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Quantum arrival time for open systems
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We extend previous work on the arrival time problem in quantum mechanics, in the framework of decoherent
histories, to the case of a particle coupled to an environment. The usual arrival time probabilities are related to
the probability current, so we explore the properties of the current for general open systems that can be written
in terms of a master equation of the Lindblad form. We specialize to the case of quantum Brownian motion,
and show that after a time of order the localization time of the current becomes positive. We show that the
arrival time probabilities can then be written in terms of a positive operator-valued measure (POVM), which
we compute. We perform a decoherent histories analysis including the effects of the environment and show that
time-of-arrival probabilities are decoherent for a generic state after a time much greater than the localization
time, but that there is a fundamental limitation on the accuracy δt , with which they can be specified which obeys
Eδt � h̄. We confirm that the arrival time probabilities computed in this way agree with those computed via
the current, provided there is decoherence. We thus find that the decoherent histories formulation of quantum
mechanics provides a consistent explanation for the emergence of the probability current as the classical arrival
time distribution, and a systematic rule for deciding when probabilities may be assigned.

DOI: 10.1103/PhysRevA.82.012116 PACS number(s): 03.65.Xp, 03.65.Yz, 03.65.Ta

I. INTRODUCTION

Questions involving time in quantum theory have a rich
history, and there is still much debate about their status [1].
Quantities such as arrival and dwell times, despite being
measurable [2], still lack concrete grounding within “standard”
quantum theory, and there has been considerable interest in
understanding these quantities in the framework of various
interpretations of quantum theory. Arrival times, in particular,
have attracted much interest, as the natural procedure of
quantizing the appropriate classical quantity gives rise to
an operator which is not self-adjoint and thus, in standard
quantum theory at least, cannot easily be considered as an
observable.

Despite these difficulties, if one considers a free particle
in an initial state ρ = |ψ〉 〈ψ | localized in x > 0 consisting
entirely of negative momenta, and asks for the probability
p(t1,t2) that the particle crosses the origin during the time
interval [t1,t2] there is a semiclassical answer, given by the
difference between the probability of being in x > 0 at the
initial and final times [1]. Defining P (t) = θ(x̂(t)),

p(t1,t2) = Tr[P (t1)ρ] − Tr[P (t2)ρ]

= −
∫ t2

t1

dtTr(P ρ̇t ) =
∫ t2

t1

dtJ (t), (1.1)

where

J (t) = ih̄

2m

[
ψ∗(0,t)

∂ψ(0,t)

∂x
− ∂ψ∗(0,t)

∂x
ψ(0,t)

]
,

is the standard quantum-mechanical probability current. (We
denote the state at time t by ρt .) This can also be written in
the following two forms,

p(t1,t2) =
∫ t2

t1

dt

∫
dpdq

(−p)δ(q)

m
Wt (p,q), (1.2)
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where Wt (p,q) is the Wigner function, defined later, and

p(t1,t2) = Tr(Cρ)

C =
∫ t2

t1

dt
(−1)

2m
[p̂δ(x̂(t)) + δ(x̂(t))p̂]

= P (t1) − P (t2). (1.3)

These expressions agree with the classical result, with the
Wigner function W replaced by the classical distribution
function w, provided that the classical trajectories are straight
lines. They are also correctly normalized to 1 as t2 → ∞ with
t1 = 0, but they are not generally positive, even for states con-
sisting entirely of negative momenta. This genuinely quantum
phenomenon is called backflow and arises because the operator
C, positive classically, has negative eigenvalues [3–5]. This
means we cannot generally regard Eq. (1.1) as providing an ac-
ceptable arrival time distribution. There is, in addition, a more
fundamental problem with Eq. (1.1), which is that probabilities
in quantum theory should be expressible in the form [6]

p(α) = Tr(Pαρ). (1.4)

Here Pα is a projection operator, or more generally a positive
operator-valued measure (POVM), associated with the out-
come α. Equation (1.1) cannot be expressed in this form, and
we therefore conclude that it is not a fundamental expression in
quantum theory, so must be the result of some approximation.

An interesting clue as to how to improve on Eq. (1.1) is
provided by the expression for the current in terms of the
Wigner function, Eq. (1.2). Negativity of the Wigner function
is a necessary condition for the negativity of the current (in
the sense of backflow, as discussed in [7]), but it is known
that evolution in the presence of an environment typically
renders the Wigner function positive after a short time [8]. This
suggests that something like Eq. (1.1) may be an acceptable,
if still heuristic, arrival time distribution for a system coupled
to an environment, at least after some time. The first aim of
this paper is to derive the correct analog of Eq. (1.1) for a
system coupled to an environment, and to prove that it can
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indeed be regarded as an arrival time distribution after a short
time. In particular, we show that the arrival time probabilities
computed in this way may be written as the trace of the density
matrix times a POVM.

However, although this may allow us to interpret the current
as the arrival time distribution, we are still left with the task
of deriving Eq. (1.1) from some more fundamental quantity.
This has previously been achieved, in some approximation, in
Refs. [7,9] in the context of the decoherent histories approach
to quantum theory [10–14], for the case of a free particle,
and the derivation was shown to hold for states and intervals
exhibiting sufficient decoherence. In decoherent histories the
probability of arriving in an interval [t1,t2] is approximately
given by

p(t1,t2) = Tr(CρC†), (1.5)

with C given by Eq. (1.3), and this reduces to Eq. (1.1) under
the somewhat special condition of decoherence. However, it
was also shown that there exist states for which decoherence
of histories cannot be obtained for reasonable levels of coarse
graining, and for which therefore we cannot assign a time-of-
arrival probability distribution. States exhibiting backflow are
good examples of this.

Lack of decoherence for a general state is a situation fre-
quently encountered in the literature on decoherent histories.
The solution lies in the observation that realistic systems are al-
ways coupled to an environment, and that as such they are most
fundamentally described by open system dynamics. Because
by definition an environment consists of degrees of freedom
about which we have no knowledge, and over which we have
no control, it is natural to coarse-grain over these degrees of
freedom. Such coarse-graining generally results in the recov-
ery of approximate classical behavior and thus decoherence.
We therefore anticipate that decoherence of histories corre-
sponding to arrival times may be achieved for a generic state,
provided that particle is coupled to a suitable environment. The
second aim of this paper is to examine this scheme. We show
that the probabilities calculated in this way are approximately
decoherent, and approximately equal to those computed via
the analog of Eq. (1.1), valid in the case of an environment.

