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Quantum stabilizer codes for correlated and asymmetric depolarizing errors
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We study the performance of common quantum stabilizer codes in the presence of asymmetric and correlated
errors. Specifically, we consider the depolarizing noisy quantum memory channel and perform quantum
error correction via the five- and seven-qubit stabilizer codes. We characterize these codes by means of the
entanglement fidelity as a function of the error probability and the degree of memory. We show that their
performances are lowered by the presence of correlations, and we compute the error probability threshold values
for code effectiveness. Furthermore, we uncover that the asymmetry in the error probabilities does not affect the
performance of the five-qubit code, while it does affect the performance of the seven-qubit code, which results
in being less effective when considering correlated and symmetric depolarizing errors but more effective for
correlated and asymmetric errors.
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I. INTRODUCTION

The most important obstacle in quantum information
processing is decoherence. It causes a quantum computer to
lose its quantum properties, destroying its performance advan-
tages over a classical computer. The unavoidable interaction
between the open quantum processor and its environment
corrupts the information stored in the system and causes errors
that may lead to wrong outputs. In general, environments may
be very complex systems characterized by many uncontrol-
lable degrees of freedom. A useful active strategy to defend
quantum coherence of processing against environmental noise
is that of quantum-error-correcting codes (QECCs) [1–3],
where, in analogy to classical information theory, quan-
tum information is stabilized using redundant encoding and
measurements.

The formal mathematical description of the qubit-
environment interaction is often given in terms of quantum
channels. Quantum error correction (QEC) is usually devel-
oped under the assumption of identically and independently
distributed errors. These error models are characterized by
memoryless communication channels � such that n-channel
uses is given by �(n) = �⊗n. In such cases of completely
independent decoherence, qubits interact with their own envi-
ronments, which do not interact with each other. However, in
actual physical situations, qubits may interact with a common
environment, which unavoidably introduces correlations in the
noise. For instance, there are situations where qubits in an ion
trap setup are collectively coupled to their vibrational modes
[4]. In other situations, different qubits in a quantum dot design
are coupled to the same lattice, thus interacting with a common
thermal bath of phonons [5]. The exchange of bosons between
qubits causes spatial and temporal correlations that violate the
condition of error independence [6]. Memory effects introduce
correlations among channel uses with the consequence that
�(n) �= �⊗n. Recent studies have tried to characterize the
effect of correlations on the performance of QECCs [7–11]. It
appears that correlations may have negative [8] or positive [9]
impacts on QECCs, depending on the features of the error
model being considered.

Furthermore, the noise may be asymmetric. Most of the
quantum computing devices [12] are characterized by relax-

ation times (τrelaxation) that are 1–2 orders of magnitude larger
than the corresponding dephasing times (τdephasing). Relaxation
leads to both bit-flip and phase-flip errors, whereas dephasing
(loss of phase coherence, phase shifting) only leads to phase-
flip errors. Such asymmetry between τrelaxation and τdephasing

translates to an asymmetry in the occurrence probability of bit-
flip (pX) and phase-flip errors (pZ). The ratio pZ/pX is known
as the channel asymmetry. QEC schemes should be designed
in such a way that no resources (time and qubits) are wasted in
attempting to detect and correct errors that may be relatively
unlikely to occur. Quantum codes should be designed in order
to exploit this asymmetry and provide better performance by
neglecting the correction of less probable errors [13–15]. In-
deed, examples of efficient QECC [e.g., asymmetric stabilizer
Calderbank-Shor-Steane (CSS) codes] taking advantage of
this asymmetry are given by families of codes of the CSS
type [16,17].

Following these lines of investigation, in this article, we
study the performance of common quantum stabilizer codes in
the presence of asymmetric and correlated errors. Specifically,
we consider the depolarizing noisy quantum memory channel
and perform QEC via the five- and seven-qubit stabilizer
codes [18]. We characterize the performance of the codes
by means of the entanglement fidelity F (µ,p) [19] as a
function of the error probability p and degree of memory µ

(correlations). We show that the performance of both codes is
lowered in the presence of correlations, and error probability
threshold values for code effectiveness are computed versus
the degree of memory µ. The error-correction schemes here
considered only work for low values of µ. Furthermore, we
uncover that the asymmetry in the error probabilities does
not affect the performance of the five-qubit code, while it
does affect the performance of the seven-qubit code, which
is less effective when considering correlated and symmetric
depolarizing errors but more effective for correlated and
asymmetric errors.

The layout of the article is as follows. In Sec. II, we consider
a depolarizing noisy quantum memory channel characterized
by symmetric error probabilities, and QEC is performed via the
[[5,1,3]] stabilizer code. The performance of QECC is quan-
tified by means of the entanglement fidelity F [[5,1,3]] (µ,p) as
a function of the error probability p and degree of memory µ.
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In Sec. III, QEC is performed via the [[7,1,3]]-CSS stabilizer
code. The performance of QECC is quantified by means of the
entanglement fidelities F [[7,1,3]]

Set-1 (µ,p) and F [[7,1,3]]
Set-2 (µ,p) as a

function of the error probability p and degree of memory µ

evaluated for two different allowable sets of correctable error
operators. In Sec. IV, for asymmetric error probabilities and
correlated noise errors, we show that the seven-qubit code can
outperform the five-qubit code and is also endowed with a
better threshold curve µth = µth (p), where error correction is
performed in an effective way. Finally, in Sec. V, we present
our final remarks.

II. THE FIVE-QUBIT CODE: SYMMETRIC ERROR
PROBABILITIES AND CORRELATIONS

In this section, we consider a depolarizing noisy quantum
memory channel with symmetric error probabilities, and QEC
is performed via the [[5,1,3]] stabilizer code. The performance
of QECCs is quantified by means of the entanglement fidelity
F [[5,1,3]] (µ,p) as a function of the error probability p and
degree of memory µ.

A. Error model

The depolarizing channel is especially easy to analyze in
the context of QEC because it has a simple interpretation
in terms of the four basic errors I , X, Y , Z, which are
the most commonly used in the analysis of quantum codes.
However, this error model is rather general since the abil-
ity to error-correct the depolarizing channel automatically
implies the ability to error-correct an arbitrary single qubit
quantum operation. To simplify the notation, we may choose
sometimes to omit the symbol of the tensor product, ⊗,
in the expressions for the error operators of weight greater
than 1.

Consider five qubits and Markov-correlated errors in a
depolarizing quantum channel �(5)(ρ):

�(5)(ρ) =
3∑

i1,i2,i3,i4,i5=0

pi5|i4pi4|i3pi3|i2pi2|i1pi1

× [Ai5Ai4Ai3Ai2Ai1ρA
†
i1
A

†
i2
A

†
i3
A

†
i4
A

†
i5

]
, (1)

where A0 ≡ I , A1 ≡ X, A2 ≡ Y , A3 ≡ Z are the Pauli
operators, defined as

I |q〉 := |q〉, X |q〉 := |q ⊕ 1〉 , Z |q〉 := (−1)q |q〉,
Y |q〉 := i (−1)q |q ⊕ 1〉 , (2)

with q = 0, 1 and X, Y and Z given by

X =
(

0 1
1 0

)
, Y = iXZ =

(
0 −i

i 0

)
,

Z =
(

1 0
0 −1

)
. (3)

The coefficients pil |im (conditional probabilities) with l, m ∈
{0,1, . . . ,5} satisfy the normalization condition.

3∑
i1,i2,i3,i4,i5=0

pi5|i4pi4|i3pi3|i2pi2|i1pi1 = 1. (4)

For the depolarizing channel �(5)(ρ), coefficients pil |im are
considered as

pk|j := (1 − µ)pk + µδk,j , pk=0 = 1 − p,

pk=1,2,3 = p/3, (5)

where p ∈ [0,1] denotes the error probability, µ ∈ [0,1]
represents the degree of memory (µ = 0 gives the uncorrelated
errors and µ = 1 gives perfectly correlated errors), and pk|j
is the probability of error k on qubit j . To simplify the
notation, we may choose to suppress the bar appearing in
the conditional probabilities (pk|j ≡ pkj ). Furthermore, since
we are initially assuming p1 = p2 = p3 = p/3, we are in the
case of symmetric error probabilities.

B. Error operators

In an explicit way, the depolarizing channel �(5)(ρ) can be
written as

�(5)(ρ) =
210−1∑
k=0

A′
kρA

′†
k , (6)

where A′
k are the enlarged error operators acting on the five-

qubit quantum states. The cardinality of the error operators
defining �(5)(ρ) is 210 and is obtained by noticing that

5∑
m=0

3m

(
5

m

)
= 210, (7)

where 3m( 5
m

) is the cardinality of weight-m error operators
A′

k . More details on the explicit expressions for weight-0 and
weight-1 appear in Appendix A.

