
of atom j as compared to the central absorption frequency
ωeg , leading to fast dephasing of the excited collective atomic
coherence. The absorption process can be time reversed by
inverting the atomic detunings at time t1 (i.e., �j → −�j )
and applying a position-dependent phase shift of 2kz. This
leads to rephasing of the collective atomic coherence, hence
irradiation of an echo signal at time techo in backward direction
as a perfect time-reversed copy of the input data [6]. This
reversibility is based on a hidden symmetry of the equations
describing the evolution of the slowly varying light and atomic
parameters during storage and retrieval [9].

Analyzing the evolution of the complete wave function
(including the fast, time varying part exp{−ickegt}, where
ckeg is the central frequency of the atomic transition), it was
shown [30] that the photon operators (in momentum space) of
the input (forward) and output (backward) light fields are re-
lated by exp{−ic(k + keg)t}â†

k+keg
→ − exp{ic(k − keg)(t −

techo)}â†
k−keg

. As we show in more detail in Appendix A, this
results in input photonic time-bin qubit states [Eq. (12)] to
emerge as

|ψout(t − techo)〉b,p = −[α|t,δz,ω−〉b,p + ei(φ+2ωegτo)

×β|t + τo,δz,ω−〉b,p], (14)

where we have ignored a global phase shift and where
ω− = 2ωeg − ω+ denotes the new carrier frequency. Hence,
the recalled qubit state is associated with an exchange of
the leading and trailing wave packets, and the now leading
wave packet (with probability amplitude proportional to β)
has acquired an additional phase that depends on the time
delay τo between the wave packets and the atomic transition
frequency ωeg (see also [31]). Please note that not only does
the order of the wave packets change, but each wave packet’s
temporal envelope is also time-reversed. For simplicity of
notation, we henceforth restrict our investigation to time-
symmetric, Gaussian-shaped basis wave packets described
by g(ct − z,δz) = 4

√
2/[π (δz)2] exp{− (cτ/δz)2}, where τ =

t − z/c.
Returning to the abstract qubit notation, we find that

the initial state |ψin〉 = α|0〉 + eiφβ|1〉 is transformed in the
quantum memory into |ψout〉 = α|1〉 + ei(φ+2ωegτo)β|0〉, that
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is, that the two states are related by a deterministic unitary
transformation T ,

|ψout〉 = T |ψin〉 = eiωegτoσxRz(θ )|ψin〉, (15)

where Rz(θ ) = e
i
θ
2 σz denotes a rotation of θ = 2ωegτo around

σz, and σx is the bit-flip operator.
Hence, for the ideal standard CRIB protocol, we find the

efficiency to be one. Furthermore, from Eq. (3), we find U =
T −1; hence, ρ ′

out,p = ρin,p and thus F = 1. Please note that
two subsequent storage sequences lead to compensation of the
bit flip as well as the additional phase factor of 2ωegτo.

Finally, being obvious in the case of “no compression” and
unity efficiency, we note that the gain G is one.

V. QUANTUM COMPRESSION BASED
ON GENERALIZED CRIB

In the CRIB protocol described previously, the efficiency,
fidelity, and gain can be derived using arguments stemming
from symmetries in the equations of motion. Relaxing the
perfect reversibility of atomic detunings by introducing a more
general relation between the initial (t < t1) and output (t > t1)
spectral detunings,

�j (t > t1) = −η�j (t < t1), (16)

with η being the compression parameter, this symmetry-based
approach is no longer possible. Here we pursue the following
approach: We start with a general photonic qubit state [Eq. (5)]
described in the abstract two-dimensional Hilbert space. We
then express the qubit state using a physical description in
position space [Eqs. (8), (9), and (12), respectively]. Using
the equations of motion, which we introduce in the following
section, we then calculate the state of the combined atom-
photon system after quantum compression. From Eq. (14), we
find the single-photon density matrix. Redefining new basis
states |0〉 and |1〉, determined by the compression parameter,
we then express the output state in qubit state notation, which
finally allows us to calculate our figures of merit [Eqs. (1), (2),
and (4)] and the unitary operation U [see Eq. (3)].

A. Basic equations

First, we write the field Hamiltonian containing forward-
and backward-propagating light modes as

Ĥph = h̄

∫
dkωkâ

†
kâk = ch̄

∑
σ=±

∫
dκ|κ + σκo|â†

κ+σkâκ+σk

(17)

= Ĥ o
ph +

∑
σ=±

δĤph,σ . (18)

Using Eq. (7) and â
†
κ+σko

= √
1/2π

∫
dzâ†

σ (z) exp{i(κ +
σko)z}, we find

Ĥ o
ph = ch̄ko

∑
σ=±

∫
dκâ

†
κ+σκ âκ+σκ

= ch̄ko

∑
σ=±

∫
dzâ†

σ (z)âσ (z) (19)

and

δĤph,σ = σch̄

∫
dκκâ

†
κ+σkâκ+σk

= −iσ ch̄

∫
dzâ†

σ (z)
∂

∂z
âσ (z). (20)

This allows us to write the total Hamiltonian, describing
the atom-light interaction [27,28,30], as

Ĥ (t) = Ĥ0 + Ĥ1(t), (21)

where

Ĥ0 = h̄ωeg

⎡⎣∑
σ=±

∫ ∞

−∞
dẑa†

σ (z)̂aσ (z) +
N∑

j=1

P j
ee

⎤⎦ , (22)

and

Ĥ1(t) = −h̄g
√

2π

N∑
j=1

{
[âf (zj ) + âb(zj )]P̂ j

eg + H.c.
}

+
N∑

j=1

[
h̄�j (t) + δEj

eg(t)
]
P̂ j

ee

− ih̄c
∑
σ=±

σ

∫ ∞

−∞
dzâ†

σ (z)
∂

∂z
âσ (z). (23)

Ĥ0 describes the total number of excitations in the system
and commutes with the total Hamiltonian Ĥ . The first term
in Ĥ1(t) describes the atom-field interaction with atomic
operator P̂

j
mn = |m〉jj 〈n|. N denotes the number of atoms,

g(ω) ∼= g = idge( ωeg

2h̄εoS
)1/2, d12 is the dipole moment of the

atomic transition |g〉 ↔ |e〉, S is the cross section of the
light beams, εo is the electric permittivity, and h̄ is Planck’s
constant divided by 2π . The second term in Eq. (23) describes
inhomogeneous and homogeneous atomic line broadening
within a unitary approach to quantum evolution. Indeed, it has
been shown [32,33] that the decay rate of the atomic coherence
γeg can be calculated by a statistical average over local
stochastic phase fluctuations δφ

j
eg(t,t ′) = ∫ t

t ′ dt ′′δEj
eg(t)/h̄ of

the atomic transition,〈
exp

{−iδφj
eg(t,t ′)

}〉 = exp{−γeg(t − t ′)}, (24)

where 〈δφ̂j
eg(t,t ′)〉 = 0. These fluctuations are due to interac-

tion between the absorbers and its environment. Finally, the
third term of Ĥ1(t) arises from the fact that the here treated,
localized, propagating photonic wave packet features a broad
spectrum (see earlier discussion and [34]).