Once we introduce an environment, however, the corre-
spondence is with a classical stochastic theory, rather than
with a deterministic one. The classical trajectories may now
cross the origin many times due to fluctuations. The arrival
time distribution for such a classical theory was computed in
Ref. [15], and is given by

p(t1,t2) =
∫ t2

t1

dt

∫ 0

−∞
dp

∫ ∞

−∞
dq

(−p)

m
δ(q)wr

t (p,q), (1.6)

where wr
t (p,q) is the initial phase-space distribution, evolved

with a type of restricted propagator valid in the case of an
environment, and with boundary conditions, [15]

wr
t (p,0) = 0, for p > 0. (1.7)

In Ref. [15] Halliwell and Zafiris presented a decoherent
histories analysis of the corresponding quantum case. Al-
though the conclusion they reached is sensible, their analysis
actually contains a small error. This was the result of a lack
of appreciation of the role of the quantum Zeno effect in these

calculations. We will show in this paper how the analysis can
be corrected to give a correct expression for the arrival time
probability in decoherent histories. We shall be interested in a
particular limit of this general case where the stochastic trajec-
tories are sharply peaked about the deterministic trajectories
we would have in the absence of any environment. In this case
the restricted propagator may be replaced with an unrestricted
one, and we will show that quantization in this limit yields an
expression of the form Eq. (1.2), but with the Wigner function
evolved in the presence of an environment.

It will eventually be necessary to specialize to a particular
model of system-environment coupling to obtain quantitative
results, but we will begin by considering general models
which can be written in terms of a master equation of the
Lindblad form. This kind of system has been extensively
studied in the decoherence literature, and the properties of
such evolution, such as suppression of interference effects,
loss of entanglement, and an approximate recovery of classical
behavior have been discussed in [8,16–18].

This paper is arranged as follows, in Sec. II we explore
some properties of the arrival time distribution for general
open systems of the Lindblad form, our aim being to derive
the corrections to the current resulting from the environmental
dynamics. In Sec. III we discuss quantum Brownian motion
and specialize the results of Sec. II to this case. In Sec. IV
we derive some properties of the arrival time distribution for
quantum Brownian motion, and in particular, we prove that the
current becomes positive after a finite time. In Secs. V and VI
we discuss the decoherent histories approach to quantum
theory, and the expressions for the arrival time distribution
that arise in this context. In Sec. VII we then examine whether
histories corresponding to arriving in different intervals of time
are decoherent. We summarize our results in Sec. VIII.

II. ARRIVAL TIME FOR OPEN QUANTUM SYSTEMS

We consider an open quantum system consisting of a free
particle coupled to an environment with a master equation of
the following Lindblad form [19],

∂ρ

∂t
= − i

h̄
[H,ρ] − 1

2

∑
j

({L†
jLj ,ρ} − 2LjρL

†
j ), (2.1)

where Lj are the Lindblad operators and H = H0 + H1 is the
free Hamiltonian plus a possible extra term that depends on
the Lj . (This term gives rise to frequency renormalization
in oscillating systems.) Specific forms for the Lj may be
computed for particular models, but for the moment we
leave this general. The Lindblad equation represents the
most general master equation for a Markovian system which
preserves the properties of the density matrix, in particular
positivity.

We now extend the derivation of Eq. (1.1) to this system.
The probability of crossing during the interval [t1,t2] is

p(t1,t2) = Tr(Pρt1 ) − Tr(Pρt2 ) =
∫ t2

t1

dtTr(P ρ̇t )

= −1

2m

∫ t2

t1

dtTr{[p̂δ(x̂) + δ(x̂)p̂]ρt }
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− i

h̄

∫ t2

t1

dtTr([H1,P ]ρt )

+ 1

2

∑
j

∫ t2

t1

dtTr([L†
j ,P ]Ljρt + L

†
j [P,Lj ]ρt ),

(2.2)

where P = θ (x̂). The first term is the standard current
expression, although with the state evolved according to
Eq. (2.1), and we therefore recover Eq. (1.1) when all the
Lj are 0. The second and third terms depend on the Lindblad
operators Lj and thus on the form of the system-environment
coupling.

To proceed further we specialize to the case where L is a
linear combination of x̂ and p̂, L = ax̂ + ibp̂, where a and b

are real constants. The master equation Eq. (2.1) is then

∂ρt

∂t
= − i

h̄
[H0,ρt ] − iab[x̂,{ρt ,p̂}] − a2

2
[x̂,[x̂,ρt ]]

− b2

2
[p̂,[p̂,ρt ]]. (2.3)

Note that this equation is also identical in form to the exact
master equation for a particle in a gas environment, given
in [20].

To derive the arrival time distribution we could simply
substitute L = ax̂ + ibp̂ into Eq. (2.2), but the algebra is
somewhat clumsy, and there are a number of terms which van-
ish for reasons not immediately apparent from this expression.
An equivalent approach is to start from Eq. (2.3), multiplying
this expression by P and taking the trace. Because the second
and third terms on the right of this expression have the form
[x̂,Â] their contribution is proportional to

Tr([x̂,Â]P ) = Tr(Â[P,x̂]) = 0,

so that only the first and last terms on the right-hand side of
Eq. (2.3) contribute. The final term on the right of Eq. (2.3)
gives a contribution

−b2

2
Tr([p̂,[p̂,ρt ]]P ) = −b2

2
Tr([p̂,[P,p̂]]ρt )

= −ih̄b2Tr([p̂δ(x̂) − δ(x̂)p̂]ρt ), (2.4)

so we arrive at the expression,

p(t1,t2) = −1

2m

∫ t2

t1

dtTr([p̂δ(x̂) + δ(x̂)p̂]ρt )

− ih̄b2
∫ t2

t1

dtTr([p̂δ(x̂) − δ(x̂)p̂]ρt ). (2.5)

The second term in this expression has a somewhat unusual
form and its significance is not immediately clear. We will see
in the following that this term is related to diffusion in position.
There is a connection here to a recent paper by Genkin, Ferro,
and Lindroth [21], in which the authors sought to examine
the effects of an environment on the arrival time distribution.
In that paper the authors used the standard expression for the
current valid in the unitary case, Eq. (1.1), ignoring the extra
terms that arise because of the environment. Although this may
be a good approximation when we can neglect the effects of
dissipation, it is clear that there may be significant corrections

to the current for strong dissipation. They also pointed out that
these corrections are equivalent to the presence of extra terms
in the continuity equation, although they did not compute these
explicitly. For the sake of completeness, and also because it
helps to understand the nature of the extra terms in Eq. (2.5),
we will derive them here.

To derive the continuity equation we multiply Eq. (2.3) by
δ(x̂ − x) and perform the trace. If we neglect the final three
terms on the right we arrive at the standard result

∂ρt

∂t
(x,x) + ∂J

∂x
(x,t) = 0, (2.6)

with J (x,t) defined by an obvious extension of Eq. (1.3).
Turning to the extra terms that result from the inclusion of the
environment, the second and third terms vanish in exactly the
same way as for the current above, and the correction term is
therefore given by

−b2

2
Tr([p̂,[p̂,ρt ]]δ(x̂ − x)) = 2h̄2b2 ∂2ρt

∂x2
(x,x), (2.7)

so the continuity equation now reads

∂ρt

∂t
(x,x) + ∂

∂x
[J (x,t) + JD(x,t)] = 0, (2.8)

where we have identified the diffusive current,

JD(x,t) = −2h̄2b2 ∂ρt

∂x
(x,x). (2.9)

This is a specific example of a modification to a conservation
equation resulting from open system dynamics. For a more
general discussion of these issues see [22].