C. Encoding

The [[5,1,3]] code is the smallest single-error correcting
quantum code [20]. Of all QECCs that encode one qubit of
data and correct all single-qubit errors, the [[5,1,3]] code is
the most efficient, saturating the quantum Hamming bound.
It encodes k = 1 qubit in n = 5 qubits. The cardinality of its
stabilizer group S is |S| = 2n−k = 16, and the set B[[5,1,3]]

S of
n − k = 4 group generators is given by [21]

B[5,1,3]
S := {X1Z2Z3X4, X2Z3Z4X5,

X1X3Z4Z5, Z1X2X4Z5}. (8)

The distance of the code is d = 3, and therefore the weight of
the smallest error A

′†
l A′

k that cannot be detected by the code is
3. Finally, we recall that it is a nondegenerate code since the
smallest weight for elements of S (other than identity) is 4, and
therefore it is greater than the distance d = 3. The encoding
for the [[5,1,3]] code is given by [20]
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|0〉 → |0L〉 = 1

4

[
|00000〉 + |11000〉 + |01100〉 + |00110〉 + |00011〉 + |10001〉 − |01010〉 − |00101〉 +
− |10010〉 − |01001〉 − |10100〉 − |11110〉 − |01111〉 − |10111〉 − |11011〉 − |11101〉

]
, (9)

|1〉 → |1L〉 = 1

4

[
|11111〉 + |00111〉 + |10011〉 + |11001〉 + |11100〉 + |01110〉 − |10101〉 − |11010〉 +
− |01101〉 − |10110〉 − |01011〉 − |00001〉 − |10000〉 − |01000〉 − |00100〉 − |00010〉

]
. (10)

D. Recovery operators

Recall that any error belonging to the Pauli group of
n-qubits, E ∈ Pn, can be written as

E = iξ σ 1
k1

⊗ · · · ⊗ σn
kn

, (11)

where ξ = 0, 1, 2, 3 and the superscripts on the σ l
kl

label the
qubits l = 1, . . . , n. Furthermore, the subscripts take values
kl = 0, x, y, z (therefore σ0 ≡ I , σx ≡ X, σy ≡ Y , σz ≡ Z),
and σ l

0 = I l is the identity operator on the lth qubit. Notice
that since σ l

y = −iσ l
xσ

l
z , Eq. (11) can be rewritten as

E = iξ
′
σx (a) σz (b) , (12)

where a = a1 · · · an and b = b1 · · · bn are the bit strings of
length n, with

σx (a) ≡ (
σ 1

x

)a1 ⊗ · · · ⊗ (
σn

x

)an
,

(13)
σz (b) ≡ (

σ 1
z

)b1 ⊗ · · · ⊗ (
σn

z

)bn
.

Although the factor iξ
′
in Eq. (12) is needed to ensure that Pn

is a group, in many discussions, it is only necessary to work
with the quotient group Pn/ {±I, ±iI }.

There is a one-to-one correspondence between
Pn/ {±I, ±iI } and the 2n-dimensional binary vector
space F 2n

2 whose elements are bit strings of length
2n [22]. A vector v ∈ F 2n

2 is denoted v = (a|b), where
a = a1 · · · an and b = b1 · · · bn are bit strings of length
n. Scalars take values in the Galois field F2 = {0,1},
and vector addition adds components modulo 2. In short,
E = iξ σx (al) σz (bl) ∈ Pn ↔ vl = (al|bl) ∈ F 2n

2 . For a
quantum stabilizer code C with generators g1, . . . , gn−k and

parity check matrix H , the error syndrome S(E) for an error
E ∈ Pn ↔ vE = (aE |bE) ∈ F 2n

2 is given by the bit string

S(E) = HvE = l1 · · · ln−k, (14)

where

lj = HT (j ) · vE = 〈vj ,E〉, (15)

with vj = (aj |bj ) being the image of the generators gj

and 〈·,·〉 being the symbol for the symplectic inner product
[22]. Furthermore, recall that errors with nonvanishing error
syndrome are detectable and that a set of invertible error
operators Acorr is correctable if the set given by A†

corrAcorr is
detectable [23]. It is straightforward, though tedious, to check
that (see Appendix A)

S(A′†
l A′

k) �= 0, with l,k ∈ {0,1, . . . ,15} , (16)

where S(A′
k) is the error syndrome of the error operator A′

k ,
defined as

S(A′
k) := H [[5,1,3]]vA′

k
. (17)

The quantity H [[5,1,3]] is the check matrix for the five-qubit
code [21],

H [[5,1,3]] :=

⎛
⎜⎝

1 1 0 0 0 | 0 0 1 0 1
0 1 1 0 0 | 1 0 0 1 0
0 0 1 1 0 | 0 1 0 0 1
0 0 0 1 1 | 1 0 1 0 0

⎞
⎟⎠ ,

(18)

and vA′
k

is the vector in the 10-dimensional binary vector
space F 10

2 corresponding to the error operator A′
k . The set

of correctable error operators is given by

Acorr = {A′
0,A

′
1,A

′
2,A

′
3,A

′
4,A

′
5,A

′
6,A

′
7,A

′
8,A

′
9,A

′
10,A

′
11,A

′
12,A

′
13,A

′
14,A

′
15} ⊆ A, (19)

where the cardinality of A defining the channel in Eq. (6)
equals 210. All weight-0 and -1 error operators satisfy the
error-correction conditions [21,24]

〈iL|A′†
l A′

m|jL〉 = αlmδij (20)

for l, m ∈ {0,1, . . . ,15} and i, j ∈ {0,1}, with 〈iL|jL〉 = δij .
The two 16-dimensional orthogonal subspaces V0L and V1L of
H5

2 generated by the action of Acorr on |0L〉 and |1L〉 are given
by

V0L = Span

{∣∣v0L

k

〉 = A′
k√
p̃k

|0L〉,
}

, (21)

with k = 0, 1, . . . , 15, and

V1L = Span

{∣∣v1L

k

〉 = A′
k√
p̃k

|1L〉
}

, (22)

respectively. Notice that 〈viL
l |vjL

l′ 〉 = δll′δij with l, l′ ∈
{0,1, . . . ,15} and i, j ∈ {0,1}. Therefore it follows that
V0L ⊕ V1L = H5

2. The recovery superoperator R ↔ {Rl} with
l = 1, . . . ,16 is defined as [2]

Rl := Vl

1∑
i=0

∣∣viL
l

〉〈
v

iL
l

∣∣, (23)
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where the unitary operator Vl is such that Vl|viL
l 〉 = |iL〉 for i ∈

{0,1}. Notice that (see Appendix A for the explicit expressions
of recovery operators)

Rl :=Vl

1∑
i=0

∣∣viL
l

〉〈
v

iL
l

∣∣ = |0L〉〈v0L

l

∣∣+ |1L〉〈v1L

l

∣∣. (24)

Notice thatR ↔ {Rl} is a trace-preserving quantum operation,∑16
l=1 R

†
l Rl = I32×32, since {|viL

l 〉} with l = 1, . . . , 16 and iL ∈
{0,1} is an orthonormal basis for H5

2. Finally, the action of this
recovery operation R on the map �(5)(ρ) in Eq. (6) yields

�(5)
recover(ρ) ≡ (R◦�(5))(ρ) :=

210−1∑
k=0

16∑
l=1

(RlA
′
k)ρ(RlA

′
k)†.

(25)

E. Entanglement fidelity

Entanglement fidelity is a useful performance measure of
the efficiency of QECCs. It is a quantity that keeps track
of how well the state and entanglement of a subsystem of
a larger system are stored, without requiring the knowledge of
the complete state or dynamics of the larger system. More
precisely, the entanglement fidelity is defined for a mixed
state ρ = ∑

i piρi =trHR
|ψ〉 〈ψ | in terms of a purification

|ψ〉 ∈ H ⊗ HR to a reference system HR . The purification
|ψ〉 encodes all the information in ρ. Entanglement fidelity is a
measure of how well the channel � preserves the entanglement
of the state H with its reference system HR . The entanglement
fidelity is defined as follows [19]:

F(ρ,�) := 〈ψ |(� ⊗ IHR
)(|ψ〉〈ψ |)|ψ〉, (26)

where |ψ〉 is any purification of ρ, IHR
is the identity map on

M (HR), and � ⊗ IHR
is the evolution operator extended to

the space H ⊗ HR , on which ρ has been purified. If the quan-
tum operation � is written in terms of its Kraus error operators
{Ak} as �(ρ) = ∑

k AkρA
†
k , then it can be shown that [25]

F(ρ,�) =
∑

k

tr(Akρ)tr(A†
kρ) =

∑
k

|tr (ρAk)|2 . (27)

This expression for the entanglement fidelity is very useful for
explicit calculations. Finally, assuming that

� : M (H) � ρ �−→ �(ρ) =
∑

k

AkρA
†
k

∈ M (H) , dimCH = N, (28)

and choosing a purification described by a maximally en-
tangled unit vector |ψ〉 ∈ H ⊗ H for the mixed state ρ =
1/dimCHIH, we obtain

F
(

1

N
IH,�

)
= 1

N2

∑
k

|trAk|2 . (29)

The expression in Eq. (29) represents the entanglement fidelity
when no error correction is performed on the noisy channel �

in Eq. (28).

Here we want to describe the action of R◦�(5) in Eq. (25),
restricted to the code subspace C. Note that the recovery
operators can be expressed as

Rl+1 = R1
A′

l√
p̃l

= (|0L〉 〈0L| + |1L〉 〈1L|) A′
l√
p̃l

, (30)

with l ∈ {0, . . . ,15}. Recalling that A′
l = A

′†
l , it turns out that

〈iL|Rl+1A
′
k|jL〉 = 1√

p̃l

〈iL|0L〉〈0L|A′†
l A′

k|jL〉

+ 1√
p̃l

〈iL|1L〉〈1L|A′†
l A′

k|jL〉. (31)

We now need to compute the 2 × 2 matrix representation
[RlA

′
k]|C of each RlA

′
k with l = 0, . . . , 15 and k = 0, . . . ,

210 − 1, where

[Rl+1A
′
k]|C :=

( 〈0L|Rl+1A
′
k|0L〉 〈0L|Rl+1A

′
k|1L〉

〈1L|Rl+1A
′
k|0L〉 〈1L|Rl+1A

′
k|1L〉

)
. (32)

For l, k = 0 , . . . , 15, we note that [Rl+1A
′
k]|C becomes

[Rl+1A
′
k]|C =

(〈0L|A′†
l A′

k|0L〉 0

0 〈1L|A′†
l A′

k|1L〉

)

= √
p̃lδlk

(
1 0
0 1

)
, (33)

while for any pair (l,k) with l, = 0, . . . ,15 and k > 15, it
follows that

〈0L|Rl+1A
′
k|0L〉 + 〈1L|Rl+1A

′
k|1L〉 = 0. (34)

We conclude that the only matrices [RlA
′
k]|C with nonvanishing

trace are given by

[RsA
′
s−1]|C = √

p̃s−1

(
1 0
0 1

)
, (35)

with s = 1, . . . ,16. Therefore the entanglement fidelity
F [[5,1,3]] (µ,p), defined as

F [[5,1,3]](µ,p) := F [[5,1,3]]

(
1

2
I2×2,R◦�(5)

)

= 1

(2)2

210−1∑
k=0

16∑
l=1

|tr([RlA
′
k]|C)|2, (36)

results in

F [[5,1,3]] (µ,p)

=
15∑

m=0

p̃m = p4
00p0 + 3

[
2p3

00p10p0 + 3p2
00p01p10p0

]
.