Using the total Hamiltonian (21), the initial photon-atom
state (13) will evolve into

|�(t)〉 = |�(t)〉p + |�(t)〉a, (25)

|�(t)〉p = |ψ(t)〉p ⊗ |g〉 (26)

[with |ψ(t)〉p as defined in Eq. (6)], and

|�(t)〉a =
N∑

j=1

bj (t)P̂ j
eg|g〉 ⊗ |∅〉, (27)

with bj (t) being the probability amplitude for atom j to be in
the excited state. Initially, bj (t → −∞) = 0, that is, all atoms
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are in the ground state, and A−(t, → −∞,z) = 0; that is, all
backward modes are empty.

In the Schrödinger equation with the Hamiltonian intro-
duced in [Eq. (21)], the quantum evolution during absorption of
the forward-propagating light field (σ = + for t < t1) and for
re-emission of the backward-propagating light field (σ = −
for t > t1) is given by(

1

c

∂

∂t
+ σ

∂

∂z

)
Aσ (t,z)

= i(πnoSg∗/c) exp{iωσ (t − σz/c)}b(t,z), (28)

∂

∂t
bj (t) = −i{ωeg + �j (t) + δ�j

eg(t)}bj (t)

+ igAσ (t,zj ) exp{−iωσ (t − σzj/c)}, (29)

where b(t,z) = (noS)−1 ∑N
j=1 bj (t)δ(z − zj ) is a collective

atomic variable describing the averaged, position-dependent
atomic coherence, and no is the atomic density. For an
explicit derivation of these formulas, see [35,36]. Using
these equations, we now evaluate quantum compression of
photonic time-bin qubits in atomic systems with transverse
and longitudinal inhomogeneous broadening.

B. Transverse broadened media

In transverse broadened media, the atomic absorption
profile is independent of the spatial coordinate z measured
along the propagation direction of the light. In rare-earth-ion-
doped inorganic crystals (RE crystals) with low site symmetry
and sufficiently narrow absorption line, controlled transverse
broadening can be introduced through the Stark effect [37] by
applying an electric field gradient transverse to the propagation
direction of light. For RE ions implemented in a glassy host,
for example, an optical fiber, controlled transverse broadening
is already obtained for uniform electric fields, due to the
random orientation and magnitude of the electric dipole
moments of the RE ions [38]. In the following, we assume
a broadened medium with Lorentzian lineshape G(�/�inh) =
�inh/[(�2

inh + �2)π ] with inhomogeneous spectral width
�inh � cδk. The center of the first wave packet |0〉f,p enters
the atomic medium at t0 = 0 (see Fig. 2). During the interaction
with the medium, the light field is partially or completely
absorbed, depending on the optical depth. At time t1, after
sufficient dephasing, we change the detuning �j to −η�j , and
we also apply a position-dependent phase shift of (2keg − δk)z,
which allows phase matching for the retrieval of the light
field in the backward direction [8,9,35,39]. δk describes a
small deviation from the perfect phase matching. This leads
to re-emission of the light field, with the center of the (now
trailing) wave packet exiting the medium at time t = techo. The
atom-light state for t � techo is then given by

|�(t � techo)〉 = |ψf (t)〉p ⊗ |g〉 + |�(t)〉a + |ψb(t)〉p ⊗ |g〉.
(30)

As visualized in Figs. 2(c), 2(d), and 2(e), the first
term describes the damped, nonabsorbed photonic component
|ψf (t)〉p = exp{−αoL/2}|ψin(t)〉p that continued to travel in
the forward direction behind the atomic medium, the second

FIG. 2. (Color online) Schematics showing different instances
in the quantum compression protocol in the case of transverse
broadening. The figure depicts forward- and backward-propagating
photonic wave packets and atomic excitation.

term the remaining atomic excitation, and the third term
denotes the now backward-moving, retrieved photon field,
which is the subject of our investigation. αo is the on-resonant
absorption coefficient, L the length of the medium, and αoL

the optical depth. As shown in Appendix A, the amplitude of
the retrieved photon field, assuming for simplicity a Gaussian
spectral shape, is described in abstract qubit notation as:

|ψb(t)〉(t)
p = R(t){e−(1+1/η)γegτoα|t,δz′,ω−〉b

+ eiφ′
β|t + τ ′

o,δz
′,ω−〉b}, (31)

where the superscript (t) denotes transverse broadening, where
we ignored a global phase shift, and where φ′ = φ + (1 +
1/η)ωegτo. Furthermore,

|t (m),δz′,ω−〉b =√
η

∫ ∞

−∞
dz′exp{−iωσ [t (m) − techo + z′/c]}

× g[ct (m) − ctecho + z′,δz′]â†
b(z′)|∅〉, (32)

where t (m) denotes the early or late wave packet (t (m) ∈ [t,t +
τ ′
o]), techo = (1 + 1/η)t1 − δtR , δtR = 1

2γeg[1 + η](δz′/c)2,
τ ′
o = τo/η, and δz′ = δz/η. The factor

R(t) = �γeg
(t1)M (t)(δk,αoL)ε1/2

o (η) (33)

combines different sources that affect the efficiency of the
quantum compression through phase relaxation γeg , phase mis-
match δk, and limited optical depth αoL. Its upper limit, given
by εo (not to be confused with the electric permittivity εo), is
determined by the compression parameter η. Specifically, we
find

�γeg
(t1) = exp

{
−(1 + 1/η)γeg

(
t1 − τo − 1

2
ηδtR

)}
, (34)

M (t)(δk,αoL) = 1 − exp
{− 1

2 (1 + 1/η)αoL + iδkL
}

1 − 2i(δk/αo)η/(η + 1)
, (35)

ε1/2
o (η) = 2

√
η

(η + 1)
. (36)

Let us now relate Eq. (31) with our figures of merit.
First, it is important to note that Eq. (31) describes again a
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FIG. 3. (Color online) Recall efficiency for transverse broadening
as a function of the compression parameter η and the optical depth
αoL [see Eq. (39)].

photonic time-bin qubit with modified separation and width
of basis states. Indeed, comparing the new with the old basis
states [Eq. (12)], we find that the separation between the two
basis wave packets has changed from zo to z′

o = zo/η, and
their extension from δz to δz′ = δz/η, while the wave-packet
amplitude has changed ∝ η1/2, as visualized in Figs. 2(d) and
2(e).

Second, it is important to realize that the quantum infor-
mation encoded into a qubit is independent of the physical
realization of its abstract basis states |0〉 and |1〉. This allows
us to relabel the basis states after compression, that is,
|t,δz′,ω−〉 → |1〉, and |t + τ ′

o,δz
′,ω−〉 → |0〉, resulting in

|ψ〉p = R(t)[e−(1+1/η)γegτoα|1〉 + eiφ′
β|0〉]. (37)

Now, taking the trace of ρout,p = |ψ〉pp〈ψ |, we find the
efficiency according to Eq. (1):

ε(t) = [�γeg
(t1)]2|M (t)(δk,αoL)|2εo(η)[α2e−2(1+1/η)γegτo + β2].