The analysis presented previously can also be phrased
in terms of phase-space distributions. The Wigner function
corresponding to ρt is defined as [23]

Wt (p,q) = 1

2πh̄

∫
dξe− i

h̄
pξ ρt (q + ξ/2,q − ξ/2). (2.10)

The Wigner transform of the master equation Eq. (2.3) is

∂Wt

∂t
= − p

m

∂Wt

∂q
+ 2h̄2ab

∂(pWt )

∂p
+ h̄2a2

2

∂2Wt

∂p2

+ h̄2b2

2

∂2Wt

∂q2
. (2.11)

The first term is the standard unitary term, while the second
term represents dissipation, and the third and fourth terms
represent diffusion. The arrival time distribution can be written
in terms of the Wigner function by taking the Wigner transform
of Eq. (2.5)

p(t1,t2) =
∫ t2

t1

dt

∫
dpdq

[
(−p)

m
δ(q)Wt (p,q)

+ h̄2b2

2
δ(q)

∂Wt

∂q
(p,q)

]
. (2.12)

Equations (2.5) and (2.12) are the sought for generalization of
Eq. (1.2) for the case of a particle coupled to an environment.

III. QUANTUM BROWNIAN MOTION

Quantum Brownian motion [16,17,24] is a commonly used
form for the environment of an open system, partly because
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it is exactly solvable and partly because, in many cases, it
is a good approximation to a realistic environment. For the
quantum Brownian motion model [17] we have Eq. (2.3) with

a =
√

2D/h̄2, b = γ√
2D

. (3.1)

Here D = 2mγkT , where T is the temperature of the
environment, and γ is a phenomenological damping constant,
see [24]. Equation (2.3) may be written as

∂ρt

∂t
(x,y) = ih̄

2m

(
∂2

∂x2
− ∂2

∂y2

)
ρt (x,y) − D

h̄2 (x − y)2ρt (x,y)

− γ (x − y)

(
∂

∂x
− ∂

∂y

)
ρt (x,y)

− h̄2γ 2

D

(
∂

∂x
− ∂

∂y

)2

ρt (x,y). (3.2)

Although we could, in principle, work with this general
case, it is useful to specialize to the case of negligible
dissipation. There are two reasons for this, the first is that
the analysis is considerably simplified, and this helps us to
see the important effects more clearly. The second is that we
have a particular aim in mind here, and that is to understand
how a sensible classical result emerges from the quantum case.
The classical case we have in mind is that of a heavy particle
following an essentially classical, deterministic trajectory, but
subject to small quantum fluctuations. We therefore restrict our
analysis to time scales much shorter than the relaxation time
γ −1, and so we can drop the final two terms in the previous
master equation.

This master equation may then be solved in terms of the
propagator [16]

ρt (x,y) =
∫

dx0 dy0J (x,y,t |x0,y0,0)ρ0(x0,y0) (3.3)

J (x,y,t |x0,y0,0) =
(

m

2πh̄t

)
exp

(
im

2h̄t
[(x − x0)2 − (y−y0)2]

− Dt

3
[(x − y)2 + (x − y)(x0 − y0)

+ (x0−y0)2]

)
. (3.4)

Taking the same limit in the equation for the Wigner function,
Eq. (2.11), gives

∂Wt

∂t
= − p

m

∂Wt

∂q
+ D

∂2Wt

∂p2
. (3.5)

Evolution of the Wigner function may also expressed in terms
of a propagator [16],

Wt (p,q) =
∫

dp0 dq0K(q,p,t |q0,p0,0)W0(p0,q0) (3.6)

K(q,p,t |q0,p0,0)

= N exp

[
−α(p − p0)2 − β

(
q − q0 − p0t

m

)2

+ ε(p − p0)

(
q − q0 − p0t

m

)]
, (3.7)

where N, α, β, and ε are given by

α = 1

Dt
, β = 3m2

Dt3
, ε = 3m

Dt2
, N =

(
3m2

4π2D2t4

)1/2

.

(3.8)

For later convenience we note that we can make the simple
change of variables here, q0 → q0 − p0t/m, so that

Wt (p,q) =
∫

dp0 dq0K̃(q,p,t |q0,p0,0)W̃0(p0,q0) (3.9)

K̃(q,p,t |q0,p0,0) = N exp[−α(p − p0)2 − β(q − q0)2

+ ε(p − p0)(q − q0)]

W̃ (p,q) = W (p,q − pt/m). (3.10)

This form makes it clear that the evolution consists of two
effects. The first is a shifting along the classical trajectories,
while the second is a spreading in phase space.

It is useful to consider this process in more detail. In
the presence of an environment the width of the momentum
distribution becomes time dependent, and we have,

(�p)2
t = (�p)2

0 + Dt,

where (�p)0 is the momentum width of the initial state.
We recognize an immediate difficulty here. Even for initial
distributions consisting entirely of left-moving momenta, Wt

will develop support on p > 0 under evolution. This means we
cannot strictly regard the current as an arrival time distribution
since a typical trajectory will now cross the origin many
times. Differently put, the arrival time distribution is strictly
a measurement of the first passage time, and this is no longer
equal to the current. (Note that although this result is similar
to the problems created by backflow, the reasons behind it
are very different. The spreading of momentum induced by
evolution in an environment is a purely classical effect.)

However, all is not lost. Although the current is no longer
strictly the arrival time distribution, it may be a very good
approximation to it. This is because the deviation of the current
from the “true” arrival time distribution will be related to the
probability that the state has the “wrong” sign momenta. This
means that, provided we are in the “near-deterministic” limit,

(�p)2
t � p2

0, (3.11)

where p0 is the momentum around which the initial state
is tightly peaked, the current will still be a very good
approximation to the true arrival time distribution. The time
scale on which this analysis breaks down is given by the
“stochastic” time

τs = p2
0

/
D.

After this time we must therefore revert to using the exact
expression for the arrival time given by Eq. (1.6). We see from
the definition of D that,

τsγ = p2
0

2mkT
� 1, (3.12)

for the states we are interested in. This means the stochastic
time τs is much longer than the relaxation time γ −1, so that
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working in the near-deterministic limit does not impose any
further constraints compared with neglecting dissipation.

Returning to our arrival probability, in the limit of negligible
dissipation Eq. (2.5), becomes

p(t2,t1) =
∫ t2

t1

dtJ (t) (3.13)

J (t) =
∫

dq dp
(−p)

m
δ(q)Wt (p,q). (3.14)

This expression is now identical to the unitary case, Eq. (1.1),
but with the Wigner function evolved under quantum Brownian
motion.

We now turn to the question of whether inclusion of an
environment helps ensure the positivity of Eq. (3.13).