(37)

Notice that the expression in Eq. (36) represents the entangle-
ment fidelity after the error-correction scheme provided by the
five-qubit code is performed on the noisy channel �(5). The
explicit expression for F [[5,1,3]] (µ,p) in Eq. (37) appears in
Appendix A.

Note that for arbitrary memory parameter µ,

lim
p→0

F [[5,1,3]] (µ,p) = 1, lim
p→1

F [[5,1,3]] (µ,p) = 0, (38)
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and for µ = 0,

F [[5,1,3]] (0,p) = 4p5 − 15p4 + 20p3 − 10p2 + 1. (39)

We recall that in general, the application of a QECC will lower
the error probability as long as the probability of error on an
unencoded qubit is less than a certain critical value (threshold
probability). This threshold probability value depends on the
code, and above such critical value, the use of a coding scheme
only makes the information corruption worse. Obviously, in
order to make effective use of QEC, a physical implementation
of a channel with a sufficiently low error probability as well
as a code with a sufficiently high threshold are needed.
For instance, the three-qubit repetition code improves the
transmission accuracy when the probability of a bit flip on
each qubit sent through the underlying channel is less than 0.5.
For greater error probabilities, the error-correction process is
actually more likely to corrupt the data than an unencoded
transmission would be. In our analysis, the failure probability
is represented by [26]

P (µ,p) := 1 − F (µ,p), (40)

and it gives us an upper bound on the probability with which a
generic encoded state will end up at a wrong state. Therefore
the five-qubit code is effective only if P [[5,1,3]] (µ,p) < p. The
effectiveness parametric regionD[[5,1,3]] for the five-qubit code
is

D[[5,1,3]] := {(µ,p) ∈ [0,1] × [0,1] : P [[5,1,3]](µ,p) < p}.
(41)

For the five-qubit code applied for the correction of correlated
depolarizing errors, it turns out that for increasing values of
the memory parameter µ, the maximum values of the errors
probabilities p for which the correction scheme is effective
decrease. More generally, the threshold curve µ

[[5,1,3]]
th =

µ
[[5,1,3]]
th (p) defining the parametric region where QEC is

effective is plotted in Fig. 1. Furthermore, we point out that
the presence of correlations in symmetric depolarizing errors
does not improve the performance of the five-qubit code
since F [[5,1,3]] (µ,p) � F [[5,1,3]] (0,p) for those (µ,p) pairs
belonging to the parametric region D[[5,1,3]]

. Finally, the plots of

FIG. 1. Threshold curve for the five-qubit code.

FIG. 2. F [[5,1,3]] (µ,p) vs µ with 0 � µ � 0.33 (for µ > 0.33,
the error-correction scheme is not effective anymore) for p =
4.33 × 10−2 (thick solid line), p = 4 × 10−2 (thin solid line), and
p = 3.67 × 10−2 (dashed line).

F [[5,1,3]] (µ,p) versus µ for p = 4.33 × 10−2, p = 4 × 10−2,
and p = 3.67 × 10−2 are presented in Fig. 2.

III. THE SEVEN-QUBIT CODE: SYMMETRIC ERROR
PROBABILITIES AND CORRELATIONS

In this section, we consider a depolarizing noisy quantum
memory channel with symmetric error probabilities, and
QEC is performed via the [[7,1,3]]-CSS stabilizer code.
The performance of QECCs is quantified by means of the
entanglement fidelity F [[7,1,3]] (µ,p) as a function of the error
probability p and degree of memory µ.

A. Error model

Consider seven qubits and correlated errors in a depolariz-
ing quantum channel �(7)(ρ):

�(7)(ρ) =
3∑

i1,i2,i3,i4,i5,i6,i7=0

pi7|i6pi6|i5pi5|i4pi4|i3pi3|i2pi2|i1pi1

×[Ai7Ai6Ai5Ai4Ai3Ai2Ai1ρA
†
i1
A

†
i2
A

†
i3
A

†
i4
A

†
i5
A

†
i6
A

†
i7

]
,

(42)

where A0 ≡ I , A1 ≡ X, A2 ≡ Y , A3 ≡ Z are the Pauli
operators and the coefficients pil im with l, m ∈ {0,1, . . . ,7}
satisfy the normalization condition

3∑
i1,i2,i3,i4,i5,i6,i7=0

pi7|i6pi6|i5pi5|i4pi4|i3pi3|i2pi2|i1pi1 = 1. (43)

For the depolarizing channel �(7)(ρ), coefficients pil |im are
explicitly defined in Eq. (5).
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B. Error operators

In an explicit way, the depolarizing channel �(7)(ρ) can be
written as

�(7)(ρ) =
214−1∑
k=0

A′
kρA

′†
k , (44)

where A′
k are the enlarged error operators acting on the seven-

qubit quantum states. The cardinality of the error operators
defining �(7)(ρ) is 214 and is obtained by noticing that

7∑
m=0

3m

(
7

m

)
= 214, (45)

where 3m( 7
m

) is the cardinality of weight-m error operators A′
k

in Eq. (44).

C. Encoding

The CSS codes are constructed from two classical binary
codes C and C ′ that have the following properties [27,28]:
(1) C and C ′ are [n,k,d] and [n,k′,d ′] codes, respectively; (2)
C ′ ⊂ C; and (3) C and C ′

⊥ (the dual code of C ′) are both t-error
correcting codes. For instance, in the case of the seven-qubit
code, the two classical codes are the [7,4,3] binary Hamming

code (C) and the [7,3,4] binary simplex code (C ′). The dual
code C ′

⊥ is the [7,4,3] binary Hamming code. Thus C and C ′
⊥

are both 1-error correcting codes. In this case, n = 7, k = 4,
k′ = 3, k − k′ = 1 so that one qubit is mapped into seven
qubits. The seven-qubit code is the simplest example of a CSS
code. The five-qubit code introduced in the previous section is
the shortest possible quantum code to correct one error and is
therefore of immense interest. Although the seven-qubit code
is ostensibly more complicated than the five-qubit code, it is
actually more useful in certain situations by virtue of being a
CSS code. The CSS codes are a particularly interesting class
of codes for two reasons. First, they are built using classical
codes, which have been more heavily studied than quantum
codes, so it is fairly easy to construct useful quantum codes
simply by looking at lists of classical codes. Second, because
of the form of generators, the CSS codes are precisely those for
which a CNOT applied between every pair of corresponding
qubits in two blocks performs a valid fault-tolerant operation.
This makes them particularly good candidates in fault-tolerant
computation.

The [[7,1,3]]-CSS code encodes k = 1 qubit in n = 7
qubits. The cardinality of its stabilizer groupS is |S| = 2n−k =
64, and the set B[[7,1,3]]

S of n − k = 6 group generators is given
by [21]

B[[7,1,3]]
S := {X4X5X6X7, X2X3X6X7, X1X3X5X7, Z4Z5Z6Z7, Z2Z3Z6Z7, Z1Z3Z5Z7}. (46)

The distance of the code is d = 3, and therefore the weight of the smallest error A
′†
l A′

k that cannot be detected by the code is
3. Finally, we recall that it is a nondegenerate code since the smallest weight for elements of S (other than identity) is 4, and
therefore it is greater than the distance d = 3. The encoding for the [[7,1,3]] code is given by [21]

|0〉 → |0L〉 = 1

(
√

2)3

[
|0000000〉 + |0110011〉 + |1010101〉 + |1100110〉+
+|0001111〉 + |0111100〉 + |1011010〉 + |1101001〉

]
, (47)

|1〉 → |1L〉 = 1

(
√

2)3

[
|1111111〉 + |1001100〉 + |0101010〉 + |0011001〉+
+|1110000〉 + |1000011〉 + |0100101〉 + |0010110〉

]
. (48)

D. Recovery operators

Recall that errors with nonvanishing error syndrome are
detectable and that a set of invertible error operators Acorr is
correctable if the set given by A†

corrAcorr is detectable [23]. It
is straightforward, though tedious, to check that

S(A′†
l A′

k) �= 0, with l,k ∈ {0,1, . . . ,63} , (49)

where S(A′
k) is the error syndrome of the error operator

A′
k (see Appendix B for their explicit expressions), defined

as [26]

S(A′
k) := H [[7,1,3]]vA′

k
. (50)

The quantity H [[7,1,3]] is the check matrix for the seven-qubit
code [21]:

H [[7,1,3]] :=

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0 | 0 0 0 0 0 0 0
1 1 0 0 1 1 0 | 0 0 0 0 0 0 0
1 0 1 0 1 0 1 | 0 0 0 0 0 0 0
0 0 0 0 0 0 0 | 1 1 1 1 0 0 0
0 0 0 0 0 0 0 | 1 1 0 0 1 1 0
0 0 0 0 0 0 0 | 1 0 1 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎠ , (51)

and vA′
k

is the vector in the 14-dimensional binary vector space
F 14

2 corresponding to the error operator A′
k . The [[7,1,3]] code

has distance 3, and therefore all errors A′ ≡ A
′†
l A′

k with l,
k ∈ {0, . . . ,214 − 1} of weight less than 3 satisfy the relation

〈iL|A′|jL〉 = αA′δij , (52)

and at least one error of weight 3 exists that violates it. It
is straightforward, though tedious, to check that all one- and
two-qubit error operators satisfy this equation (therefore they
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are detectable). Instead, there are three-qubit errors that do
not satisfy Eq. (52). For instance, the error operator X1X2X3

is such that 〈0L|X1X2X3|1L〉 = 1 �= 0. The [[7,1,3]] code
corrects arbitrary one-qubit errors, not arbitrary two-qubit
errors. In Appendix B, we introduce the Set-1 of correctable
errors and explicitly show that they are detectable. It turns out
that the set of correctable error operators is given by

Acorr = {A′
0,A

′
1, . . . ,A

′
21,A

′
22, . . . ,A

′
63} ⊆ A, (53)

where the cardinality of A equals 214. All weight-0, weight-1,
and the 42 weight-2 previously mentioned error operators (see
Appendix B) satisfy the error-correction conditions

〈iL|A′†
l A′

m|jL〉 = α′
lmδij (54)

for l, m ∈ {0,1, . . . ,63} and i, j ∈ {0,1}, with 〈iL|jL〉 = δij .
In general, QEC protocols are symmetric with respect to

the phase and bit bases and so enable the detection and
correction of an equal number of phase and bit errors. In
the CSS construction, a pair of codes are used, one for
correcting the bit-flip errors and the other for correcting
the phase-flip errors. These codes can be chosen in such
a way that the code correcting the phase-flip errors has a
larger distance than the code correcting the bit-flip errors.
Therefore the resulting asymmetric quantum code has different
error-correcting capability for handling different type of errors.
For instance, we emphasize that for the seven-qubit code, there
is some freedom in the selection of the set of correctable errors,
even after the stabilizer generators have been specified [29].
The seven-qubit code may be designed to prioritize a certain
error over others (say, Z errors over X and X errors over Y ).
For instance, an implementation which has no possibility at
all of a Y error could use a code where the set of correctable
errors was chosen to exclude corrections for Y . Optimizing
the seven-qubit code to completely remove the ability to
correct one error could lead to qualitatively different behavior,
possibly even including better threshold values [29]. Instead,
the five-qubit code (which is not a CSS code) corrects a unique
symmetric set of errors. In what follows, first we will compute
F [[7,1,3]]

Set-1 (µ,p), assuming to correct the set of errors in Eq. (53);
second, we will compute F [[7,1,3]]

Set-2 (µ,p), assuming to correct
the set of errors where we prioritize Z errors over X and X

errors over Y .

E. Computation of F [[7,1,3]]
Set-1 (µ, p)

The two 64-dimensional orthogonal subspaces V0L and V1L

of H7
2 generated by the action of Acorr on |0L〉 and |1L〉 are

given by

V0L = Span

{∣∣v0L

l+1

〉 = 1√
p̃′

l

A′
l|0L〉

}
, (55)

with l ∈ {0, . . . ,63}, and

V1L = Span

{∣∣v1L

l+1

〉 = 1√
p̃′

l

A′
l|1L〉

}
, (56)

respectively. Notice that 〈viL
l |vjL

l′ 〉 = δll′δij , with l, l′ ∈
{0, . . . ,63}, and i, j ∈ {0,1}. Therefore it follows that V0L ⊕

V1L = H7
2. The recovery superoperator R ↔ {Rl} with l =

1, . . . , 64 is defined as [2]

Rl := Vl

1∑
i=0

∣∣viL
l

〉〈
v

iL
l

∣∣, (57)

where the unitary operator Vl is such that Vl|viL
l 〉 = |iL〉 for

i ∈ {0,1}. Notice that

Rl := Vl

1∑
i=0

∣∣viL
l

〉〈
v

iL
l

∣∣ = |0L〉〈v0L

l

∣∣+ |1L〉〈v1L

l

∣∣. (58)

It turns out that the 64 recovery operators are given by

Rl+1 = R1
A′

l√
p̃′

l

= (|0L〉 〈0L| + |1L〉 〈1L|) A′
l√
p̃′

l

, (59)

with l ∈ {0, . . . ,63}. Notice that R ↔ {Rl} is a trace-
preserving quantum operation,

∑64
l=1 R

†
l Rl = I128×128, be-

cause {|viL
l 〉}, with l = 1, . . . ,64, and iL ∈ {0,1} is an orthonor-

mal basis for H7
2. Finally, the action of this recovery operation

R on the map �(7)(ρ) in Eq. (6) leads to

�(7)
recover(ρ) ≡ (R◦�(7))(ρ) :=

214−1∑
k=0

64∑
l=1

(RlA
′
k)ρ(RlA

′
k)†.

(60)

F. Entanglement fidelity

We want to describe the action of R◦�(7) restricted to the
code subspace C. Recalling that A′

l = A
′†
l , it turns out that

〈iL|Rl+1A
′
k|jL〉 = 1√

p̃′
l

〈iL|0L〉〈0L|A′†
l A′

k|jL〉

+ 1√
p̃′

l

〈iL|1L〉〈1L|A′†
l A′

k|jL〉. (61)

We now need to compute the 2 × 2 matrix representation
[RlA

′
k]|C of each RlA

′
k with l = 0, . . . ,63 and k = 0, . . . ,214 −

1, where

[Rl+1A
′
k]|C :=

( 〈0L|Rl+1A
′
k|0L〉 〈0L|Rl+1A

′
k|1L〉

〈1L|Rl+1A
′
k|0L〉 〈1L|Rl+1A

′
k|1L〉

)
. (62)

For l, k = 0, . . . ,63, we note that [Rl+1A
′
k]|C becomes

[Rl+1A
′
k]|C =

(
〈0L|A′†

l A′
k|0L〉 0

0 〈1L|A′†
l A′

k|1L〉

)

=
√

p̃′
lδlk

(
1 0

0 1

)
, (63)

while for any pair (l,k) with l = 0, . . . ,63 and k > 63, it
follows that

〈0L|Rl+1A
′
k|0L〉 + 〈1L|Rl+1A

′
k|1L〉 = 0. (64)

We conclude that the only matrices [RlA
′
k]|C with nonvanishing

trace are given by [Rl+1A
′
l]|C , with l = 0, . . . ,63, where

[Rl+1A
′
l]|C =

√
p̃′

l

(
1 0

0 1

)
. (65)
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Therefore the entanglement fidelity F [[7,1,3]]
Set-1 (µ,p), defined

as

F [[7,1,3]]
Set-1 (µ,p) := F [[7,1,3]]

Set-1

(
1

2
I2×2,R◦�(7)

)

= 1

(2)2

214−1∑
k=0

64∑
l=1

|tr([RlA
′
k]|C)|2, (66)

becomes [the explicit expression for F [[7,1,3]]
Set-1 (µ,p) is given in

Appendix B]

F [[7,1,3]]
Set-1 (µ,p)

= p6
00p0 + 6p5

00p10p0 + 15p4
00p01p10p0 + 6p4

00p
2
10p0

+ 24p3
00p01p

2
10p0 + 12p2

00p
2
01p

2
10p0. (67)

Note that for arbitrary degree of memory µ,

lim
p→0

F [[7,1,3]]
Set-1 (µ,p) = 1, lim

p→1
F [[7,1,3]]

Set-1 (µ,p) = 0, (68)

and for vanishing memory parameter µ = 0,

F [[7,1,3]]
Set-1 (0,p) = 4

3
p7 − 35

3
p6 + 112

3
p5 − 175

3
p4

+ 140

3
p3 − 49

3
p2 + 1. (69)

We emphasize that the presence of correlations in symmetric
depolarizing errors does not improve the performance of the
seven-qubit code since F [[7,1,3]]

Set-1 (µ,p) � F [[7,1,3]]
Set-1 (0,p) for

those (µ,p) pairs belonging to the parametric region D[[7,1,3]]

Set-1 ,
where the correction scheme is effective:

D[[7,1,3]]
Set-1 := {(µ,p) ∈ [0,1] × [0,1] : P [[7,1,3]]

Set-1 (µ,p) < p
}
.

(70)

Furthermore, it turns out that F [[7,1,3]]
Set-1 (µ,p) � F [[5,1,3]] (µ,p)

in D[[5,1,3]] ∩ D[[7,1,3]]
Set-1 , where the area of the parametric region

D[[7,1,3]]
Set−1 is smaller than the area of D[[7,1,3]] (see Fig. 3).

The plots of F [[7,1,3]]
Set-1 (µ,p) versus µ for p = 4.33 × 10−2,

FIG. 3. Symmetric case: Threshold curves µ
[[5,1,3]]
th (p) (dashed

line), µ
[[7,1,3]]
th,Set-2 (p) (thin solid line), and µ

[[7,1,3]]
th,Set-1 (p) (thick solid line)

vs p.

FIG. 4. F [[7,1,3]]
Set-1 (µ,p) vs µ with 0 � µ � 0.199 (for µ > 0.199,

the error-correction scheme is not effective anymore) for p =
4.33 × 10−2 (thick solid line), p = 4 × 10−2 (thin solid line), and
p = 3.67 × 10−2 (dashed line).

p = 4 × 10−2, and p = 3.67 × 10−2 appear in Fig. 4. For
the seven-qubit code applied for the correction of correlated
depolarizing errors in Set-1, it turns out that for increasing
values of the memory parameter µ, the maximum values of
the error probabilities p for which the correction scheme is
effective decrease. For instance, to µmin = 0 corresponds a
threshold pth

∼= 7.63 × 10−2, while to µmax
∼= 0.199 corre-

sponds pth
∼= 5.04 × 10−4.

