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Reference-frame-independent quantum key distribution
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We describe a quantum key distribution protocol based on pairs of entangled qubits that generates a secure
key between two partners in an environment of unknown and slowly varying reference frame. A direction of
particle delivery is required, but the phases between the computational basis states need not be known or fixed.
The protocol can simplify the operation of existing setups and has immediate applications to emerging scenarios
such as earth-to-satellite links and the use of integrated photonic waveguides. We compute the asymptotic secret
key rate for a two-qubit source, which coincides with the rate of the six-state protocol for white noise. We give
the generalization of the protocol to higher-dimensional systems and detail a scheme for physical implementation
in the three-dimensional qutrit case.
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I. INTRODUCTION

Technologies based on the principles of quantum in-
formation [1] promise a revolution in informational tasks
such as computer processing [2,3] and communication [4].
Secure communication via quantum key distribution (QKD)
is one quantum information application that can be realized
with current technologies [5–8]. In general, all the QKD
protocols proposed to date have in common the need for a
shared reference frame between the authorized partners Alice
and Bob: alignment of polarization states for polarization
encoding, interferometric stability for phase encoding. This
requirement can, in principle, be dispensed with by encoding
logical qubits in larger-dimensional many-photon physical
systems [9]. However, the creation, manipulation, and de-
tection of many-photon entangled states is both technically
challenging and very sensitive to the losses on the Alice-Bob
channel—in a word, impractical. More feasible single-photon
physical implementations have been proposed which seek
to address the alignment limitations of standard protocols
[10–13] yet these schemes can inherit further complica-
tions that require active compensation between parties [14].
To date, therefore, all practical implementations of QKD
within an environment of varying phase have required the
frames of Alice and Bob to be actively aligned by classical
communication.

In this paper, we present a reference frame independent
(rfi) protocol that is separate from any particular physical
implementation, can be implemented with ordinary sources
and operate without frame alignment, beyond the obvious
establishment of a particle delivery link. Moreover, there are
at least two emerging scenarios in QKD that will benefit
from an rfi implementation (Fig. 1). The first such scenario
is earth-to-satellite QKD [10,14–21]. In this case, one axis
of the reference frame is well defined: The beam must
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obviously connect the earth station with the satellite. On
this beam, information encoded in circular polarization is
very stable, but the linear polarizations may vary in time
because the satellite may be rotating with respect to the ground
station. The second scenario is path-encoded chip-to-chip
QKD. The monolithic structures of planar waveguides have
been successfully used to perform the stable interferometric
measurements required in time and phase-encoded QKD
[22–25]. More recently, integrated quantum photonic circuits
have demonstrated their potential as components for more

(a)

(b)

FIG. 1. (Color online) Two meaningful scenarios for reference
frame independent QKD. (a) Polarization encoding in earth-to-
satellite quantum communication. Here the circular polarization
states are stable, but the linear states can vary with the rotation of the
satellite. (b) Path encoding in chip-to-chip quantum communication.
While the path information is stable, the unpredictable wavelength-
scale changes in relative path length amount to a varying reference
frame. This may occur between chips communicating through free
space, or between chips connected by optical fibres.
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general quantum information tasks [26–30]. In these latter
cases path encoding is typically used, enabling deterministic
single-photon manipulations, in contrast to the probabilistic
manipulations used in time-bin encoding. In a path-encoded
chip-to-chip setup, the “which path” information is very stable,
but it is unthinkable to expect interferometric stability between
two separate channels connecting the Alice and Bob chips. In
these and similar scenarios, our protocol leads to the generation
of a secure key without aligning the frames, as long as the
repetition rate of the signals is faster than the rate of change of
frame.

II. THE PROTOCOL FOR TWO QUBITS

For ease of notation, we denote by {X,Y,Z} the three
Pauli matrices usually written {σx,σy,σz}. We assume that
one direction is well defined, which is the case for all the
usual encodings in QKD: the circular basis in polarization
encoding, the time basis in time-bin encoding, and the which-
path basis in path encoding. So we set ZA = ZB . The other
two directions are related by XB = cos βXA + sin βYA and
YB = cos βYA − sin βXA, where β may vary in time.