IV. PROPERTIES OF THE ARRIVAL TIME DISTRIBUTION
IN QUANTUM BROWNIAN MOTION

In the introduction we noted that evolution in an environ-
ment typically renders Wt positive after a short time. We now
wish to examine the effect of this on our candidate arrival
time distribution Eq. (3.13). To this end we introduce the
notation [8]

z =
(

p

q

)
=

(
z0

z1

)
, (4.1)

and also the class of Gaussian phase-space functions

g(z; A) = 1

2π |A|1/2
exp

(
−1

2
zT A−1z

)
, (4.2)

where A is a 2 × 2 positive-definite matrix, with determinant
|A|. g(z; A) will be a Wigner function if and only if

|A| � h̄2

4
. (4.3)

A useful result is that∫
d2zg(z1 − z; A)g(z − z2; B) = g(z1 − z2; A + B). (4.4)

In this notation we can write the propagation of the Wigner
function, Eq. (3.6), as

Wt (z) =
∫

dz′g(z − z′; A)W̃0(z′), (4.5)

where

A = Dt

(
2 t/m

t/m 2t2/3m2

)
. (4.6)

Since

|A| = D2t4

3m2
(4.7)

after a time

t =
(

3

16

)1/4 (
2mh̄

D

)1/2

=
(

3

16

)1/4

τl, (4.8)

g(z − z′; A) will be a Wigner function, and thus Wt (z) will be
positive because it is equal to the convolution of two Wigner
functions. Here τl = √

2mh̄/D is the localization time.

This is a useful result. Expressing the current Eq. (3.14) in
this new notation

J (t) =
∫

dz
(−z0)

m
δ(z1)Wt (z), (4.9)

we see that after the time given in Eq. (4.8), because Wt > 0
the current Eq. (4.9) will be positive if the state consists
purely of negative momenta. This means that after this time
Eq. (3.13) will be a positive arrival time distribution. This
holds provided the times involved are much smaller than τs ,
as per the discussion below Eq. (3.10).

Now we turn to examining the properties of the current. We
wish to find an expression for the current in the form Tr(Pρ),
where P is a projector or POVM. This would allow us to
express the heuristic arrival time distribution, Eq. (1.2), in the
same form as other probabilities in quantum theory. Starting
from Eq. (4.9) it is useful to write

J (t) =
∫

dz
∫

dz′ (−z0)

m
δ(z1)g(z − z′; A)W̃0(z′), (4.10)

using Eq. (4.5). We can deconvolve the propagator into two
Gaussians using Eq. (4.4), in particular we will let A = A0 +
B, where A0 is a minimum uncertainty Gaussian, and B is the
remainder

A0 = h̄

(
s2 0

0 1/4s2

)
, (4.11)

B = Dt

(
2 t/m

t/m 2t2/3m2

)
− A0. (4.12)

Here s is some real number. Using the convolution property
Eq. (4.4) we can write the current Eq. (4.9) as

J (t) =
∫

dz′′
[∫

dz
(−z0)

m
δ(z1)g(z − z′′; B)

]

×
[∫

dz′W̃0(z′)g(z′′ − z′; A0)

]

=
∫

dz′′
[∫

dz
(−z0)

m
δ(z1 + z0t/m)g(z − z′′; B)

]
Q(z′′),

(4.13)

where Q(z) is the Q function [25], and we have undone the
change of variables implied in Eq. (3.10). The Q function can
be written as

Q(z) = 1

π
〈z|ρ|z〉.

We can therefore express the current as

J (t) = Tr(Fρ), (4.14)

where

F = 1

π

∫
dz′′|z′′〉〈z′′|

[∫
dz

(−z0)

m
δ(z1 + z0t/m)g(z − z′′; B)

]

=
∫

dzPz
(−z0)

m
δ(z1 + z0t/m), (4.15)

and we have defined the POVM

Pz = 1

π

∫
dz′′|z′′〉〈z′′|g(z − z′′; B), (4.16)

012116-5



J. M. YEARSLEY PHYSICAL REVIEW A 82, 012116 (2010)

which is clearly a phase-space operator localized around z. F

is therefore a smeared version of the object used to compute
the current classically, −pδ(xt )/m. This holds for times(

3

16

)1/4

τl � t � τs. (4.17)

Assume for a moment that B = 0, and so Pz = |z〉 〈z|. The
current would then be given by

J (t) =
∫

dz
(−z0)

m
δ(z1 − z0t/m)Q(z). (4.18)

Since the Q function is positive by construction the current
computed in this way will be positive to the extent that the Q
function has vanishing support on p > 0 [Q(z) cannot strictly
vanish for p > 0 but it can be exponentially small, and this
suffices here. See the comments below Eq. (3.10)]. For B > 0
the Q function is simply smeared further, and this will preserve
the property of positivity. In fact one could imagine postulating
Eq. (4.18) as the definition of the arrival time even in the unitary
case since it clearly satisfies all the conditions required.

The probability of arriving in the interval [t1,t2] is given by
the integral of Eq. (4.14), and because Pz is time dependent (via
B) this will not, in general, have a simple form. However, there
is a separation of time scales here, the time scale of evolution
of Pz is seen from Eq. (4.7) to be τl . So, if t2 − t1 � τl we
have approximately

p(t1,t2) =
∫ t2

t1

dtTr(Fρ)

≈
∫

dzTr

[
ρPz

∫ t2

t1

dt
(−z0)

m
δ(z1 + z0t/m)

]
= Tr(Eρ), (4.19)

where

E =
∫

dzPz[θ (z1 + z0t1/m) − θ (z1 + z0t2/m)], (4.20)

is a POVM representing arrival at x = 0 between t1 and t2.
Note the close similarity between this object and the operator
Eq. (1.3), but that crucially this phase-space operator is positive
for z0 < 0 (i.e., p < 0). In this case, therefore, the effect of
the environment is simply to smear the unitary result over a
region of phase space, given by Pz computed at t1.

Equations (4.19) and (4.20) form the first significant result
of this paper. Equation (4.19) expresses the heuristic arrival
time distribution, Eq. (1.2), as the trace of an operator times a
POVM, and thus has the same form as standard expressions for
probability in quantum theory. The POVM, Eq. (4.20), arises
because the environment effectively measures the system.

We have therefore discovered a range of times for which
the current, Eq. (4.9), gives a positive arrival time distribution.
After a time of order τl , interference effects vanish and we
can regard Eq. (4.9) as the arrival time distribution, which can
also be written in the form Eq. (4.14). Eventually, however, on
a time scale of order τs the environment causes diffusion in
momentum to such an extent that the trajectories of the particle
are no longer sharply peaked around the classical trajectory
computed in the absence of an environment. Since the particle
is still behaving classically after this time there will exist an
arrival time distribution of the form Eq. (1.6), but our simpler

expression Eq. (4.9) will no longer be a good approximation
to this. It is easy to show that τs/τl = Eτl/h̄, where E is the
energy of the initial state, and thus these expressions are valid
for a large interval if Eτl � h̄.

V. THE DECOHERENT HISTORIES APPROACH
TO THE ARRIVAL TIME PROBLEM

A. The decoherent histories approach to quantum theory

We begin by briefly reviewing the decoherent histories
approach to quantum theory. More extensive discussions can
be found in Refs. [10–14].