(38)

We now discuss our figures of merit for some particular
cases. Ignoring phase relaxation (i.e., γeg = 0) and assuming
perfect phase matching (i.e., δk = 0) we find the efficiency to
be given by

ε(t) = 4η

(η + 1)2

[
1 − exp

{
−1

2
(1 + 1/η)αoL

}]2

. (39)

It is depicted in Fig. 3 as a function of the optical depth
α0L and the compression parameter η. First, we note that for
standard CRIB (without compression, i.e., η = 1), we find the
previously published result ε(t) = (1 − exp{−αoL})2 [35,36].
Second, we point out that for a given compression factor, the
maximum efficiency is always obtained for infinite optical
depth, and hence the upper limit εmax is only determined by
the compression factor:

ε(t)
max(η) = 4η

(1 + η)2
. (40)

To give an example, a quantum compression with
3 − 2

√
2 � η � 3 + 2

√
2 results in a recall efficiency limited

to 50%.
To assess the fidelity, we compare Eq. (37) with the

initial qubit state in Eq. (5). We find that the renormalized,

FIG. 4. (Color online) Gain for transverse broadening as a
function of the compression parameter η and the optical depth αoL.

compressed qubit state |ψ〉p can be unitarily transformed
into the initial state by a σz rotation of angle φ′ − φ = (1 +
1/η)ωegτo and a bit-flip operation σx . Furthermore, one should
take into account an additional σx rotation to compensate for
the amplitude reduction factor exp{−(1 + 1/η)γegτo} arising
in the case of significant phase relaxation during time (1 +
1/η)τo. This immediately implies that the fidelity as defined
in Eq. (2) is always one, regardless the compression factor,
phase relaxation, or phase mismatch. Note that the fact that
atomic phase relaxation does not affect the fidelity in time
qubit storage has been inferred from stimulated photon echo
experiments with intense light pulses [40].

Figure 4 depicts the gain as a function of optical depth
and compression parameter for transverse broadened media.
As an example, assuming αoL = 2, we find an increased
communication rate, that is, G(t) >1, for η � 1.7. For large
(infinite) optical depth [i.e., maximum efficiency as described
by Eq. (40)], the gain is upper bounded by

G(t)(αL → ∞) = 4η2/(1 + η)2|η�1 = 4, (41)

a modest, yet significant improvement over quantum commu-
nication schemes without compression.

To finish this section, let us briefly inspect Eqs. (33)–(36)
in view of symmetry between compression and decompres-
sion, that is, under exchange of η to 1/η. First, we recall
that the fidelity is one, regardless the compression factor:
F (η) = F (1/η) = 1. Second, we find that the upper limit of
the efficiency is symmetric with respect to compression or
decompression: ε(t)

max(η) = ε(t)
max(1/η) < 1. However, limited

optical depth, phase mismatch, and atomic phase relaxation
break the symmetry in the efficiency. It should be possible
to demonstrate this surprising behavior using only symmetry
arguments and the equations of motion describing the recall
efficiency, without having to solve the equations. This is likely
to lead to a more profound understanding of the physical
principles of the here studied compression or decompression
protocol.

C. Longitudinally broadened media

Longitudinal broadening is an inhomogeneous broadening
that cannot be found naturally. In this case, for each position
z in the medium, the atomic absorption profile is given by a
narrow line (here for simplicity assumed to be homogeneously
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FIG. 5. (Color online) Schematic showing different instances
in the quantum compression protocol in the case of longitudinal
broadening. The figure depicts forward- and backward-propagating
photonic wave packets and atomic excitation. Note the difference
of the re-emission time techo and the different localization of atomic
excitation compared to the transverse case (see Fig. 2). The change
of color of the irradiated wave packets denotes additional frequency
shifts [see Eq. (49)].

broadenend), whose center frequency varies monotonously
with z. Longitudinal broadening can be realized through the
Stark effect in non-centro-symmetric RE-ion-doped inorganic
crystals by applying a electric field gradient longitudinal to
the propagation direction of light [7]. In the following, we
assume absorption lines whose detuning with respect to the
light carrier frequency varies linearly with position z within
the crystal, which extends from z = −L/2 to z = +L/2:

� = −χz. (42)

The initial inhomogeneous absorption line, obtained after
integration over all atomic positions z, is assumed to be
broad compared to the spectrum of the photonic wave packet:
�inh = χL � cδk. A schematic of the compression procedure
depicting relevant instances of the protocol is given in Fig. 5.

A similar approach as in the case of transverse broadening
leads to the following wave function for the backward-emitted
light field (for more details, see Appendix B):

|ψb(t)〉(l)
p = R(l){e−(1+1/η)γegτoα

∣∣t,t − t
(l)
δk ,δz′,ω−

〉
b

+ eiφ′
β
∣∣t,t − t

(l)
δk + τ ′

o,δz
′,ω−

〉
b

}
, (43)

where the superscript “(l)” denotes longitudinal broadening
and where we ignored again a global phase shift. Furthermore,

|t,t (m),δz′,ω−〉b = √
η

∫ ∞

−∞
dz′ exp{i�(t + z′/c,η)}

× exp{−iω−[t (m) − techo + z′/c]}
× g[ct (m) − ctecho + z′,δz′]â†

b(z′)|∅〉, (44)

and t (m) ∈ [t − t
(l)
δk + τ ′

o,t − t
(l)
δk ], with

t
(l)
δk = 1

η�inh
[δkL + 2(ζ/χ )(1 − 1/η)]. (45)

The parameters δz′ = δz/η, τ ′
o = τo/η, and φ′ are the same

as in the transverse case, and ζ = πnoSg2/c. Furthermore,

R(l) = �γeg

[
t1 + t

(l)
δk

]
M (l)(ζ/χ,η), (46)

with

M (l)(ζ/χ,η) =
√(

1 − exp

{
−2πζ

ηχ

})(
1 − exp

{
−2πζ

χ

})
.

(47)

Finally, the time-dependent phase �(τ = t + z/c,η) is
given by

�(τ,η) = ζ

χ
ln

{(
1
2η�inh

∣∣τ − t1 + τ ′
m − δkL

η�inh

∣∣)[
1
2η�inh(τ − t1 + τ ′

m)
]1/η

}
, (48)

where τ ′
m = τm/η2 and τm = 2 ζ

χ�inh
. For time-bin qubits with

sufficiently narrow basis wave packets, the phase change
(which is nonlinear in τ and η) translates into a different
frequency change of each wave packet (δω0, δω1) as com-
pared to the carrier frequency. From δω(t) = d�(t)/dt we
find

δω0 = ζ

χ

[
1

t1 − τo + τm + δk/χ
− η

t1 − τo + τm

]
,

(49)

δω1 = ζ

χ

[
1

t1 + τm + δk/χ
− η

t1 + τm

]
.