We present the protocol in its entanglement-based version
where Alice and Bob share the state ρAB , which in the ideal
case is the |φ+〉 Bell state; an equivalent prepare-and-measure
version can be obtained through the usual recipe (see, e.g.,
Sec. II.B.2 in [7]).

In each run, Alice and Bob choose independently one of the
three directions (randomly but not necessarily with the same
probability) and measure the quantum signal they receive in
the corresponding basis. At the end of the signal exchange they
reveal their bases. The raw key consists of the cases where both
have measured in the Z basis; so the quantum bit-error rate is
given by

Q = 1 − 〈ZAZB〉
2

. (1)

To estimate Eve’s knowledge, Alice and Bob need to use the
information collected on the bases complementary to Z. The
quantity

C = 〈XAXB〉2 + 〈XAYB〉2 (2)

+〈YAXB〉2 + 〈YAYB〉2, (3)

is independent of the relative angle β and will be used to bound
Eve’s knowledge. The maximal value under Pauli algebra is
C = 2, achievable only by (a subset of) two-qubit maximally
entangled states—note that, in this case, one has Q = 0 as
well: the two parameters C and Q are not independent, as we
shall see in more detail later.

Before turning to a formal security proof, it is important
to understand how the protocol is affected by the fact that β

may vary in time. C being a statistical quantity, its estimation
requires several repetitions of the experiment. A variation of
β during the run will have the effect of smearing the estimated
correlations. For the protocol to be useful, therefore, Alice and
Bob should collect sufficient signals to create a key above the
finite-size effects [31,32], in a time short enough for β not to
vary too much. Now, while the expected variations of β should
be estimated to assess the feasibility of an implementation,
during the run of the protocol β is not a parameter available to

Alice and Bob: Its monitoring would amount to aligning the
frames, which defeats the purpose. In the context of security
assessment, any smearing of the correlations will be attributed
to Eve’s intervention.

III. SECURITY BOUND

Since β is not monitored by Alice and Bob, we have to
assume the worst-case scenario. For an observed value of
C, the worst-case scenario is that β is fixed and known to
Eve: This way, all the smearing of the correlations is due
to Eve’s intervention [33]. We derive an asymptotic security
bound against coherent attacks by an eavesdropper, under the
assumption that the source produces a two-qubit state.

As a first step, we notice that Alice and Bob process each
pair independently of the others. This fact, together with
the assumption that we are dealing with finite-dimensional
systems, guarantees that we can compute the bound by
restricting to collective attacks [34,35]. Thus, each pair shared
by Alice and Bob is supposed to be in the two-qubit state ρAB ,
of which Eve holds a purification.

The second step consists in proving that we can consider
ρAB (or just ρ for ease of notation) to be Bell diagonal in
some Bell basis known to Eve, without loss of generality. The
proof is similar to the one presented in Refs. [36,37]. First,
we use the fact that C is invariant under the transformation
XA → −XA, YA → −YA, XB → −XB and YB → −YB . This
transformation can be implemented on ρ itself as the unitary
ZAZB . In the presence of such a symmetry, it is not restrictive
to replace ρ by ρ̃ = 1

2

(
ρ + ZAZBρZAZB

)
: Indeed, if Eve

can gain some knowledge out of ρ, she can gain the same
knowledge out of ZAZBρZAZB ; by mixing them, she can
therefore gain at least the same knowledge, and maybe more
because the state is more mixed. As for Alice and Bob, they
do not notice any difference since they are looking only at Q

and C. So presently we have

ρ̃AB = µ1P�+ + µ2P�− +
(a

2
|�−〉〈�+| + H.c.

)

+µ3P�+ + µ4P�− +
(

b

2
|�−〉〈�+| + H.c.