Alternatives at fixed moments of time in quantum theory
are represented by a set of projection operators {Pa}, satisfying
the conditions ∑

a

Pa = 1, (5.1)

PaPb = δabPa, (5.2)

where we take a to run over some finite range. In the decoherent
histories approach to quantum theory, histories are represented
by class operators Cα which are time-ordered strings of
projections

Cα = Pan
(tn), . . . ,Pa1 (t1), (5.3)

or sums of such strings [26]. Here the projections are in the
Heisenberg picture and α denotes the string (a1, . . . ,an). All
class operators satisfy the condition∑

α

Cα = 1. (5.4)

Probabilities are assigned to histories via the formula

p(α) = Tr(CαρC†
α). (5.5)

However, probabilities assigned in this way do not necessarily
obey the probability sum rules because of quantum interfer-
ence. We therefore introduce the decoherence functional

D(α,β) = Tr(CαρC
†
β), (5.6)

which may be thought of as a measure of interference between
pairs of histories. We require that sets of histories satisfy the
condition of decoherence, which is

D(α,β) = 0, α �= β. (5.7)

This ensures that all probability sum rules are satisfied.
We note briefly that when there is decoherence Eqs. (5.4)

and (5.7) together imply that the probabilities p(α) are given
by the simpler expressions

q(α) = Tr(Cαρ). (5.8)

Decoherence ensures that q(α) is real and positive, even though
it is not in general. In this way decoherent histories may
reproduce probabilities of the form Eq. (1.3).

B. The decoherent histories aproach to the arrival time problem

We turn now to the definition of the arrival time problem
in decoherent histories. In Refs. [7,9] the class operators
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corresponding to a first crossing of the origin in the time
interval [tk−1,tk] were computed to be

Ck = P̄ (tk)P (tk−1), . . . ,P (t2)P (t1), (5.9)

for k � 2, with C1 = P̄ (t1) and where P̄ (t) = θ (−x̂t ). These
clearly describe histories which are in x > 0 at times
t1,t2, . . . ,tk−1 and in x < 0 at time tk , so, approximately,
describe a first crossing between tk−1 and tk . We are prevented
from taking the time between projections to zero by the Zeno
effect [27]. This point was extensively discussed in [7,9].

In Ref. [9] these class operators were then simplified with
the help of the following semiclassical approximation

P (tn), . . . ,P (t2)P (t1)|ψ〉 ≈ P (tn)|ψ〉. (5.10)

This is the statement that, given that the state is in x > 0 at tn,
it must also have been x > 0 at all previous times (we restrict
attention here to states with p < 0). It is clear from the path
integral representation of the propagator that this is only true
semiclassically. From this we obtain the class operators for the
first crossing between tk−1 and tk as

Ck ≈ P̄ (tk)P (tk−1) (5.11)

= P (tk−1) − P (tk)P (tk−1)

≈ P (tk−1) − P (tk), (5.12)

where we use the semiclassical approximation again to arrive
at the last line. In the case of a free particle without an
environment, this class operator reproduces Eq. (1.1) under
the conditions of decoherence. This is because, assuming
decoherence, the arrival time probability computed from
decoherent histories is

p(t2,t1) = Tr(CρC†) = Tr(Cρ), (5.13)

using Eq. (5.8).

VI. DECOHERENCE AND THE SEMICLASSICAL
APPROXIMATION FOR ARRIVAL TIME

In the previous section we introduced the arrival time
problem in decoherent histories. The key step in making
contact with the simple heuristic result of Eq. (1.1) was the
approximation of the class operators Eq. (5.9) by Eq. (5.12).
We now want to explore this approximation, and prove that it
is indeed valid in some interesting limit.

For a free particle, the error in this approximation comes
from the finite width of the wave packet. This means that

P (tk)|ψ〉 �= |ψ〉, (6.1)

even for times tk , significantly before the classical crossing
time. However, it is clear that the largest error will come from
the last projection that precedes the classical crossing time.
Since the spacing between projections has to be greater than
the Zeno time, which is also the time scale on which a wave
packet may be said to “cross” the origin, only one or two
projections stand any chance of significantly disturbing the
wave packet.

Writing this in terms of the density matrix,

Tr[P (tk+1)P (tk)ρP (tk)] = Tr[P (tk+1)ρ] − Tr[P (tk+1)P̄ (tk)ρ]

− Tr[ρP̄ (tk)P (tk+1)]

+ Tr[P (tk+1)P̄ (tk)ρP̄ (tk)]

≈ Tr[P (tk+1)ρ],

where the last line defines the semiclassical approximation.
Noting that with tm � tk

|Tr[P (tm)P̄ (tk)ρ]|2 � Tr[P (tm)P̄ (tk)ρP̄ (tk)]. (6.2)

A sufficient condition for the validity of the semiclassical
approximation is therefore that the object

�k,m := Tr[P (tm)P̄ (tk)ρP̄ (tk)], (6.3)

is much smaller than 1 for all tm > tk .
Now assume for a moment that the semiclassical approxi-

mation holds, so that the class operators are given by Eq. (5.12).
The probability of first crossing between tk and tk+1 is
given by

Tr[CkρC
†
k] = Tr[Ckρ] + 2 Tr[ρP (tk+1)] − Tr[ρP (tk)P (tk+1)]

− Tr[P (tk+1)P (tk)ρ].

However, since we are assuming that the semiclassical approx-
imation holds, the last three terms cancel and we obtain

Tr(CkρC
†
k) = Tr(Ckρ) = Tr(ρC

†
k).

Furthermore, consider a general off-diagonal term in the
decoherence functional, where without loss of generality we
take tk+1 < tm

Tr[CkρC†
m] = Tr[P (tm)P (tk)ρ] − Tr[P (tm)P (tk+1)ρ]

− Tr[P (tm+1)P (tk)ρ] + Tr[P (tm+1)P (tk+1)ρ].

(6.4)

We see that this vanishes if the semiclassical approximation
holds.

What we have shown therefore is that the semiclassical
condition and the decoherence conditions are closely related.
If the object given in Eq. (6.3) is much smaller than 1 then both
conditions are satisfied. This means first that the class operators
are approximately given by Eq. (5.12), and second that the
histories described by these class operators are approximately
decoherent.

In general, the probabilities for time of arrival as computed
by decoherent histories differ from the heuristic ones obtained
by the standard quantum-mechanical analysis. We do not
expect agreement since, as discussed in the Introduction, the
heuristic formula, Eq. (1.1), is not, in general, of the canonical
form required for genuine quantum-mechanical probabilities.
It is also the case that decoherent histories only ascribe
probabilities to certain sets of histories. However, if the object
�k,m is small, then we have shown that the decoherent histories
analysis reproduces the probabilities computed in the standard,
heuristic way.

As well as clarifying the analysis of [9], note that all of the
statements above apply to the case of a particle coupled to an
environment. In this case the trace is to be taken over the system
and environment, and P (tk) = P (tk)s ⊗ 1ε is a projection onto
the degrees of freedom of the system s tensored with the
identity operator on the environmental degrees of freedom
ε. This is the case of interest in this paper.