Note that a given dephasing time t̃ determines close-to-
homogeneously broadened slices of length δl in the atomic
medium with δl ≈ (χt̃)−1, where coherence, hence radiation,
remains. We believe that coupling between light and collective
atomic coherence (as included in the analyzed equations)
within these slices plays an important role for those fre-
quency shifts, which are proportional to the number of atoms
n = Nδl in each slice, and the square of the photon-atom
coupling constant g (i.e., δω ∝ g2Nδl). The nonlinear phase
modulation also leads to an additional, possibly substantial,
phase difference between the two basic wave packets after re-
call: δϕ01 = ∫ techo+τ0/η

techo
dtδω(t) = �(techo + τ0/η) − �(techo).

The phase difference is depicted in Figs. 6 and 7. The effects of
the nonlinear phase shift are enhanced with increasing effective
optical depth κeff = 2πζ/χ and time delay τo between the
wave packets and diminishes as the dephasing time t1 increases
and the compression parameter η approaches unity.

FIG. 6. (Color online) Phase shift δϕ01 for quantum compression
as a function of the time delay τo and the compression parameter η,
with dephasing time t1 = 20δt , �inhδt = 10, and 2πζ/χ = 6π . δt

denotes the temporal duration of the initial-basis wave packets, and
2πζ/χ is the effective optical depth.

012309-7



S. A. MOISEEV AND W. TITTEL PHYSICAL REVIEW A 82, 012309 (2010)

FIG. 7. (Color online) Phase shift δϕ01 for quantum decompres-
sion as a function of the time delay τo and the compression parameter
η, with dephasing time t1 = 20δt , �inhδt = 10, and 2πζ/χ = 6π .

Phase and frequency shifts in the here-analyzed case of
backward emission are a result of the presence of phase
mismatch [δk(l) �= 0], or compression or decompression (η �=
1), or both, but they do not occur in the phase-matched,
reversible case. However, in the case of forward emission,
the phase and frequency shifts also arise for noncompressed
recall (η = 1), provided the rephasing and dephasing times t̃

are bounded [41,42].
Let us now discuss our figures of merit in the case of

longitudinal broadening and compare it with transverse broad-
ening. As mentioned earlier, the new basis states [Eqs. (44)]
do not transfer into each other through time translation alone,
in contrast to the case of transverse broadening. For instance,
assuming δt = 100 ns, τo = 200 ns, 2πζ/χ = 6, η = 3, and
a sufficiently large dephasing time t1/δt = 20, we find a
frequency difference |δω0 − δω1| ≈ 2π× 17.32 kHz. As this
value is small compared to the spectral width of the wave
packet cδk ≈ 2π × 1.59 MHz, we can safely ignore this effect
as a limitation to the fidelity. It is thus possible to map the new
basis states onto the qubit basis states |0〉 and |1〉. Furthermore,
as before, we can compensate for the additional relative phase
arising during compression using an appropriate σz rotation.
Hence, the fidelity in longitudinal compression can be close to
one.

The recall efficiency ε(l) is given by

ε(l) = [R(l)]2 = (
�γeg

[
t1 + t

(l)
δk

])2|M (l)(ζ/χ,η)|2
×{α2e−2(1+1/η)γegτo + β2}. (50)

As compared to Eq. (38), we find the same function
(�γeg

[t1 + t
(l)
δk ])2, which characterized atomic decay during

the storage process [Eq. (34)], only with slightly modified
argument [now including an additional delay t

(l)
δk ]. Note that

phase mismatch only leads to a decrease of the efficiency when
paired with significant atomic phase relaxation γeg , in contrast
to the transverse case [Eq. (35)].

Figure 8 depicts the efficiency ε(l) in the case of negligible
phase relaxation (i.e., γeg = 0) as a function of effective optical
depth 2πζ/χ and compression parameter η. Furthermore, a
comparison of efficiencies of the longitudinal and transverse
compression schemes for various initial optical depths is
shown in Fig. 9. For small initial optical depth (κeff =
2πζ/χ � 0.5π or κeff = αoL � 0.5π , respectively) and large

FIG. 8. (Color online) Recall efficiency for longitudinal broad-
ening as a function of the compression parameter η and the effective
optical depth 2πζ/χ [see Eq. (50)].

compression parameter (κeff/η < 1), both schemes feature the
same efficiency:

ε(l)(η,κeff) = ε(t)(η,κeff) ∼= κ2
eff/η. (51)

This behavior is expected as reabsorption in transverse as
well as longitudinally broadened media is negligible in the
case of small optical depth. However, as the optical depth
increases, reabsorption becomes more and more important in
the case of transverse broadening, reflecting the departure from
reversible light-atom interaction, while it is no issue in the case
of longitudinal broadening, due to the correlation between
atomic detuning � and position z [see Eq. (42)]. In particular,
for longitudinal broadening, we find

ε(l)(η → 0) = (1 − exp{−κeff}) = 1|κeff�1, (52)

while decompression with transverse broadening yields a
monotonously decreasing efficiency,

ε(t)(η → 0) = 4η|κeff�1, (53)

and eventually becomes zero.

2 4 6 8 10
η

0.2

0.4

0.6

0.8

1.0

∋t,
l

FIG. 9. (Color online) Recall efficiencies for compression
schemes employing transverse (red dashed lines) and longitudinal
broadening (blue solid lines). The initial optical depths κeff = αoL =
2πζ/χ are 0.1π , π , and 4π (bottom to top sets of curves, respec-
tively). For small optical depth and sufficiently large compression
factor η, the efficiencies ε(t)(η) and ε(l)(η) are equal, as described
by Eq. (51). As the optical depth increases, schemes based on
longitudinal broadening perform better.
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FIG. 10. (Color online) Gain for longitudinal broadening as
function of compression parameter η and effective optical depth
κeff = 2πζ/χ .

Furthermore, the compression efficiency ε(l) is only limited
by the optical depth κeff during absorption, as well as by
atomic relaxation. In particular, there is no compression-
factor-dependent upper limit, in opposition to ε(t) [see
Eq. (40)]. Hence, provided sufficient optical depth 2πζ/χ >

1 and 2πζ/(ηχ ) > 1 (which may be difficult to achieve
for large compression parameters), one can always achieve
close-to-unit efficiency. This gives longitudinal broadening
a clear advantage over transverse broadening for quantum
compression.