)
, (4)

where Pψ = |ψ〉〈ψ | and the four states represent the usual Bell
basis. For convenience of notation, let us call this state ρ̃(a,b).
Now, we have C = 2[(µ1 − µ2)2 + (µ3 − µ4)2 + Im(a)2 +
Im(b)2]. Therefore C will be the same for the state ρ̃(−a∗,
−b∗). By the same argument as above we can then study rather
the mixture ρ ′ = 1

2 [ρ̃(a,b) + ρ̃(−a∗, −b∗)] = ρ̃(iA,iB) with
A = Im(a) and B = Im(b). This last state is Bell diagonal

ρ ′
AB =

4∑
k=1

λk|�k〉〈�k|, (5)

where |�1,2〉 = 1√
2
(eiχ |00〉 ± e−iχ |11〉) and |�3,4〉 =

1√
2
(eiχ ′ |01〉 ± e−iχ ′ |10〉). The parameters are related

as follows. Let A′ =
√

(µ1 − µ2)2 + A2: then λ1,2 =
1
2 (µ1 + µ2 ± A′) and cos2 χ = 1

2 + (µ1 − µ2)/A′. The
expressions of λ3,4 and χ ′ are similar with µ3,4 and B. In
particular, C has the same value as previously and now reads

C = 2[(λ1 − λ2)2 + (λ3 − λ4)2]. (6)
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The third step is now formally identical to the one for
the BB84 protocol (we refer to Appendix A of [7] for
details). The four nonnegative numbers λj are constrained
by three conditions: they must sum up to 1 and yield the
measured values of Q and C. This leaves one parameter
free that will be chosen as to maximize Eve’s information.
The first two constraints are taken into account by choosing the
parametrization λ1 = (1 − Q) 1+u

2 , λ2 = (1 − Q) 1−u
2 , λ3 =

Q 1+v
2 , λ4 = Q 1−v

2 , where u,v ∈ [0,1]; in which case, Eve’s
information reads

IE(Q,u,v) = (1 − Q)h

(
1 + u

2

)
+ Qh

(
1 + v

2

)
, (7)

where h is binary entropy. The third constraint (6) reads C =
2[(1 − Q)2u2 + Q2v2] and we have to compute IE(Q,C) =
maxC IE(Q,u,v).

First note that IE(0,C) = h[(1 + √
C/2)/2]. For Q >

0, we have v(u) =
√

C/2 − (1 − Q)2u2/Q; the condi-
tion v ∈ [0,1] translates as u ∈ [umin,umax] where umin =

1
1−Q

√
max[C/2 − Q2,0] and umax = min[ 1

1−Q

√
C/2,1]. We

have not found an analytical optimization for the whole
parameter range. However, Q is expected to be small in a
practical implementation; and for all Q <∼ 15.9%, one can
show that d

du
IE(Q,u,v(u)) is strictly positive between umin

and umax, for all C; whereas

IE(Q,C) = IE(Q,umax,v(umax)). (8)

A rapid benchmark for qubit protocols is their robustness
to white noise. For Werner states, C = 2(1 − 2Q)2: assum-
ing this relation, we find IE(Q,C) = Q + (1 − Q)h((1 −
3Q/2)(1 − Q)). This is exactly the same expression obtained
for the six-state protocol [7,38]. The corresponding secret key
rate r = 1 − h(Q) − IE is positive for Q <∼ 12.62%, so well
within the validity of (8).

IV. EXTENSION TO HIGHER DIMENSIONS

Several QKD protocols using higher-dimensional quantum
systems (qudits) have been proposed (see, e.g., [39]). In
principle, they yield both higher key rates and larger robust-
ness to noise. Qudit encoding in photonic states has been
demonstrated using angular momentum modes [40] or time
bins [41]. However, the control of the various relative phases
(i.e., the stabilization of the reference frame) is very delicate:
This is the reason why practical QKD has largely ignored
higher-dimensional protocols. Even at the theoretical level,
to our knowledge, nobody has explicitly computed security
bounds against coherent attacks for these protocols, even if
the general theoretical framework is, in principle, the same as
for qubits.

A generalization of the rfi protocol, by removing the need
for frame alignment, may provide the benefits of higher-
dimensional encoding without the technical problems. Here
we present such a generalization for qutrits. The derivation of
rigorous security bounds for qudit protocols is a challenge in
itself and is left for future work.

It is known that d + 1 sets of mutually unbiased bases
(MUB’s) exist for particles of dimension d, where d is a
power prime [42,43]. The joint space of any pair of qudits

can be quantified by the (d + 1) ⊗ (d + 1) measurements. The
protocol requires Alice and Bob to share an ensemble of qudit
Bell states and randomly project their own particles onto the
MUB’s. Their joint computational basis outcomes provide the
d-dimensional key which is impervious to the effects of a
changing phase between the computational states. The joint
outcomes of the complementary bases from the remaining
d2 + 2d measurements are used to calculate a fixed-but-
unknown phase-invariant quantity Cd , the higher-dimensional
analog of the qubit case C.