012116-7



J. M. YEARSLEY PHYSICAL REVIEW A 82, 012116 (2010)

Since the object �k,m plays a central role in our analysis
it is interesting to ask if it has any physical interpretation.
The answer is that it does. Recall that our class operator for
crossing between tk−1 and tk is given by Eq. (5.12). We see,
however, that

P (tk−1) − P (tk) = P̄ (tk)P (tk−1) − P (tk)P̄ (tk−1). (6.5)

The approximation leading from Eq. (5.11) to Eq. (5.12) is
equivalent to dropping the second term on the right-hand side
of Eq. (6.5). The error in this approximation can be estimated
by computing the probability associated with the class operator
P (tk)P̄ (tk−1). We see

Tr([P (tk)P̄ (tk−1)]ρ[P (tk)P̄ (tk−1)]†)

= Tr[P (tk)P̄ (tk−1)ρP̄ (tk−1)] = �k−1,k.

However, Eq. (6.5) has a simple physical interpretation: It is the
decomposition of the total current into right-moving and left-
moving parts. The object �k,m is therefore just the probability
associated with the right-moving current. Classically this is
small by construction since we will choose to work with
wave packets tightly peaked in negative momentum. Quantum
mechanically, however, this term need not be small, indeed
the existence of the backflow effect [4] shows that this term
can sometimes be larger than the left-moving current, even for
wave packets composed entirely of negative momenta.

The semiclassical condition we are imposing, and by
extension the decoherence condition, is therefore stronger
than the condition for the current to be positive. Decoherence
requires the absence of interference between crossings at
different times, while the standard heuristic analysis includes
some interference effects, provided they are not so large as to
render the arrival time probabilities negative. The significance
of this will be explored elsewhere.

VII. DECOHERENCE OF ARRIVAL TIMES IN
QUANTUM BROWNIAN MOTION

A. General case

In the previous section we have shown that an arrival time
distribution may be derived from decoherent histories and that
it agrees with the current provided there is decoherence. We
therefore turn now to the question of determining for which
states and intervals decoherence is achieved. Recall that our
aim is to show that the inclusion of an environment gives rise
to decoherence of arrival time probabilities for generic initial
states of the system. We will start our decoherent histories
analysis with a discussion of the general case considered in
Ref. [15], but most of our detailed results will concern the
near-deterministic limit discussed in the Introduction and in
the previous discussion of the Wigner function.

The decoherence functional may be written in path integral
form as

D(α,α′) =
∫

α

Dx

∫
α′
Dy exp

(
i

h̄
S[x] − i

h̄
S[y] + iW [x,y]

)
× ρ0(x,y), (7.1)

where α,α′ represents the restriction to paths that are, for
example, in x > 0 at t1 and in x < 0 at t2. W [x,y] is the
Feynman-Veron influence functional phase which summarizes

the effect of the environment, and is given in the case of
negligible dissipation by

W [x,y] = iD

h̄2

∫
dt(x − y)2. (7.2)

It is this phase which is responsible for the suppression of
interference between paths x(t) and y(t) that differ greatly and
produces decoherence.

The decoherent histories analysis we are about to perform
was first attempted by Halliwell and Zafiris in Ref. [15]. Their
conclusions are reasonable, but the analysis leading to them,
in fact, contains a small error. This error arose due to a lack of
appreciation of the role of the Zeno effect, as discussed in the
Introduction. We aim to show here how the analysis may be
modified in line with the treatment of the arrival time problem
presented here and in Ref. [9].

We start from the expression for the density matrix for states
that do not cross the origin in a time interval [0,t] (Ref. [15],
Eq. (4.34))

ρrr (xf ,yf ) =
∫

r

Dx

∫
r

Dy exp

[
im

2h̄

∫
dt(ẋ2 − ẏ2)

− D

h̄2

∫
dt(x − y)2

]
ρ0(x0,y0). (7.3)

Here the restriction is interpreted as x,y > 0 at times ε,2ε, . . ..
The probability that the state does not cross the origin in this
interval is then given by the trace of this expression. There
are two interesting limits to be taken here. The first is letting
ε → 0, and this recovers the notion of the restricted propagator.
The second limit is that of strong decoherence effects, so that
we can assume that the path integral is tightly peaked in (x −
y), this recovers the classical limit. The claim in Ref. [15] is
that we can take these limits simultaneously. To see why this is
problematic we write the restricted path integral as a product
of propagators,

ρrr (xf ,yf ) =
n∏

k=0

∫ ∞

0
dxk dykJ (xk+1,yk+1,tk+1|xk,yk,tk)

× ρ0(x0,y0), (7.4)

where tk = kε, t0 = 0, tn+1 = t . Changing variables to X =
x + y, ξ = 1

2 (x − y) gives

ρrr (xf ,yf ) =
n∏

k=0

∫ ∞

0
dXk

∫ Xk

−Xk

dξk

( m

πh̄ε

)

× exp

{
im

h̄ε
[(ξk+1 − ξk)(Xk+1 − Xk)]

− Dε

3h̄2

[
ξ 2
k+1 + ξk+1ξk + ξ 2

k

]}
ρ0(X0,ξ0). (7.5)

Now in order for the product of propagators to be equal to
a restricted propagator, we need to take ε → 0. However, to
recover the classical result we need to replace the limits of
integration for ξk with ±∞, which requires that Dε � h̄2/l2

where l is some length scale. Clearly these two limits are
incompatible for finite D.

The standard discussion of the Zeno effect emphasizes the
role of the so-called “Zeno time” τz = h̄(�H )−1. It is generally
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held that projections separated by times greater than this will
not give rise to the Zeno effect. The issue is not without subtlety
in the present case, however, first because the Zeno effect
is usually discussed in the context of unitary evolution, and
this is not the case here, and second because characteristic
times associated with the Zeno effect usually refer to selective
measurement, and a projection onto positive x is certainly
nonselective. This casts doubt on the role of the Zeno time as a
time scale in this problem. Studies of the arrival time problem
defined using a complex potential [7] suggest that the relevant
time scale might be given by h̄/E. This issue will be taken up
elsewhere [28].

In any case it is clear that there exists a short time scale on
which we can still approximate the limits in the ξ integrals
above in the manner indicted, but that is short enough to
give nontrivial crossing probabilities. Following the steps in
Ref. [15] then gives

p(t1,t2) = 1 − Tr(ρrr )

=
∫ t2

t1

dt

∫ 0

−∞
dp

∫ ∞

−∞
dq

(−p)

m
δ(q)Wr

t (p,q), (7.6)

where the Wigner function Wr
t obeys

Wr
t (p,q) =

∫
dp0 dq0Kr (p,q,t |p0,q0,0)W0(p0,q0), (7.7)

where Kr is the “restricted” propagator, defined by

Kr (p,q,t |p0,q0,0)

=
n∏

k=1

∫
dpk

∫ ∞

0
dqkK(pk,qk,tk|pk−1,qk−1,tk−1), (7.8)

with tk = kε. However, because we are now dealing with
an essentially classical system, this propagator is well
approximated by its continuum limit. Understood in this
sense, we see that the conclusions of Ref. [15] are, in fact,
correct, even if the argument leading to them is not. The
interesting subtleties that arise in this argument relate to the
classical limit of the Zeno effect, and this will be explored
elsewhere [28].