In the next section, we will study the performance of the
seven-qubit code, assuming to correct a new set of correlated
error operators. Moreover, we will compare the performance
of the code in such two cases and discuss the change of the
parametric regions where the quantum correction schemes are
effective.

G. Computation of F [[7,1,3]]
Set-2 (µ, p)

Unlike the five-qubit code, the seven-qubit code corrects an
asymmetric set of errors. In what follows, we choose the set
of correctable errors to prioritize Z errors over X errors over
Y errors. Said otherwise, we construct the set of correctable
errors by proceeding in increasing order from single-qubit
errors to errors of higher weight. Within each level (weight)
of errors, we include those that incorporate the most Z

errors first. In other words, the sets of weight-0 and weight-1
correctable errors are given in Eqs. (B1) and (B2), respectively.
Following the line of reasoning presented in the previous
section, after some algebra, it turns out that

F [[7,1,3]]
Set-2 (µ,p) = p6

00p0 + 6p5
00p10p0 + 15p4

00p01p10p0

+ 2p4
00p10p0 (p11 + 2p10) + 4p3

00p01p10p0

× (5p10 + p11) + 12p2
00p

2
01p

2
10p0. (71)

From Eqs. (71) and (67) (see also Appendix B), we obtain

F [[7,1,3]]
Set-2 (µ,p) − F [[7,1,3]]

Set-1 (µ,p)

= (p11 − p10)
(
2p4

00p10p0 + 4p3
00p01p10p0

)
� 0, (72)

with (p11 − p10) = µ � 0. The explicit expression for
F [[7,1,3]]

Set-2 (µ,p) appears in Appendix B. In the absence of
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correlations and considering symmetric error probabilities,
the two entanglement fidelities are the same. Therefore we
conclude that in the presence of memory effects, it does matter
which set of errors we choose to correct, even limiting our
analysis to symmetric error probabilities. We will see that the
freedom of such choice becomes even more important when
combining memory effects and asymmetric error probabilities.

For the seven-qubit code applied for the correction of
correlated depolarizing errors in Set-2, it turns out that for
increasing values of the memory parameter µ, the maximum
values of the error probabilities p for which the correction
scheme is effective decrease. For instance, to µmin = 0 corre-
sponds a threshold pth

∼= 7.63 × 10−2, while to µmax
∼= 0.29

corresponds pth
∼= 1.95 × 10−3.

In conclusion, it follows that in the presence of correlated
and symmetric depolarizing errors, the performances of both
the five- and seven-qubit quantum codes are lowered. Further-
more, the five-qubit code is characterized by a parametric
region (where its correction scheme is effective) that is
larger than the one provided by the seven-qubit code (for
both selected sets of correctable errors). Furthermore, in the
parametric region where both error-correction schemes are
effective, the five-qubit code outperforms the seven-qubit code.
In the next section, we will discover that the situation is slightly
different when considering asymmetries and memory effects
in depolarizing channels.

IV. THE FIVE- AND SEVEN-QUBIT CODES:
ASYMMETRIC ERROR PROBABILITIES AND

CORRELATIONS

In this section, we study the performance of the [[5,1,3]]
and [[7,1,3]] QECCs with respect to asymmetric error
probabilities (p = pX + pY + pZ with pX �= pY �= pZ) and
correlated noise errors in a quantum depolarizing channel.

A. The five-qubit code

In the following discussion, we will assume that the error
probability p may be written as

p = pX + pY + pZ, (73)

where

pX = αXp,pY = αY p,pZ = αZp, (74)

with αX + αY + αZ = 1. Notice that in the symmetric case,
we simply have αX = αY = αZ = 1/3. Following the line
of reasoning presented in Sec. II, it turns out that the
F [[5,1,3]]

asym (µ,p) becomes

F [[5,1,3]]
asym (µ,p)

= p4
00p0 + [

p3
00p10p0 + 3p2

00p01p10p0 + p3
00p01p1

]
+ [p3

00p20p0 + 3p2
00p02p20p0 + p3

00p02p2
]

+ [p3
00p30p0 + 3p2

00p03p30p0 + p3
00p03p3

]
, (75)

where

p0 = 1 − p, p1 = αXp, p2 = αY p, p3 = αZp,

p00 = (1 − µ) (1 − p) + µ,

p01 = p02 = p03 = (1 − µ) (1 − p) , p10 = αXp (1 − µ) ,

p20 = αY p (1 − µ) , p30 = αZp (1 − µ) . (76)

After some straightforward algebra, F [[5,1,3]]
asym (µ,p) in Eq. (75)

may be written as

F [[5,1,3]]
asym (µ,p) = p4

00p0 + p3
00p0 (p10 + p20 + p30)

+ 3p2
00p01p0 (p10 + p20 + p30)

+p3
00p01 (p1 + p2 + p3) . (77)

Recalling that in the symmetric case, p1 = p2 = p3 = p/3,
p10 = p20 = p30 = p/3 (1 − µ), and substituting Eq. (76) in
Eq. (77), it follows that

F [[5,1,3]]
asym (µ,p) = F [[5,1,3]]

sym (µ,p) . (78)

Therefore we conclude that the performance of the five-qubit
code cannot be enhanced in the case of asymmetric error
probabilities in the depolarizing channel. This result was
somehow expected since the five-qubit code corrects a unique
and symmetric set of error operators.

B. The seven-qubit code

Following the line of reasoning presented in Sec. III, it turns
out that the entanglement fidelity F [[7,1,3]]

asym (µ,p) evaluated,
assuming to correct the Set-2 of error operators, becomes

F [[7,1,3]]
asym (µ,p) = p6

00p0 + 2p5
00p01 (p1 + p2 + p3)

+ 5p4
00p01p0 (p10 + p20 + p30)

+p4
00p0

(
2p30p33 + p2

30 + 3p10p31
)

+p3
00p01p30p0 (8p30 + 4p33 + 12p10)

+ 6p2
00p

2
01p30p0 (p30 + p10), (79)

where

p0 = 1 − p, p1 = αXp, p2 = αY p, p3 = αZp,

p00 = (1 − µ) (1 − p) + µ,

p01 = p02 = p03 = (1 − µ) (1 − p) , p10 = αXp (1 − µ) ,

p20 = αY p (1 − µ) , p30 = αZp (1 − µ) ,

p31 = p30 = αZp (1 − µ) , p33 = αZp (1 − µ) + µ.

(80)

Notice that for pX = pY = pZ = p/3, F [[7,1,3]]
asym (µ,p) equals

F [[7,1,3]]
sym (µ,p). In the absence of correlations, the entangle-

ment fidelity F [[7,1,3]]
asym becomes

F [[7,1,3]]
asym (0,p) = (1 − p)7 + 7p (1 − p)6

+ 21p2 (1 − p)5
[
α2

Z + αXαZ

]
. (81)

The general expression of F [[7,1,3]]
asym (µ,p) is given in

Appendix C. We point out that in the absence of correlations,
but with asymmetric error probabilities, the seven-qubit code
can outperform the five-qubit code:

F [[7,1,3]]
asym (0,p) � F [[5,1,3]]

asym (0,p) ≡ F [[5,1,3]]
sym (0,p) . (82)

In Fig. 5, we plot the threshold curves µ
[[7,1,3]]
th (p) and

µ
[[5,1,3]]
th (p) versus p in the case case of asymmetric error
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FIG. 5. Asymmetric case: Threshold curves µ
[[7,1,3]]
th,Set-2 (p) (dashed

line) and µ
[[5,1,3]]
th (p) (thin solid line) vs p.

probabilities. Asymmetries in the error probabilities enlarge
the parametric regions where the seven-qubit code is effective
for error correction. Furthermore, comparing the performances
of such codes in a common region where they are both effec-
tive, the seven-qubit code turns out to outperform the five-qubit
code in the presence of asymmetries and correlations. In Fig. 6,
we plot F [[7,1,3]]

asym (µ,p), F [[5,1,3]]
sym (µ,p) = F [[5,1,3]]

asym (µ,p), and
F [[7,1,3]]

sym (µ,p) versus the memory parameter µ for p = 4 ×
10−2 and αZ = 25α, αX = 5α, and αY = α, with αX + αY +
αZ = 1.

V. FINAL REMARKS

In this article, we have studied the performance of common
quantum stabilizer codes in the presence of asymmetric and
correlated errors. Specifically, we considered the depolarizing
noisy quantum memory channel and performed QEC via
the five- and seven-qubit stabilizer codes. We have shown

FIG. 6. F [[7,1,3]]
asym (µ,p) (dashed line), F [[5,1,3]]

asym = F [[5,1,3]]
sym (µ,p)

(thin solid line), and F [[7,1,3]]
sym (µ,p) (thick solid line) vs µ with

0 � µ � 0.199 (where both error-correction schemes are effective)
for p = 4 × 10−2 with αZ = 25α, αX = 5α, and αY = α.

that memory effects in the error models combined with
asymmetries in the error probabilities can produce relevant
changes in the performances of QEC schemes by qualitatively
affecting the threshold error probability values for which
the codes are effective. In summary, we have uncovered the
following findings.

1. In the presence of correlated and symmetric depolarizing
errors, the performances of both the five- and seven-qubit
quantum stabilizer codes are lowered for fixed values of
the degree of memory µ. Furthermore, such error-correction
schemes only work for low values of µ.