Obviously, the improved performance is reflected in the
gain. As shown in Fig. 10, we find that the gain can always
be increased when increasing the effective optical depth or the
compression parameter, as opposed to the case of transverse
broadening where the gain was limited to four [see Eq. (41)].
Indeed, using Eqs. (4) and (50), and ignoring atomic relaxation
(i.e., γeg = 0), we find

G(l) = η(1 − exp{−κeff/η})(1 − exp{−κeff}). (54)

Hence, assuming sufficiently large effective optical depth,
we find

G(l)(η/κeff → 0) = η|κeff�1. (55)

VI. FEASIBILITY STUDY

Before we conclude this article, let us briefly discuss
possible implementations of our proposal. Quantum com-
pression as considered here requires an atomic ensemble
with (at least) three suitable energy levels. Two levels must
be coupled resonantly by the photonic wave packet to be
compressed. The third level, generally another ground state,
is employed for temporal mapping of the excited optical
coherence onto ground-state coherence using two counter-
propagating π pulses. This results in the implementation
of the 2kz phase shift, that is, in emission of light in the
backward direction [6]. The width of the optical absorption
line, which may be inhomogeneously broadened, should be
sufficiently small. It should be possible to broaden the line
in a controlled way via external fields, and the optical depth
after broadening should be large. The maximum bandwidth
of the optical wave packet to be absorbed or re-emitted

is given by the width of the externally broadened atomic
transition, while the minimum bandwidth of the optical wave
packet is limited by the atomic linewidth before broadening
(more precisely, the minimum optical bandwidth is a small
multiple of the atomic linewidth as some controlled broadening
is required for controlled dephasing or rephasing). These
conditions are similar to those required for quantum-state
storage based on standard CRIB [10], but without the need
for a long storage time, which considerably relaxes material
requirements.

Any material that fulfills these requirements would be a
suitable candidate for quantum compression. We note that
some aspects of the here-presented theoretical study have
recently been observed using atomic vapor, longitudinal
broadening, and bright pulses of light [17]. In the following, we
discuss RE-ion-doped solid-state material in view of quantum
compression.

RE-doped solids have been studied extensively for data
storage experiments based on stimulated photon echoes [43]
and are currently being investigated for photon-echo quantum
memory [5,10]. When implemented into crystals and cooled
down to temperatures below 4 K, RE ions typically feature
homogeneous linewidths (for optical transitions) of a few
kHz, and values as small as 50 Hz have been reported [44].
Linewidths in glasses are larger, but can still be around or
below 1 MHz [45–47]. The transitions in crystals and glasses
are inhomogeoeusly broadened, with values ranging from
40 MHz [48] in crystals to hundreds of GHz in crystals
or glasses [44,49]. The preparation of the initial, narrow
absorption line therefore requires an initial preparation step via
optical pumping [50–53]. In low-symmetry hosts, the RE ion’s
quantum states acquire permanent electric dipole moments,
which makes it possible to shiftg their energy levels through
the application of a dc electric field—the dc Stark shift (for
a review on optical Stark spectroscopy of solids, see [37]). A
different dipole moment for two energy levels consequently
results in a shift of the associated transition frequency, making
it possible, through the application of a field gradient, to
broaden an isolated absorption line. Typical frequency shifts in
RE-ion-doped materials are 10–100 kHz for an electric field of
1 V cm−1.

Praseodymium-doped yttrium orthosilicate (Pr3+Y2SiO5)
is a very promising candidate for the demonstration of quantum
compression in RE solids. This crystal has been employed for
storage of light pulses using longitudinal broadening [41],
and recall efficiencies up to 69% have recently been reported
[29]. Taking into account a spectral width of the 3H4 ⇔1 D2

(605.9 nm wavelength) absorption line of 30 kHz after optical
pumping [41], and a Stark coefficient of 112.1 kHz/(V cm−1)
[54], we find that Pr3+Y2SiO5 allows absorption and re-
emission of photonic wave packets with bandwidths between
∼100 kHz and a few MHz, that is, temporal durations
between ∼100 ns and a few µs. This results in a maximum
compression (scaling) factor η of ∼100 (or η ∼1/100). Taking
into account the demonstrated high-efficiency storage [29],
one can expect a gain G(l) > 10. However, note that the
maximum bandwidth for this transition is ∼10 MHz, due
to limitations imposed by ground-state hyperfine splitting
on the preparation of the initial absorption line via optical
pumping [51].
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For RE materials with larger ground-state splitting, allow-
ing storage or recall of shorter wave packets, it is interesting
to consider RE-ion-doped crystalline and amorphous waveg-
uides. Due to the possibility of implementing electrodes with
spacing as small as ∼10 µm, large electric fields, that is,
large Stark shifts, can be obtained through application of
modest voltages. So far, waveguides in erbium- or thulium-
doped lithiumniobate crystals and erbium-doped silicate fibers
have been investigated in view of quantum-state storage
[38,40,46,55], and Stark broadening up to ∼100 MHz seems
feasible, allowing for storage or recall of pulses as short as
∼10 ns.

VII. CONCLUSION

In summary, we have studied quantum compression and
decompression of photonic time-bin qubit states employing
a generalized version of CRIB-based photon-echo quantum
memory. Assuming high optical depth for storage and retrieval,
we find, for the case of transverse broadening, that the recall
efficiency is limited by the compression factor η, while it
reaches unity in the case of a longitudinal broadened medium.
We also find, for transverse broadening, that the fidelity of
recalled photonic time-bin qubits with the original qubit is one,
regardless the compression factor, but that it is limited in the
case of longitudinal broadening. Taking into account realistic
experimental data, we foresee that quantum compression
will be useful for quantum communication and computation
applications. In particular, it makes it possible to enhance
the data rate in quantum communication schemes through
temporal multiplexing and allows mapping of broadband
photons into small-bandwidth quantum memory.

Our analysis reveals new aspects of coherent photon-atom
interaction, specifically photon-echo type interactions, and
highlights the advantage of schemes employing longitudinal
broadening over transverse broadening. The theory can be
generalized in a straightforward way to the encoding of
quantum information into multiple (n > 2) (discrete) temporal
modes of photons, including compression of intense light
fields (provided the number of photons is smaller then
number of resonant atoms). However, quantum compression
or decompression of light carrying quantum information
with continuous spectrum (continuous quantum variables)
requires further theoretical investigations that take into account
added quantum noise in the case of limited recall efficiency.
Finally, we note that pulse compression has been observed
in the context of frequency conversion based on Raman
adiabatic transfer of optical states [56], a protocol based on
electromagnetically induced transparency that may provide an
interesting alternative to our approach.
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APPENDIX A: TRANSVERSE BROADENING

First, we find a solution of Eqs. (28) and (29) given
an input photon amplitude A+(t � t1,z) and excited atomic
coherence bj (t � t1). Assuming all atoms to be initially
in the ground state [bj (τ = to → −∞) → 0] and using a
temporal Laplace transformation for the amplitude Āip,+(z) =∫∞
to

dτA+(t,z) exp{−p(t − to)}, we find the formal solution of
Eq. (29),

bj (t < t1) = ig
1

2π
exp{−iω+(t − to)}

∫ t

to

dt ′
∫ ∞

−∞
dνĀν,+(zj )

× exp
{−iνt ′ − i(ωeg + �j − ω+)(t − t ′)

− iδφj
eg(t,t ′)

}
, (A1)

where we have also used a backward Laplace transformation
A+(t,z) = (2π )−1

∫∞
−∞ dνĀν,+(z) exp{−iν(t − to)} with p =

−iν. Putting Eq. (A1) in Eq. (28) and taking into account
phase relaxation as described in Eq. (24), we find the following
expression for the sum of arbitrary atomic functions Fj (t,zj ):

N∑
j=1

Fj (t,zj ) exp

{
−i

∫ t1

to

dt ′δ�j
eg(t ′)

}
δ(z − zj ) |N�1

= (noS) exp{−γeg(t1 − to)}
∫ ∞

−∞
d�G(�/�inh)F (�,t,z).