As important as this general case is, it is of interest to
examine the simpler case of near-deterministic evolution,
where the classical limit of the arrival time probability is
simply expected to be the time integral of the current density.
The analysis in this case simplifies considerably, and we
will explicitly exhibit decoherence of histories for suitable
intervals.

B. The near-deterministic limit

We have previously seen that, in the near-deterministic
limit, if there is decoherence then the arrival time probabilities
derived from decoherent histories agree with those computed
from the current. We therefore turn now to discussing the
conditions under which we have decoherence of crossing
probabilities. The general picture we have in mind is illustrated
in Fig. 1, we have an initial wave packet defined at t = 0,
evolved in the presence of an environment until time t1, and
then we wish to compute the probability of crossing between
t1 and t2.

t=0

t1

t2

t

x

FIG. 1. The probability that a generic wave packet arrives
between t1 and t2 can be expressed in terms of the state at t1, or
via the propagator, in terms of an initial time t = 0.

Our task is to compute the off-diagonal elements of
Eq. (7.1), and this will be rather involved in general. However,
we are saved from having to do this by the observation in
Sec. VI about the relation between the semiclassical condition
and the decoherence condition. It suffices therefore to compute
the quantity �k,m defined in Eq. (6.3), in the presence of
an environment. We anticipate that this will be small simply
from the form of Eq. (7.1). This is because the effect of the
environment is to cause the density matrix to become tightly
peaked around the classical path and classically, for p < 0 the
probability given by �k,m is zero. We will see how this works
in a specific example in the following.

We take k = 1, m = 2 without loss of generality, and we
drop the subscript from now on

� = Tr[P (t2)P̄ (t1)ρP̄ (t1)]

=
∫

α

Dx

∫
α

Dy exp

[
i

h̄
S[x] − i

h̄
S[y] − D

h̄2

∫
dt(x − y)2

]
× ρt1 (x1,y1), (7.9)

where the histories α are those that start at x1,y1 < 0 and finish
at x2 > 0. In terms of the density matrix propagator, Eq. (3.4)

� =
∫ ∞

0
dx2

∫ 0

−∞
dx1

∫ 0

−∞
dy1J (x2,x2,t2|,x1,y1,t1)ρt1 (x1,y1)

=
∫ ∞

0
dx2

∫ 0

−∞
dx1

∫ 0

−∞
dy1

( m

πh̄t

)

× exp

{
im

2h̄(t2 − t1)
[(x2 − x1)2 − (x2 − y1)2]

− D(t2 − t1)

3h̄2 (x1 − y1)2

}
ρt1 (x1,y1).

Transforming to new variables

X = x1 + y1

2
, ξ = x1 − y1, (7.10)

and writing the density matrix in terms of the Wigner function
via

ρ(x,y) =
∫ ∞

−∞
dpe

i
h̄
p(x−y)W

(
p,

x + y

2

)
, (7.11)

012116-9



J. M. YEARSLEY PHYSICAL REVIEW A 82, 012116 (2010)

we obtain

� = −
∫ ∞

0
dx2

∫ 0

−∞
dX

∫ X

−X

dξ

∫ ∞

−∞
dp

[
m

2πh̄(t2 − t1)

]

× exp

[
im

h̄(t2 − t1)
ξ (X − x2) + i

h̄
pξ − D(t2 − t1)

3h̄2 ξ 2

]
×Wt1 (X,p). (7.12)

We see from this expression that there is a time scale τl =√
2mh̄/D, set by the environment on which localization effects

are important. This time scale is the same as that on which the
current becomes positive, as we saw earlier.

There are three cases to explore here, the first is where
there is no environment, D = 0. This is the case covered in
Ref. [7]. The second case is the intermediate one, t1/τl � 1
but (t2 − t1)/τl � 1. This is the most general case in which
we can expect to have environmentally induced decoherence.
The final case is where t1/τl,(t2 − t1)/τl � 1. This is the case
of very strong environmental coupling.

For the free case D = 0, the integrals over ξ and x2 in
Eq. (7.12) may be carried out to give

� =
∫ 0

−∞
dX

∫ ∞

−∞
dpWt1 (X,p)f

[
X

h̄

(
mX

(t2 − t1)
+ p

)]
,

(7.13)

where

f (u) = 1

π

∫ ∞

u

dy
sin y

y
. (7.14)

This expression for � is now identical to Eq. (5.43) of Ref. [7],
and the same conclusions apply. We briefly repeat the analysis
here, however, since it turns out to be relevant for the second
case.

We note first that f (+∞) = 0,f (−∞) = 1,f (0) = 1/2.
Now we assume that our state at t1 is of the form

Wt1 (X,p) = 1

πh̄
exp

[
− (X − X0 − p0t1/m)2

2σ 2

− 2σ 2

h̄2 (p − p0)2

]
, (7.15)

and that σ 2 is large, so the state is tightly peaked in momentum.
We can therefore integrate out p, setting p = p0 to obtain,

� =
∫ 0

−∞
dX

1√
2πσ 2

exp

[
− (X − X0 − p0t1/m)2

2σ 2

]

× f

[
X

h̄

{
mX

(t2 − t1)
+ p0

}]
. (7.16)

In [7] it was noted that this type of integral is dominated by
values of X for which

0 � X � − πh̄

4|p0| , (7.17)

provided that p2
0(t2 − t1)/2m � 1, and in this range the expo-

nential term is approximately constant. We can approximate
this integral then by integrating from 0 to −π/4|p0|, taking
X = 0 in the exponential term and approximating

f (u) ≈ 1

2
− u

π
+ O(u3). (7.18)

This gives

� ≈
√

π

2

h̄

8σ |p0| exp

(
− (X0 + p0t1/m)2

2σ 2

)
� 1, (7.19)

there will therefore be decoherence for Gaussian wave packets
tightly peaked in momentum, provided their momentum is
such that p2

0(t2 − t1)/2m � h̄ [i.e., E0(t2 − t1) � h̄]. In [7]
it was argued that this conclusion also holds for orthogonal
superpositions of Gaussians.