2. In the presence of correlated and symmetric depolarizing
errors, the five-qubit code is characterized by a parametric
region (where its correction scheme is effective) that is larger
than the one provided by the seven-qubit code. Furthermore,
in the parametric region where both error-correction schemes
are effective, the five-qubit code outperforms the seven-qubit
code.

3. The asymmetry in the error probabilities does not
affect the performance of the five-qubit code quantified in
terms of its entanglement fidelity. On the contrary, it does
affect the performance of the seven-qubit code, which is
less effective when considering correlated and symmetric
depolarizing errors. This peculiar effect is rooted in the
stabilizer structure of the CSS seven-qubit code: It is a
consequence of the freedom in selecting the set of correctable
error operators even after the stabilizer generators have been
specified.

4. The performance of the seven-qubit code significantly
improves when considering correlated and asymmetric de-
polarizing errors. Furthermore, in such a case, it is also
characterized by higher (than the one provided by the five-qubit
code) error probability threshold values. This result confirms
that in order to make effective use of QEC, a physical
implementation of a channel with a sufficiently low error
probability as well as a code with sufficiently high threshold
probability is needed [30].

We conclude that in order to optimize the seven-qubit
code performance, it is very important to know the experi-
mental details of the physical implementation of the quantum
memory channel being considered. Furthermore, in order to
make effective use of QEC, a more detailed analysis of the
physical noise models for various qubit implementations is
needed. This requirement, as we have shown, becomes even
more pressing when dealing with noise models in which
memory effects are combined with asymmetries in the error
probabilities.
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APPENDIX A: THE FIVE-QUBIT CODE

In this appendix, we briefly discuss a few technical details
omitted in the article concerning the application of the five-
qubit code to the depolarizing memory channel with both
symmetric and asymmetric error probabilities.

A. Error operators

The weight-0 and -1 quantum error operators in �(5)(ρ) in
Eq. (6) are given by

A′
0 = √

p̃0I
1 ⊗ I 2 ⊗ I 3 ⊗ I 4 ⊗ I 5,

A′
1 = √

p̃1X
1 ⊗ I 2 ⊗ I 3 ⊗ I 4 ⊗ I 5,

A′
2 = √

p̃2I
1 ⊗ X2 ⊗ I 3 ⊗ I 4 ⊗ I 5,

A′
3 = √

p̃3I
1 ⊗ I 2 ⊗ X3 ⊗ I 4 ⊗ I 5,

A′
4 = √

p̃4I
1 ⊗ I 2 ⊗ I 3 ⊗ X4 ⊗ I 5,

A′
5 = √

p̃5I
1 ⊗ I 2 ⊗ I 3 ⊗ I 4 ⊗ X5,

A′
6 = √

p̃6Y
1 ⊗ I 2 ⊗ I 3 ⊗ I 4 ⊗ I 5,

A′
7 = √

p̃7I
1 ⊗ Y 2 ⊗ I 3 ⊗ I 4 ⊗ I 5, (A1)

A′
8 = √

p̃8I
1 ⊗ I 2 ⊗ Y 3 ⊗ I 4 ⊗ I 5,

A′
9 = √

p̃9I
1 ⊗ I 2 ⊗ I 3 ⊗ Y 4 ⊗ I 5,

A′
10 = √

p̃10I
1 ⊗ I 2 ⊗ I 3 ⊗ I 4 ⊗ Y 5,

A′
11 = √

p̃11Z
1 ⊗ I 2 ⊗ I 3 ⊗ I 4 ⊗ I 5,

A′
12 = √

p̃12I
1 ⊗ Z2 ⊗ I 3 ⊗ I 4 ⊗ I 5,

A′
13 = √

p̃13I
1 ⊗ I 2 ⊗ Z3 ⊗ I 4 ⊗ I 5,

A′
14 = √

p̃14I
1 ⊗ I 2 ⊗ I 3 ⊗ Z4 ⊗ I 5,

A′
15 = √

p̃15I
1 ⊗ I 2 ⊗ I 3 ⊗ I 4 ⊗ Z5,

where the coefficients p̃l with l = 0, . . . ,15 result in

p̃0 = p4
00p0, p̃1 = p3

00p10p0, p̃2 = p2
00p01p10p0,

p̃3 = p2
00p01p10p0, p̃4 = p2

00p01p10p0, p̃5 = p3
00p01p1,

p̃6 = p3
00p20p0, p̃7 = p2

00p02p20p0, p̃8 = p2
00p02p20p0,

p̃9 = p2
00p02p20p0, p̃10 = p3

00p02p2,

p̃11 = p3
00p30p0, p̃12 = p2

00p03p30p0, p̃13 = p2
00p03p30p0,

p̃14 = p2
00p03p30p0, p̃15 = p3

00p03p3, (A2)

with

p0 = 1 − p, p1 = p2 = p3 = p

3
,

p00 = (1 − µ) (1 − p) + µ,

p01 = p02 = p03 = (1 − µ) (1 − p) ,

p10 = p20 = p30 = p

3
(1 − µ) . (A3)

B. Detectable errors

Recall that an error operator A′
k is detectable by the code C

if and only if

PCA
′
kPC = λA′

k
PC (A4)

for some λA′
k
, where PC := |0L〉 〈0L| + |1L〉 〈1L| is the projec-

tor on the code space. On the contrary, a set of error operators
A = {A′

l} is correctable if and only if

PCA
′†
mA′

nPC = λmnPC (A5)

for any pair of error operators in A where λmn define a positive
semidefinite Hermitian matrix. We emphasize that the notion
of correctability depends on all the errors in the set under
consideration and, unlike detectability, cannot be applied to
individual errors. For invertible error operators (such as the
ones considered here), there is a simple relationship between
detectability and correctability. A set A is correctable if and
only if the operators in the set A†A := {A′†

1 A′
2 : A′

i ∈ A} are
detectable. It would be awfully tedious to identify either
detectable errors or sets of correctable errors by means of
Eqs. (A4) and (A5) for the five- and seven-qubit codes
characterized by the code words in Eqs. (9) and (47), respec-
tively. However, the quantum stabilizer formalism allows us to
simplify such a task. This is a consequence of the fact that by
means of such formalism, it is sufficient to study the effect of
the error operators on the generators of the stabilizer and not
on the code words themselves. In our work, we have made use
of the stabilizer formalism together with the simple relation-
ship between detectability and correctability for invertible
error operators in order to identify sets of correctable and
detectable errors.

It is known that errors with nonvanishing error syndrome
are detectable. It is straightforward to check that

S(A′†
l A′

k) �= 0, with l,k ∈ {0,1, . . . ,15}, (A6)

where S(A′
k) is the error syndrome of the error operator A′

k ,
defined as

S(A′
k) := H [[5,1,3]]vA′

k
. (A7)

The quantity H [[5,1,3]] is the check matrix for the five-qubit
code in Eq. (18), and vA′

k
is the vector in the 10-dimensional

binary vector space F 10
2 corresponding to the error operator

A′
k . For instance, considering k ∈ {0,1, . . . ,15}, we obtain

vI = (00000|00000), vX1 = (10000|00000),

vX2 = (01000|00000), vX3 = (00100|00000),

vX4 = (00010|00000), vX5 = (00001|00000),

vZ1 = (00000|10000), vZ2 = (00000|01000),

vZ3 = (00000|00100) , vZ4 = (00000|00010) , (A8)

vZ5 = (00000|00001) , vY 1 = (10000|10000) ,

vY 2 = (01000|01000) , vY 3 = (00100|00100) ,

vY 4 = (00010|00010) , vY 5 = (00001|00001) ,

and the error syndromes become

S(I ) = 0000, S(X1) = 1000, S(X2) = 1100,

S(X3) = 0110, S(X4) = 0011, S(X5) = 0001,

S(Z1) = 0101, S(Z2) = 0010, S(Z3) = 1001, (A9)

S(Z4) = 0100, S(Z5) = 1010, S(Y 1) = 1101,

S(Y 2) = 1110, S(Y 3) = 1111,

S(Y 4) = 0111, S(Y 5) = 1011.
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For a nondegenerate quantum stabilizer code, linearly in-
dependent correctable errors have unequal error syndromes.
This necessary (but not sufficient) requirement for a set
of correctable errors appears fulfilled in Eq. (A9). Finally,
following the previously mentioned line of reasoning, we can
show that Eq. (A6) is fulfilled.

C. Recovery operators

From Eq. (24), it follows that the 16 recovery operators are
given by

R1 = |0L〉 〈0L| + |1L〉 〈1L| , R2 = R1X
1, R3 = R1X

2,

R4 = R1X
3, R5 = R1X

4, R6 = R1X
5, R7 = R1Y

1,

R8 = R1Y
2, R9 = R1Y

3, R10 = R1Y
4,

R11 = R1Y
5, R12 = R1Z

1, R13 = R1Z
2,

R14 = R1Z
3, R15 = R1Z

4, R16 = R1Z
5. (A10)

D. Entanglement fidelity

The explicit expression for the entanglement fidelity
F [[5,1,3]] (µ,p) in Eq. (37) is given by

F [[5,1,3]](µ,p) = µ4(4p5 − 7p4 + 3p3)

+µ3(−16p5 + 36p4 − 26p3 + 6p2)

+µ2(24p5 − 66p4 + 63p3 − 24p2 + 3p)

+µ(−16p5 + 52p4 − 60p3 + 28p2 − 4p)

+ (4p5 − 15p4 + 20p3 − 10p2 + 1).

(A11)

APPENDIX B: ON THE SEVEN-QUBIT CODE

In this appendix, we briefly discuss a few technical details
omitted in the article concerning the application of the seven-
qubit code to the depolarizing memory channel with both
symmetric and asymmetric error probabilities.