For example, a natural operator representation of MUB’s
are the so-called Weyl operators which have been studied in
the context of entanglement [44–46]. In the case of the d = 3
qutrit the Weyl matrices are often denoted by the set of eight
τi matrices, each of which has a conjugate transpose twin in
the set, with the same eigenvectors but with two permuted
eigenvalues. C3 is calculated on the unique eigenvector half
set (neglecting the key forming computational basis operators).
With joint expectation values defined by eij = Tr(τi ⊗ τjρAB)
we find

C3 =
4∑

i,=2

4∑
j,=2

eij e
∗
ij +

4∑
i,=2

−4∑
j,=−2

eij e
∗
ij � 3, (9)
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FIG. 2. (Color online) Integrated photonic components for mea-
surement in the qutrit version of reference-frame-independent QKD.
(a) The state-splitter chip takes an arbitrary qutrit input state and splits
it into a superposition of two probabilistic copies. The reflectivity of
directional couplers (DC) can be set to select the relative probability
of the copy. Two directional couplers implement a Mach Zender
interferometer (MZ) with internal phase such that a photon exits
from the path opposite to the one in which it entered. (b) A qutrit
Hadamard chip takes a particular equal superposition basis and
rotates to the computational basis in preparation for measurement.
(c) Three state-splitter chips are used to make a superposition of
four probabilistic copies of the incoming states. One probabilistic
copy is immediately measured in the computational basis while
the other three are fed into different Hadamard chips before
measurement.
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where τ1 is the computational basis operator and those
operators with negative indices are the conjugate transpose
twin. The maximal value is C3 = 3, achievable only by (a
subset of) two-qutrit maximally entangled states.

One possible physical implementation of the qutrit ver-
sion of rfiQKD uses integrated photonic waveguides. The
rigid monolithic structure provides phase stability between
spatial modes, so while chip-to-chip communication is
phase-unstable, all unitaries implemented on-chip are highly
stable. With a network of variable beam splitters, or di-
rectional couplers (DC’s), one can implement any unitary
operator [47]. A pair of maximally entangled qutrits can
be created on a single chip via post selection and with
the aid of ancilla photons [48,49]; alternatively one may
use a spontaneous parametric down-conversion source and
select three pairs of points on the down-conversion cone
[50].

To measure the incoming qutrits, Alice and Bob each
require a device that randomly projects onto the four mutually
unbiased bases. This device may be assembled from two types
of components: a state splitter and a qutrit Hadamard gate. The
state splitter is a three-input mode by six-output mode circuit
that splits the incoming signal with three directional couplers
of equal reflectivity and permutes the order of modes with MZ
interferometers, as shown in Fig. 2(a). The qutrit Hadamard
device, shown in Fig. 2(b), is composed of three directional
couplers. In terms of Pauli matrices, D2 = 1√

2
(σz + σx)12;

D3 = 1√
3
(σz + √

2σx)01; D4 = 1√
2
(σz + σy)12, where the

modes acted upon are noted by the subscripts. One can confirm
that D4 · D3 · D2 is represented by a matrix in the Hadamard
set; all other Hadamards in the set are accessible by adding

phases to two of the three modes [51]. Three state splitters and
three Hadamards fit together to make the random projector
device shown in Fig. 2(c).

V. CONCLUSION

We have described a protocol for the exchange of a secure
quantum key in an unknown and slowly varying reference
frame and identified specific cases in which the protocol is
useful. The two contrasting scenarios of earth-satellite links
and chip-to-chip communication highlight the generality of the
scheme. Further scenarios can also be envisaged, for example,
rfiQKD may be useful in an environment of intermittent rapid
fluctuation where the key is exchanged during the periods
of relative stability without the need to realign the reference
frame. We expect further situations in which rfiQKD is helpful
to emerge. We have provided a security proof for the qubit
version of the protocol and described how the protocol can
be developed into higher dimensions, with specific details of
physical implementation in the qutrit case.
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