Turning to the intermediate case, since (t2 − t1)/τl � 1 we
can set D = 0 in Eq. (7.12) and we obtain Eq. (7.13) again.
Now, however, Wt1 (X,P ) is the initial state evolved with an
environment, and since t1/τl � 1 this should be significant.
To proceed we write the Wigner function at time t1 in terms of
the initial state at t = 0 using Eq. (3.6)

� =
∫

dX0dp0W0(X0,p0)F [X0,p0], (7.20)

F [X0,p0] =
∫ 0

−∞
dX

∫ ∞

−∞
dpK(X,p,t1|X0,p0,0)

× f

[
X

h̄

{
mX

(t2 − t1)
+ p

}]
. (7.21)

Because the Wigner function propagator is a Gaussian the
analysis is similar to the first case. Recall that we are assuming
t � τs and so p2

0/Dt1 � 1, this means we can integrate out
p, setting p = p0. This gives us

F [X0,p0] =
∫ 0

−∞
dXN

√
π

α
exp

(
−β

4
(X − X0 − p0t1/m)2

)

× f

[
X

h̄

{
mX

(t2 − t1)
+ p0

}]
, (7.22)

where, N,α,β are defined in Eq. (3.8). Now,

p2
0/Dt1 � 1, (7.23)

implies that

1

p2
0

� 1

h̄2β

(
τl

t1

)4

, (7.24)

so that for t1 > τl , 1/p2
0 � 1/βh̄2. This means, again like the

case of D = 0, that the exponential term is roughly constant
compared to f . Since we have p2

0(t2 − t1)/2m � h̄, we follow
the same procedure as the D = 0 case, arriving finally at

F [X0,P0] ≈
√

πh̄

8|p0|

√
β

4
exp

(
−β

4
(X0 + p0t1/m)2

)
. (7.25)

The value of � now depends on the relationship between the
width of the initial state σ and β. However, we can obtain an
upper bound by ignoring the effects of the exponential term in
F , this gives

� �
√

πh̄

8|p0|

√
β

4
= 1

16

√
2mh̄

p2
0t1

(
τl

t1

)
� 1. (7.26)

Finally we have the case of strong system-environment cou-
pling. Since (t2 − t1)/τl � 1 the integral over ξ in Eq. (7.12)
will be peaked around ξ = 0, and we can therefore extend the
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limits of integration to (−∞,∞). This integral and the one
over x2 may then be carried out and we obtain

� =
∫ 0

−∞
dX

∫ ∞

−∞
dp

1

2
Erfc

⎡
⎣−

√
3m2

D(t2 − t1)3

×
(

X + p(t2 − t1)

m

) ⎤
⎦Wt1 (X,p), (7.27)

where Erfc is the complementary error function [29]. For large
positive values of the argument we have that

Erfc[u] ≈ e−u2

u
√

π

[
1 + O

(
1

u

)]
. (7.28)

Therefore, since the Wigner function is peaked around p <

0, � will be very small, provided (t2 − t1) � τs . This gives
us an upper bound on the time interval [t1,t2], rather than a
lower one. The lower time scale is provided by the condition
t2 − t1 � τl = √

2mh̄/D. This lower time scale is compatible
with the condition that the current be positive.

Note, however, that this lower limit is state independent.
There will be states for which arrival time probabilities
decohere on much shorter time scales than this, for example,
the simple cases which decohere in the absence of any
environment will continue to do so in the presence of an
environment, at least until a time ∼τs .

The key point is that whether or not one can assign arrival
time probabilities in decoherent histories depends on the form
of the state at the time it crosses the origin. Environmentally
induced decoherence produces mixtures of Gaussian states
from generic initial ones, and thus after a short time, arrival
time probabilities can be defined whatever the initial state.
Crucially, however, it is not necessary for the system to be
monitored while it is crossing the origin. The smallest time
interval δt , over which we can define a decoherent arrival time
probability is therefore set by the energy of the system and
not the details of the environment and we must have Eδt � h̄.
This is in agreement with Ref. [7], and also with the results of
earlier works, concerning the accuracy with which a quantum
system may be used as a clock [30].

In conclusion then, for a general state, decoherence of
histories requires that we evolve for a time much greater than
τl = √

2mh̄/D before the first crossing time. This is because
this is the time scale on which quantum correlations disappear
and our initial state begins to resemble a mixture of Gaussian
states. After this time, we may define arrival time probabilities
to an accuracy δt , provided only that Eδt � h̄. States which
start as Gaussians may be assigned arrival time probabilities
without this initial period of evolution. This is in line with the
general result that some coarse-graining is always required to
achieve a decoherent set of histories in quantum theory.

VIII. SUMMARY AND DISCUSSION

In this paper we have been concerned with deriving an
arrival time distribution for open quantum systems, and com-
paring this with the classical result. We began by discussing
the generalization of the current, which is the classical arrival
time distribution, to open quantum systems, and in particular,

to the case of quantum Brownian motion. We found that, in
general, the inclusion of an environment leads to extra terms
appearing in the expressions for the current, compared with
the those valid in the unitary case. However, we have shown
that in the limit of negligible dissipation these correction terms
may be dropped. We then explored the resulting arrival time
distribution and showed that it is nonnegative after a time of
order τl , and that after this time it can be written as the trace
of the density matrix times a POVM.

We then turned to the question of deriving this arrival time
distribution from the decoherent histories approach to quantum
theory. We extended the decoherent histories analysis of the
arrival time problem to the case of a particle coupled to an
environment. As expected, the inclusion of an environment
produces decoherence of arrival time probabilities for a generic
initial state. There are, however, some limitations to the
permitted class of histories. For a generic state arrival times
can only be specified after an initial time t � τl . Even after this
time arrival times cannot be specified with arbitrary precision,
coarse-graining over intervals δt � h̄/E is required to ensure
decoherence. We showed that the decoherence condition is
very closely related to a semiclassical approximation for the
evolution of the state, and that both conditions are satisfied
if the time between projections is sufficiently large. This
is a specific case of a more general connection between
decoherence and classical behavior.

Our approach has proceeded at two levels. At the heuristic
level the simple generalization of Eq. (1.2) to the case of a
particle coupled to an environment, Eq. (4.9), is a positive
arrival time distribution after a time of order τl . This can also
be written as the expectation value of a POVM, Eq. (4.14),
and thus has the same form as other probabilities in quantum
theory. On a more fundamental level, these expressions can
be derived from the decoherent histories approach to quantum
theory, where they are seen to be valid for times much later
than τl .

Although the arrival time probabilities computed from
decoherent histories agree with the heuristic ones when we
have decoherence, their derivation in this way represents a
significant advance in our understanding. The great difficulty
with regarding the current as the arrival time distribution is
the arbitrary way in which one accepts these “probabilities”
when they are positive, but declines to do so when they are
not. Because decoherence is an essential part of the histories
formalism, this arbitrariness is replaced with a consistent
set of rules governing when probabilities may or may not
be assigned. While this may be of no consequence in the
setting of a laboratory, it may prove hugely important in the
analysis of closed systems, in particular the study of quantum
cosmology [31].

Another very interesting result we have presented is that
the current becomes strictly positive after a finite time while
assignment of probabilities in decoherent histories is only pos-
sible asymptotically. In some ways this difference between the
heuristic analysis and decoherent histories is to be expected.
Indeed, the current represents a linearly positive history [32],
and it is essentially the condition of linear positivity that we
have proven holds after a time of order τl . It is known that linear
positivity is a weaker condition than decoherence [33,34], and
thus it is not surprising that demanding decoherence leads
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to a stricter limit on the assignment of probabilities than the
heuristic analysis. It would be interesting to examine what is
gained in this context by imposing decoherence rather than
linear positivity.

There are similarities here with the relationship between
the current and Kijowski’s arrival time distribution [35],
which may be shown to agree in the classical limit, but
not more generally. Indeed because it is manifestly positive,
one might expect the arrival time distribution computed from

decoherent histories to be more closely related to Kijowski’s
distribution on shorter time scales. These issues will be
discussed elsewhere.
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