(A2)

The Fourier components of the input field are given by

Āν,+(z) = exp
{− 1

2α+(ν)z
}
Āν,+(0), (A3)

where

α+(ν) = αo(γeg + �inh)

×
∫ ∞

−∞
d�

G(�/�inh)

[γeg − i(ν + ω+ − ωeg − �)]
(A4)

is the frequency-dependent absorption coefficient for an arbi-
trary, inhomogeneously broadened absorption line G(�/�inh)
of the transverse type and the on-resonant absorption coeffi-
cient αo = 2πnoSg2/[c(γeg + �inh)]. The amplitude A+(t >

t1,z = L) in Eq. (55) describes the light field at z � L after
interaction with the atomic medium. The Fourier component
at the beginning of the medium Āν,+(0) is determined by the
initial state of the input light at z = 0.

We now consider inhomogeneous broadening with
Lorentzian lineshape G(�/�inh) = �inh

π(�2+�2
inh)

, assuming the
spectral width of the input field narrow compared to the
atomic linewidth (δω+ � �inh). This results in α+(ν) =

αo(γeg+�inh)
[γeg+�inh+i(ωeg−ω+−ν)] in Eq. (A4).

To allow for light re-emission in the backward direction,
we change the phases of the atomic amplitudes through the
application of two short π laser pulses that temporally map
atomic coherence on the optically excited transition onto a
ground-state transition [6,35], as discussed in Sec. IV. In gen-
eral, this phase-matching operation leads to some phase mis-
match between the atomic coherence and the irradiated echo
signal that we quantify through an additional atomic phase
shift δkzj : bj [t1 + (ε → 0)] = bj (t1) exp{iδkzj } in Eqs. (28)
and (29) [with index σ = − denoting echo signal emission
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and �j (t > t1) = −η�j ]. Taking into account the initial
atomic amplitudes bj (t) = bj (t1) exp{iδkzj + iη�j (t − t1) −
iδφ

j
eg(t,t1)} and Eq. (A2), we find the irradiated light field to

be described by

∂

∂z
Āip,−(z) = (πnoSg2/c)

[∫ ∞

t1

dτ̃ exp{−pτ̃ }P̄echo(τ̃ ,z)

+ Āip,−(z)

p + (γeg + η�inh) + i(ωeg − ω−)

]
, (A5)

where P̄echo(τ̃ ,z) is the rephased atomic coherence that serves
as a source for the irradiated field:

P̄echo(τ̃ ,z)

= exp{−(1 + η)γeg(τ̃ − t1)} exp{i[δkz + ω− − ωeg

+ η(ω+ − ωeg)]τ̃ + i(ωeg − ω+)(1 + η)t1}
×

∫ ∞

−∞
dν

2�inh exp{iν[η(τ̃ − t1) − t1]}[
(ω+ + ν − ωeg + iγeg)2 + �2

inh

]
× exp

{
− αoz

2[1 + i(ωeg − ω+ − ν)/(γeg +�inh)]

}
Āν,+(0).

(A6)

We used again the temporal Laplace transformation for light
and atom amplitudes within the temporal interval [t1,∞] and

new variables τ̃ = t + z/c and z = z, and we have taken into
account that initially A−(t1,0 < z < L) = 0. The solution of
Eq. (A2) has the form of a double integral

A−(τ̃ ,z) = i

2π2

∫ ∞

−∞
dν

�inhĀν,+(0) exp{i(ϕ − νt1)}
[(ω+ − ωo + ν + iγeg)2 + �2

inh

]
×

∫ ∞

−∞
d�

exp{i�(τ̃ − τ̃o)}
[α+(ν) + α−(�) − 2iδk]

× αo(γeg + �inh)

[� − �1(ν)]

{
exp

[
−1

2
α+(ν)z + iδkz

]
− exp

[
−1

2
α+(ν)L+ 1

2
α−(�)(z − L) + iδkL

]}
,

(A7)

where ω− = ωeg + η(ωeg − ω+) is the carrier frequency
of the echo field, ϕ = (1 + η)(ωeg − ω+)t1, �1(ν) =
(ω− − ωeg) + η(ω+ − ωeg + ν) + i(1 + η)γeg , and α−(ν) =

αo(γeg+�inh)
[γeg+η�inh+i(ωeg−ω−+ν)] is the absorption coefficient of the
atomic system during echo emission. It is characterized
by the compressed inhomogeneous broadening η�inh. As-
suming again the inhomogeneous broadening to be large
compared with the initial light spectrum, �inh � δωf ,
we can simplify the dependence on the phase mismatch
factor:

2

α+(ν) + α−(�) − 2iδk
∼= 2

αo(γeg + �inh)

[γeg + χ�inh + i(ωeg − ω− + �)][γeg + �inh + i(ωeg − ω+ − ν)][
2γeg + (1 + χ )�inh + i(2ωeg − ω+ − ω− − ν + �) − 2iδk

(γeg+χ�inh)
αo

] . (A8)

The main part of the integration in Eq. (A7) over � in the complex plane is determined by the pole singularity at � = �1(ν), while
the other singularities describe fast-decaying signals associated with the large inhomogeneous broadening. After the integration,
we obtain the following echo field amplitude at the medium output (z = 0):

A−(τ̃ ,z = 0) = η exp{iϕ − (1 + η)γeg(τ̃ − t1)}
π [(η + 1) + (1 − η)γeg/�inh]

∫ ∞

−∞
dν

exp{iν[η(τ̃ − t1) − t1]}{1 − exp
[− 1

2α(ν,η)L + iδkL
]}{

1 + i
(η−1)(ν+ω+−ωeg )/�inh

(η+1)+(1−η)γeg/�inh
− 2i

(δk/αo)(η+γeg/�inh)
(η+1)+(1−η)γeg/�inh

} Ā+,ν(0),

(A9)

where α(ν,η) = [α+(ν) + α−(ν)] describes the combined in-
fluence of absorption and dispersion effects on the echo
field.

Equation (A9) makes it possible to calculate the compres-
sion efficiency. For instance, setting η = 1, we can derive
the echo field in the presence of phase mismatch [35,39],
which limits the recall efficiency. Setting δk = 0, we find
the echo to be a perfect, temporally reversed copy of the
input field, provided the optical depth is sufficiently large
for all spectral components of the field (α(ν,η)L � 1). This
confirms previously obtained results [9,35,36]. For sufficiently
large inhomogeneous broadening, δωf /�inh � 1, we find
α(ν,η) ∼= (1 + 1/η)αo and Eq. (A9) can be simplified to

A−(τ̃ ,z = 0) = εo(η)1/2M (t)(δk,αoL) exp{iϕ − (1 + η)

× γeg(τ̃ − t1)}√ηA+[−η(τ̃ − t1) + t1],

(A10)

where M (t)(δk,αoL) and ε
1/2
o (η) are given in Eqs. (35) and

(36). While we are only interested in the quantum state of
the retrieved and compressed photonic qubit [as described by
Eq. (31)], which we obtain through Eq. (A10) assuming initial
photonic time-bin qubits [Eq. (11)] with Gaussian shape of
the basis wave packets, we note that one can also derive the
amplitude of the atomic state [Eq. (27)] after the echo signal
emission by inserting Eq. (A7) into Eq. (29).