A. Error operators (Set-1)

The set of correctable error operators (Set-1) is explicitly
defined by 64 error operators. The only weight-0 error operator
is given by

A′
0 =

√
p̃′

0I
1 ⊗ I 2 ⊗ I 3 ⊗ I 4 ⊗ I 5 ⊗ I 6 ⊗ I 7 ≡

√
p̃′

0I.

(B1)

The 21 weight-1 error (correctable) operators are given by

A′
1 =

√
p̃′

1X
1, A′

2 =
√

p̃′
2X

2, A′
3 =

√
p̃′

3X
3,

A′
4 =

√
p̃′

4X
4, A′

5 =
√

p̃′
5X

5, A′
6 =

√
p̃′

6X
6,

A′
7 =

√
p̃′

7X
7, A′

8 =
√

p̃′
8Y

1, A′
9 =

√
p̃′

9Y
2,

A′
10 =

√
p̃′

10Y
3, A′

11 =
√

p̃′
11Y

4, A′
12 =

√
p̃′

12Y
5,

A′
13 =

√
p̃′

13Y
6, A′

14 =
√

p̃′
14Y

7, A′
15 =

√
p̃′

15Z
1,

A′
16 =

√
p̃′

16Z
2, A′

17 =
√

p̃′
17Z

3, A′
18 =

√
p̃′

18Z
4,

A′
19 =

√
p̃′

19Z
5, A′

20 =
√

p̃′
20Z

6, A′
21 =

√
p̃′

21Z
7.

(B2)

Finally, the 42 weight-2 (correctable) error operators are as
follows:

A′
22 =

√
p̃′

22X
1Z2, A′

23 =
√

p̃′
23X

1Z3, A′
24 =

√
p̃′

24X
1Z4,

A′
25 =

√
p̃′

25X
1Z5, A′

26 =
√

p̃′
26X

1Z6, A′
27 =

√
p̃′

27X
1Z7,

A′
28 =

√
p̃′

28Z
1X2, A′

29 =
√

p̃′
29X

2Z3, A′
30 =

√
p̃′

30X
2Z4,

A′
31 =

√
p̃′

31X
2Z5, A′

32 =
√

p̃′
32X

2Z6, A′
33 =

√
p̃′

33X
2Z7,

A′
34 =

√
p̃′

34Z
1X3, A′

35 =
√

p̃′
35Z

2X3, A′
36 =

√
p̃′

36X
3Z4,

A′
37 =

√
p̃′

37X
3Z5, A′

38 =
√

p̃′
38X

3Z6, A′
39 =

√
p̃′

39X
3Z7,

A′
40 =

√
p̃′

40Z
1X4, A′

41 =
√

p̃′
41Z

2X4, A′
42 =

√
p̃′

42Z
3X4,

A′
43 =

√
p̃′

43X
4Z5, A′

44 =
√

p̃′
44X

4Z6, A′
45 =

√
p̃′

45X
4Z7,

A′
46 =

√
p̃′

46Z
1X5, (B3)

A′
47 =

√
p̃′

47Z
2X5, A′

48 =
√

p̃′
48Z

3X5, A′
49 =

√
p̃′

49Z
4X5,

A′
50 =

√
p̃′

50X
5Z6, A′

51 =
√

p̃′
51X

5Z7, A′
52 =

√
p̃′

52Z
1X6,

A′
53 =

√
p̃′

53Z
2X6, A′

54 =
√

p̃′
54Z

3X6, A′
55 =

√
p̃′

55Z
4X6,

A′
56 =

√
p̃′

56Z
5X6, A′

57 =
√

p̃′
57X

6Z7, A′
58 =

√
p̃′

58Z
1X7,

A′
59 =

√
p̃′

59Z
2X7, A′

60 =
√

p̃′
60Z

3X7, A′
61 =

√
p̃′

61Z
4X7,

A′
62 =

√
p̃′

62Z
5X7, A′

63 =
√

p̃′
63Z

6X7. (B4)

B. Detectable errors (Set-1)

For the sake of completeness, we show in an explicit
way that these 64 errors are detectable. Considering k ∈
{0,1, . . . ,21}, the error syndrome of weight-0 and weight-1
error operators is given by

S(I ) = 000000, S(X1) = 111000, S(X2) = 110000,

S(X3) = 101000, S(X4) = 100000, S(X5) = 011000,

S(X6) = 010000, S(X7) = 001000, S(Y 1) = 111111,

S(Y 2) = 110110, S(Y 3) = 101101, S(Y 4) = 100100,

S(Y 5) = 011011, S(Y 6) = 010010, S(Y 7) = 001001,

S(Z1) = 000111, S(Z2) = 000110, S(Z3) = 000101,

S(Z4) = 000100, S(Z5) = 000011,

S(Z6) = 000010, S(Z7) = 000001. (B5)
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Instead, for k ∈ {22, . . . ,63}, the error syndrome of weight-2
error operators is given by

S(X1Z2) = 111110, S(X1Z3) = 111101,

S(X1Z4) = 111100, S(X1Z5) = 111011,

S(X1Z6) = 111010, S(X1Z7) = 111001,

S(Z1X2) = 110111, S(X2Z3) = 110101,

S(X2Z4) = 110100, S(X2Z5) = 110011,

S(X2Z6) = 110010, S(X2Z7) = 110001,

S(Z1X3) = 101111, S(Z2X3) = 101110,

S(X3Z4) = 101100, S(X3Z5) = 101011,

S(X3Z6) = 101010, S(X3Z7) = 101001,

S(Z1X4) = 100111, S(Z2X4) = 100110,

S(Z3X4) = 100101, S(X4Z5) = 100011,

S(X4Z6) = 100010, S(X4Z7) = 100001,

S(Z1X5) = 011111, (B6)

S(Z2X5) = 011110, S(Z3X5) = 011101,

S(Z4X5) = 011100, S(X5Z6) = 011010,

S(X5Z7) = 011001, S(Z1X6) = 010111,

S(Z2X6) = 010110, S(Z3X6) = 010101,

S(Z4X6) = 010100, S(Z5X6) = 010011,

S(X6Z7) = 010001, S(Z1X7) = 001111,

S(Z2X7) = 001110, S(Z3X7) = 001101,

S(Z4X7) = 001100, S(Z5X7) = 001011.

S(Z6X7) = 001010. (B7)

Since these errors have nonvanishing error syndromes, they
are detectable. As a side remark, we point out that following
the previously mentioned line of reasoning, it can be shown
that S(A′†

l A′
k) �= 0, with l, k ∈ {0,1, . . . ,63}.

C. Entanglement fidelity (Set-1)

The explicit expression for F [[7,1,3]]
Set-1 (µ,p) in Eq. (67) is

given by

F [[7,1,3]]
Set-1 (µ,p) = µ6

(
4
3p7 − p6 − 5

3p5 + 4
3p4

)+ µ5
(−8p7 + 50

3 p6 − 22
3 p5 − 4p4 + 8

3p3
)+ µ4

(
20p7 − 205

3 p6

+ 250
3 p5 − 41p4 + 14

3 p3 + 4
3p2

)+ µ3
(− 80

3 p7 + 380
3 p6 − 680

3 p5 + 192p4 − 232
3 p3 + 12p2

)
+µ2

(
20p7 − 365

3 p6 + 835
3 p5 − 310p4 + 530

3 p3 − 145
3 p2 + 5p

)+ µ
(−8p7 + 178

3 p6 − 490
3 p5

+ 220p4 − 460
3 p3 + 154

3 p2 − 6p
)+ (

4
3p7 − 35

3 p6 + 112
3 p5 − 175

3 p4 + 140
3 p3 − 49

3 p2 + 1
)
. (B8)

D. Error operators (Set-2)

The sets of weight-0 and weight-1 correctable errors are
given in Eqs. (B1) and (B2), respectively. The chosen set of
correctable weight-2 error operators is

A′′
22 =

√
p̃′′

22Z
1Z2, A′′

23 =
√

p̃′′
23Z

1Z3, A′′
24 =

√
p̃′′

24Z
1Z4,

A′′
25 =

√
p̃′′

25Z
1Z5, A′′

26 =
√

p̃′′
26Z

1Z6, A′′
27 =

√
p̃′′

27Z
1Z7,

A′′
28 =

√
p̃′′

28Z
2Z3, A′′

29 =
√

p̃′′
29Z

2Z4, A′′
30 =

√
p̃′′

30Z
2Z5,

A′′
31 =

√
p̃′′

31Z
2Z6, A′′

32 =
√

p̃′′
32Z

2Z7, A′′
33 =

√
p̃′′

33Z
3Z4,

A′′
34 =

√
p̃′′

34Z
3Z5, A′′

35 =
√

p̃′′
35Z

3Z6, A′′
36 =

√
p̃′′

36Z
3Z7,

A′′
37 =

√
p̃′′

37Z
4Z5, A′′

38 =
√

p̃′′
38Z

4Z6, A′′
39 =

√
p̃′′

39Z
4Z7,

A′′
40 =

√
p̃′′

40Z
5Z6, A′′

41 =
√

p̃′′
41Z

5Z7, A′′
42 =

√
p̃′′

42Z
6Z7,

(B9)

A′′
43 =

√
p̃′′

43Z
1X2, A′′

44 =
√

p̃′′
44Z

1X3, A′′
45 =

√
p̃′′

45Z
1X4,

A′′
46 =

√
p̃′′

46Z
1X5, A′′

47 =
√

p̃′′
47Z

1X6, A′′
48 =

√
p̃′′

48Z
1X7,

A′′
49 =

√
p̃′′

49Z
2X3, A′′

50 =
√

p̃′′
50Z

2X4, A′′
51 =

√
p̃′′

51Z
2X5,

A′′
52 =

√
p̃′′

52Z
2X6, A′′

53 =
√

p̃′′
53Z

2X7, A′′
54 =

√
p̃′′

54Z
3X4,

A′′
55 =

√
p̃′′

55Z
3X5, A′′

56 =
√

p̃′′
56Z

3X6, A′′
57 =

√
p̃′′

57Z
3X7,

A′′
58 =

√
p̃′′

58Z
4X5, A′′

59 =
√

p̃′′
59Z

4X6, A′′
60 =

√
p̃′′

60Z
4X7,

A′′
61 =

√
p̃′′

61Z
5X6, A′′

62 =
√

p̃′′
62Z

5X7, A′′
63 =

√
p̃′′

63Z
6X7.