APPENDIX B: LONGITUDINAL BROADENING

As in the previously discussed case of transverse broaden-
ing, we are only interested in the retrieved photonic time-bin
qubit state. Averaging Eq. (29) over the phase fluctuations,
and after a variable transformation to a moving reference frame
τ = t − z/c, z = z, the light-atom equations for t < t1 become

∂

∂z
A1(τ,z) = i(πnoSg∗/c)bo(τ,z), (B1)
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∂

∂τ
bo(τ,z) = (iχz − γeg)bo(τ,z) + igA1(τ,z), (B2)

where we used the substitution bj (τ ) = bo(τ,zj ) exp{−iω21τ },
with bo(τ,z) describing averaged local atomic coherence, and
A1(τ,z) = A+(τ,z) exp{−i(ω+ − ωeg)τ }. The field amplitude
A+(τ,z) is given by Eq. (11) with additional factor exp{iφlg},
where φlg = 1

2ω+L/c.
The general solution of Eqs. (B1) and (B2) is obtained using

a temporal Laplace transformation [42]. We are interested only
in the atomic coherence excited by the input light, which gives
rise to the echo field irradiated after further evolution, while the
initial light field disappears in the medium [A1(τ � δt,z) →
0]:

bo(τ1,z) = − i

2π

∫ ∞

−∞
dωe−iωτ1

× (ω − χL/2 + iγeg)iζ/χ

(ω + χz + iγeg)1+iζ/χ
Ã1(ω,−L/2). (B3)

Ã1(ω, − L/2) = ∫∞
−∞ dτeiωτA1(τ ; −L/2) is the field spec-

trum at the input of the atomic medium (z = −L/2), and
ζ = πnoSg2/c. Similar to the transverse scheme, we find the
atomic coherence on the resonant optical transition 1 → 2 at
the moment of re-emission of light using the phase mismatch
factor δkz: bo[τ1 + (ε → 0)] = bo(τ1) exp{iδkzj }.

We now analyze the backward echo emission. After
changing the atomic detunings �(τ > τ1) = χ ′z, we find the
following system of equations for the atomic coherence and
irradiated echo field A2(τ̃ > τ1,z) (where τ̃ = t + z/c):

∂

∂z
A2(τ̃ ,z) = −i(πnoSg∗/c)bo(τ̃ ,z), (B4)

∂

∂τ̃
bo(τ̃ ,z) = −(iχz + γeg)bo(τ̃ ,z) + igA2(τ̃ ,z) (B5)

where A2(τ,z) = A−(τ,z) exp{−i(ω− − ωeg)τ̃ } and ω− is the
new carrier frequency. Using a Laplace transformation in the
solutions of Eqs. (B4) and (B5), we find A2(τ̃ ,z < L/2) as a
function of the stored atomic coherence bo(τ̃1,z):

A2(τ,z = −L/2) = ζ

(2π )2

∫ ∞

−∞
dωe−iω(τ−t1)

∫ L/2

−L/2
dz′

× (−χ ′L/2 − ω − iγeg)−i
ζ

χ ′

(χ ′z′ − ω − iγeg)1−i
ζ

χ ′
exp{iδkz′}

×
∫ ∞

−∞
dω′e−iωt1

(ω′ − χL/2 + iγeg)iζ/χ

(ω′ + χz′ + iγeg)1+iζ/χ

× Ã1(ω′, − L/2), (B6)

where we used τ1 = t1. Taking into account backward emission
of the echo field, as well as large inhomogeneous broadening
with respect to the input light spectral width, and using the
simplifications

(ω′ − χL/2 + iγeg)iζ/χ

∼= (χL/2)iζ/χ exp{γegτm − πζ/χ} exp{−iτmω′},

(−χ ′L/2 − ω − iγeg)−iζ/χ ′

∼= (χ ′L/2)−iζ/χ ′
exp{γegτ

′
m − πζ/χ ′} exp{−iτ ′

mω},

where τ ′
m = (ζ/χ ′) (χ ′L/2)

[(χ ′L/2)2+γ 2
eg ]

∼= (ζ/χ ′)
(χ ′L/2) and τm =

(ζ/χ ) (χL/2)
[(χL/2)2+γ 2

eg ]
∼= (ζ/χ)

(χL/2) , we find, after changing the

order of the integrations in Eq. (B6) from ω,z′,ω′ to ω′,z′,ω,

A2(τ,z = −L/2)

= ζ

(2π )2
exp{γeg(τ ′

m + τm)

−πζ (1/χ ′ + 1/χ )}(χ ′L/2)−iζ/χ ′
(χL/2)iζ/χ

×
∫ ∞

−∞
dω′ exp{−iω′(t1 + τm)}Ã1(ω′, − L/2)

×
∫ L/2

−L/2
dz′ exp{iδkz′}

(ω′ + χz′ + iγeg)1+iζ/χ

×
∫ ∞

−∞
dω

exp{−iω(τ − t1 + τ ′
m)}

(χ ′z′ − ω − iγeg)1−iζ/χ ′ . (B7)

Taking again into account that χL � δωf , and using the tabled
integral

(χ ′L/2)−iζ/χ ′
∫ ∞

−∞
du

exp{iuT }
(u − iγeg)1−iζ/χ ′

= − 2πηχ (T )

(ζ/χ ′) �[−iζ/χ ′]
(
T χ ′L/2

)−iζ/χ ′

× exp

{
−γegT + 1

2
πζ/χ ′

}
,

where ηχ (T � 0) = 1 and ηχ (T < 0) = 0 is a Heaviside
function, we integrate Eq. (B7) over ω, then over z′ and ω′,
leading to

A2(τ,z = −L/2) = −2πχ ′

ζ

exp
{− 1

2πζ/χ ′ − 1
2πζ/χ

}
�[−iζ/χ ′]�[iζ/χ ]

× ηχ (τ − t1 + τm − δk/χ ′)

× [(χ ′L/2)(τ − t1 + τ ′
m)]−iζ/χ ′

× [(χ ′L/2)|τ − t1 + τ ′
m − δk/χ ′|]iζ/χ

× exp{−γeg(1 + η)(τ − t1) + γegητz}
×A1{−η[τ − (1 + 1/η)t1 − τz]}, (B8)

where η = χ ′/χ is the compression factor and �[±ix] are
� functions. Interestingly, as described in Eq. (B8), phase
mismatch does not effect to the quantum efficiency of
the echo emission but only leads to a temporal shift of
the echo emission to τ ′

echo + τz [where τ ′
echo = (1 + 1/η)t1,

τz = δk/χ ′ + τm/η − τ ′
m]. However, this shift results in an

additional nonlinear phase shift due to the deviation from
perfect temporal reversibility. Furthermore, we find that the
echo emission is conditioned on a phase mismatch δk/χ ′ >

τ ′
m + δt − (t1 + τm)/η. Taking into account that τm � δt and

τ ′
m � δt , we find δk/χ > −t1.

Finally, taking into account the relations between
A2(τ̃ ,z) and A−(τ̃ ,z) and those between A1(τ̃ ,z) and
A+(τ̃ ,z) we find the new carrier frequency ω− =
ωeg + η(ωeg − ω+) of the echo signal, which coincides
with the case of transverse broadening. We also find
A−(τ̃ ,z) = A2(τ̃ ,z) exp{iη(ωeg − ω+)τ̃ }. Using this relation,
together with A1{−η(τ − τ ′

echo − τz)} = A+{−η(τ − τ ′
echo −

τz)} exp{iη(ω+ − ωeg)(τ − τ ′
echo − τz)} in Eq. (B8), we find
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the solution for A−(τ̃ ,z) as a function of A+. Putting
the obtained solution into Eq. (10), assuming again a
Gaussian shape of the photonic wave packets, we ob-

tain the solution for the retrieved photonic time-bin
qubit state given in Eq. (43) after a simple algebraic
calculation.
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A. Moiseev, and M. J. Sellars, Laser Photonics Rev. 4, 244
(2010).

[11] Y. S. Bai and T. W. Mossberg, Appl. Phys. Lett. 45, 1269 (1984).
[12] Y. S. Bai and T. W. Mossberg, Opt. Lett. 11, 30 (1986).
[13] X. Wang, M. Afzelius, N. Ohlsson, U. Gustafsson, and S. Kröll,
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J.-L. Le Gouët, Opt. Commun. 241, 203 (2004).

[53] B. Lauritzen, S. R. Hastings-Simon, H. de Riedmatten,
M. Afzelius, and N. Gisin, Phys. Rev. A 78, 043402 (2008).

[54] F. R. Graf, A. Renn, U. P. Wild, and M. Mitsunaga, Phys. Rev.
B 55, 11225 (1997).

[55] N. Sinclair, E. Saglamyurek, M. George, R. Ricken, C. La Mela,
W. Sohler, and W. Tittel, J. Lumin. 130(9), 1586 (2010).

[56] F. Vewinger, J. Appel, E. Figueroa, and A. L. Lvovsky, Opt.
Lett. 32 (19), 2771 (2007).

012309-13

http://arXiv.org/abs/arXiv:0906.2699
http://dx.doi.org/10.1038/35106500
http://dx.doi.org/10.1038/35106500
http://dx.doi.org/10.1126/science.1095232
http://dx.doi.org/10.1103/PhysRevLett.98.113602
http://dx.doi.org/10.1103/PhysRevLett.98.113602
http://dx.doi.org/10.1038/nphoton.2009.231
http://dx.doi.org/10.1038/nphoton.2009.231
http://dx.doi.org/10.1103/PhysRevLett.87.173601
http://dx.doi.org/10.1103/PhysRevLett.96.043602
http://dx.doi.org/10.1016/j.optcom.2004.11.077
http://dx.doi.org/10.1103/PhysRevA.73.020302
http://dx.doi.org/10.1002/lpor.200810056
http://dx.doi.org/10.1002/lpor.200810056
http://dx.doi.org/10.1063/1.95122
http://dx.doi.org/10.1364/OL.11.000030
http://dx.doi.org/10.1364/OL.25.000945
http://dx.doi.org/10.1103/PhysRevA.79.053851
http://dx.doi.org/10.1103/PhysRevA.79.053851
http://dx.doi.org/10.1103/PhysRevA.81.062333
http://dx.doi.org/10.1103/PhysRevA.81.062333
http://www.spectrum.montana.edu/Conf/Booklet/SMQIOAS2008Booklet_BW.pdf
http://www.spectrum.montana.edu/Conf/Booklet/SMQIOAS2008Booklet_BW.pdf
http://dx.doi.org/10.1038/nature08325
http://dx.doi.org/10.1364/OL.35.001091
http://dx.doi.org/10.1038/299802a0
http://dx.doi.org/10.1038/299802a0
http://dx.doi.org/10.1016/0375-9601(82)90084-6
http://dx.doi.org/10.1103/PhysRevA.52.R2493
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.92.047904
http://dx.doi.org/10.1088/0953-4075/40/19/008
http://dx.doi.org/10.1103/PhysRevA.76.014302
http://dx.doi.org/10.1103/PhysRevA.76.014302
http://dx.doi.org/10.1103/PhysRev.125.912
http://dx.doi.org/10.1103/PhysRevLett.95.213001
http://dx.doi.org/10.1103/PhysRevLett.98.153003
http://dx.doi.org/10.1103/PhysRevLett.98.153003
http://dx.doi.org/10.1002/lapl.200310071
http://dx.doi.org/10.1103/PhysRevA.75.032327
http://dx.doi.org/10.1103/PhysRevA.75.032327
http://dx.doi.org/10.1016/j.jlumin.2006.08.012
http://dx.doi.org/10.1016/j.optcom.2006.05.003
http://dx.doi.org/10.1103/PhysRevA.70.063809
http://dx.doi.org/10.1103/PhysRevLett.98.113601
http://dx.doi.org/10.1103/PhysRevLett.100.023601
http://dx.doi.org/10.1103/PhysRevA.78.023803
http://dx.doi.org/10.1103/PhysRevA.78.023803
http://dx.doi.org/10.1016/S0022-2313(02)00281-8
http://dx.doi.org/10.1103/PhysRevLett.96.033602
http://dx.doi.org/10.1103/PhysRevLett.96.033602
http://dx.doi.org/10.1016/j.optcom.2006.05.007
http://dx.doi.org/10.1364/OL.31.003453
http://dx.doi.org/10.1364/OL.31.003453
http://dx.doi.org/10.1103/PhysRevLett.69.542
http://dx.doi.org/10.1103/PhysRevLett.69.542
http://dx.doi.org/10.1109/68.62013
http://dx.doi.org/10.1103/PhysRevLett.84.1152
http://dx.doi.org/10.1103/PhysRevLett.84.1152
http://dx.doi.org/10.1103/PhysRevB.70.214116
http://dx.doi.org/10.1103/PhysRevB.70.214116
http://dx.doi.org/10.1016/j.optcom.2004.07.011
http://dx.doi.org/10.1103/PhysRevA.78.043402
http://dx.doi.org/10.1103/PhysRevB.55.11225
http://dx.doi.org/10.1103/PhysRevB.55.11225
http://dx.doi.org/10.1016/j.jlumin.2009.12.022
http://dx.doi.org/10.1364/OL.32.002771
http://dx.doi.org/10.1364/OL.32.002771