(B10)

E. Entanglement fidelity (Set-2)

The explicit expression for F [[7,1,3]]
Set-2 (µ,p) in Eq. (71) is

given by

F [[7,1,3]]
Set-2 (µ,p) = µ6

(
4
3p7 + p6 − 5p5 + 8

3p4
)+ µ5

(−8p7 + 20
3 p6 + 16p5 − 64

3 p4 + 20
3 p3

)
+µ4

(
20p7 − 145

3 p6 + 70
3 p5 + 23p4 − 70

3 p3 + 16
3 p2

)
+µ3 (− 80

3 p7 + 320
3 p6 − 460

3 p5 + 272
3 p4 − 40

3 p3 − 16
3 p2 + 4

3p
)
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+µ2 (20p7 − 335
3 p6 + 235p5 − 710

3 p4 + 350
3 p3 − 25p2 + 5

3p
)

+µ
(−8p7 + 172

3 p6 − 460
3 p5 + 200p4 − 400

3 p3 + 124
3 p2 − 4p

)
+ (

4
3p7 − 35

3 p6 + 112
3 p5 − 175

3 p4 + 140
3 p3 − 49

3 p2 + 1
)
. (B11)

APPENDIX C: ASYMMETRIES AND CORRELATIONS

A. Entanglement fidelity

Substituting Eq. (80) in Eq. (79), the explicit expression for
F [[7,1,3]]

asym (µ,p) becomes

F [[7,1,3]]
asym (µ,p)

= A6 (µ,p) + A5 (µ,p)

+A4 (µ,p) + A3 (µ,p)

+A2 (µ,p) + A1 (µ,p) + A0 (µ,p) . (C1)

The quantities A6 (µ,p), A5 (µ,p), A4 (µ,p), and A3 (µ,p)
are given by

A6(µ,p) = µ6[(6p7 − 11p6 + 5p5) + αZ(6p6 − 10p5 + 4p4) + (α2
Z + αXαZ)(−21p7 + 45p6 − 30p5 + 6p4)],

A5(µ,p) = µ5

[
(−36p7 + 90p6 − 74p5 + 20p4) + αZ(−30p6 + 70p5 − 52p4 + 12p3)

+ (α2
Z + αXαZ

)
(126p7 − 330p6 + 300p5 − 108p4 + 12p3)

]
,

A4(µ,p) = aµ4

[
(90p7 − 285p6 + 330p5 − 165p4 + 30p3) + αZ(60p6 − 180p5 + 192p4 − 84p3 + 12p2)

+ (α2
Z + αXαZ

)
(−315p7 + 975p6 − 1110p5 + 558p4 − 114p3 + 6p2)

]
,

A3(µ,p) = µ3

⎡
⎢⎣

(−120p7 + 460p6 − 680p5 + 480p4 − 160p3 + 20p2)

+αZ

(− 60p6 + 220p5 − 304p4 + 192p3 − 52p2 + 4p
)

+ (α2
Z + αXαZ

)
(420p7 − 1500p6 + 2040p5 − 1296p4 + 372p3 − 36p2)

⎤
⎥⎦ , (C2)

while A2(µ,p), A1(µ,p), and A0(µ,p) are

A2(µ,p) = µ2

⎡
⎢⎢⎢⎣

(90p7 − 405p6 + 725p5 − 650p4 + 300p3 − 65p2 + 5p)

+αZ(30p6 − 130p5 + 220p4 − 180p3 + 70p2 − 10p)

+ (α2
Z + αXαZ

)
(−315p7 + 1275p6 − 2010p5 + 1530p4 − 555p3 + 75p2)

⎤
⎥⎥⎥⎦ ,

A1(µ,p) = µ

⎡
⎢⎢⎢⎣

(−36p7 + 186p6 − 390p5 + 420p4 − 240p3 + 66p2 − 6p)

+αZ(−6p6 + 30p5 − 60p4 + 60p3 − 30p2 + 6p)

+ (α2
Z + αXαZ

)
(126p7 − 570p6 + 1020p5 − 900p4 + 390p3 − 66p2)

⎤
⎥⎥⎥⎦ ,

A0(µ,p) = (1 − p)7 + 7p(1 − p)6 + 21p2(1 − p)5 [α2
Z + αXαZ

]
. (C3)

[1] D. Gottesman, e-print arXiv:0904.2557 [quant-ph] (2009).
[2] E. Knill and R. Laflamme, Phys. Rev. A 55, 900 (1997).
[3] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane,

Phys. Rev. Lett. 78, 405 (1997).
[4] A. Garg, Phys. Rev. Lett. 77, 964 (1996).
[5] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
[6] W. Y. Hwang, D. D. Ahn, and S. W. Hwang, Phys. Rev. A 63,

022303 (2001).
[7] J. P. Clemens, S. Siddiqui, and J. Gea-Banacloche, Phys. Rev. A

69, 062313 (2004).
[8] R. Klesse and S. Frank, Phys. Rev. Lett. 95, 230503 (2005).

[9] A. Shabani, Phys. Rev. A 77, 022323 (2008).
[10] A. D’Arrigo et al., Int. J. Quantum. Inf. 6, 651 (2008).
[11] C. Cafaro and S. Mancini, Phys. Lett. A 374, 2688

(2010).
[12] O. Astafiev et al., Phys. Rev. Lett. 93, 267007 (2004).
[13] L. Ioffe and M. Mezard, Phys. Rev. A 75, 032345 (2007).
[14] Z. W. E. Evans et al., e-print arXiv:0709.3875 [quant-ph] (2007).
[15] A. M. Stephens, Z. W. E. Evans, S. J. Devitt, and L. C. L.

Hollenberg, Phys. Rev. A 77, 062335 (2008).
[16] P. K. Sarvepalli et al., in IEEE International Symposium on

Information Theory, 2008 (unpublished).

012306-14

http://arXiv.org/abs/arXiv:0904.2557
http://dx.doi.org/10.1103/PhysRevA.55.900
http://dx.doi.org/10.1103/PhysRevLett.78.405
http://dx.doi.org/10.1103/PhysRevLett.77.964
http://dx.doi.org/10.1103/PhysRevA.57.120
http://dx.doi.org/10.1103/PhysRevA.63.022303
http://dx.doi.org/10.1103/PhysRevA.63.022303
http://dx.doi.org/10.1103/PhysRevA.69.062313
http://dx.doi.org/10.1103/PhysRevA.69.062313
http://dx.doi.org/10.1103/PhysRevLett.95.230503
http://dx.doi.org/10.1103/PhysRevA.77.022323
http://dx.doi.org/10.1142/S0219749908003918
http://dx.doi.org/10.1016/j.physleta.2010.04.047
http://dx.doi.org/10.1016/j.physleta.2010.04.047
http://dx.doi.org/10.1103/PhysRevLett.93.267007
http://dx.doi.org/10.1103/PhysRevA.75.032345
http://arXiv.org/abs/arXiv:0709.3875
http://dx.doi.org/10.1103/PhysRevA.77.062335


QUANTUM STABILIZER CODES FOR CORRELATED AND . . . PHYSICAL REVIEW A 82, 012306 (2010)

[17] S. A. Aly, e-print arXiv:0803.0764 [quant-ph] (2008).
[18] D. Gottesman, Ph.D. thesis, California Institute of Technology,

1997.
[19] B. Schumacher, Phys. Rev. A 54, 2614 (1996).
[20] R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, Phys. Rev.

Lett. 77, 198 (1996).
[21] M. A. Nielsen and I. L. Chuang, Quantum Computation

and Information (Cambridge University Press, Cambridge,
2000).

[22] R. A. Calderbank et al., IEEE Trans. Inf. Theory 44, 1369 (1998).

[23] E. Knill et al., e-print arXiv:quant-ph/0207170.
[24] P. Kaye, R. Laflamme, and M. Mosca, An Introduction to

Quantum Computing (Oxford University Press, Oxford, 2007).
[25] M. A. Nielsen, e-print arXiv:quant-ph/9606012 (1996).
[26] F. Gaitan, Quantum Error Correction and Fault Tolerant

Quantum Computing (CRC Press, Boca Raton, 2008).
[27] A. R. Calderbank and P. W. Shor, Phys. Rev. A 54, 1098 (1996).
[28] A. M. Steane, Proc. R. Soc. London, Ser. A 452, 2551 (1996).
[29] D. Zaslavsky, B.S. thesis, Princeton University, 2008.
[30] E. Knill, Nature (London) 434, 39 (2005).

012306-15

http://arXiv.org/abs/arXiv:0803.0764
http://dx.doi.org/10.1103/PhysRevA.54.2614
http://dx.doi.org/10.1103/PhysRevLett.77.198
http://dx.doi.org/10.1103/PhysRevLett.77.198
http://dx.doi.org/10.1109/18.681315
http://arXiv.org/abs/arXiv:quant-ph/0207170
http://arXiv.org/abs/arXiv:quant-ph/9606012
http://dx.doi.org/10.1103/PhysRevA.54.1098
http://dx.doi.org/10.1098/rspa.1996.0136
http://dx.doi.org/10.1038/nature03350

