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I. INTRODUCTION

Quantum theory provides, for a given state preparation, ex-
pectation values and distributions for a number of observables
whose operators have been identified by a combination of
heuristic arguments (e.g., quantization rules) and consistency
arguments. Their relevance and validity is eventually put to
the test or motivated by experiments. Time observables, i.e.,
random variables such as the arrival times of particles at a
detector for a given state preparation, have been more problem-
atic than other observables such as “energy,” “momentum,”
or “position” evaluated at a fixed instant. In fact, almost a
century after the creation of the basic quantum formalism, the
theoretical framework to deal with time observables, which
have a relatively straightforward operational definition in the
laboratory, is still being debated. Reviews of several aspects
of the difficulties and efforts to formalize time in quantum
mechanics may be found in two recent books [1,2]. Some
of these difficulties may be traced back to the lack of a
general framework to generate and define “time operators.”
An important point, frequently overlooked, is that for a given
system, there is no single time operator. There are infinitely
many time operators corresponding to different observables
and apparatus. “Canonical time operators” have been defined
[3,4], but, as we shall stress, the definition of “canonical”
is basis dependent, even without energy degeneracy. Thus,
further analysis is necessary to set ideal operators and possibly
uniqueness in some cases by imposing the physical conditions
to be satisfied (e.g., symmetries) or optimal properties, such
as a minimal variance.

Time operators can be classified into two main groups on
physical grounds, depending on their association with time
durations or time instants. An example of a duration is the
dwell time of a particle in a region of space. The corresponding
operator commutes with the Hamiltonian since the duration
of a future process does not depend on the instant that we
choose to predict it [5]. Instead, the other group of time
observables are shifted by the same amount as the preparation
time, either forward (clocks) [6] or backward (event times
recorded with a stopwatch, the simplest case being the time
of arrival), and are conjugate to the Hamiltonian. We shall
set here a framework for these “covariant” observables [3]
associated with instants and analyze their multiplicity and
physical properties. Applications are discussed for quantum
clocks and the time of arrival. The relation to Lyapunov
operators is also spelled out.

The plan of the paper is as follows. After introducing the
main concepts and notation in Sec. II, in Sec. III the most
general form of a covariant time operator is determined for
a Hamiltonian with only continuous, possibly degenerate,
eigenvalues. In Sec. IV it is shown that for a time-reversal
invariant Hamiltonian, one arrives at a unique and natural
form of time operator by imposing time-reversal covariance,
invariance under additional symmetries, and minimality of the
variance. In Sec. V the results are applied to arrival times for
a particle moving on a half-line, and a connection with the
delay time of Smith [7] is established. In Sec. VI the results
are applied to Lyapunov operators which were considered in
Ref. [8]. It is shown that the expression given there is a special
case, and the general form as well as possible uniqueness
conditions are presented. In particular it is shown that for a
time-reversal invariant Hamiltonian, there is no time-reversal
invariant Lyapunov operator. This is of interest because it has
been argued that in order to characterize a quantum system
as irreversible and an arrow of time if the Hamiltonian is
time-reversal invariant and if one uses a formulation in terms of
Lyapunov operators, a Lyapunov operator or functional should
be time-reversal invariant [9].

II. COVARIANCE OF TIME OPERATORS AND NOTATION

We differentiate between clock time operators and event
time operators. The former, denoted by T̂ , can be associated
with a quantum clock which measures the progressing para-
metric time, while the latter, denoted by T̂ A, describe the time
of an event, for example, the instant of time a particle is found
to arrive at a particular position. This and the following two
sections are mostly devoted to clock observables, although the
formal results are analogous for event times. In an ordinary
clock, the dial position is the observable which tells us
what time it is. In a quantum clock, the dial “position”
is probabilistic, but its average should follow faithfully the
advancement of parametric time. We would like as well to
minimize the variance and estimate the time as accurately
as possible with a finite number of measurements. We will
investigate here not specific operational realizations, for which
see a review in [6], but instead idealized operators and their
properties.

A. Clock time operators

For a given state |ψ〉, let the probability of finding the mea-
sured time in the interval (−∞,τ ) be given by the expectation
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with |ψ〉 of an operator F̂τ . Note that 0 � F̂τ � 1, so that F̂τ is
self-adjoint and bounded. [For a momentum measurement, the
analogous operator would be

∫ p

−∞ dp′|p′〉〈p′| for finding the
momentum in (−∞,p). However, F̂τ can have a more general
form, and in general one deals with a positive-operator valued
measure.] Then

�(τ ; ψ) ≡ d

dτ
〈ψ |F̂τ |ψ〉 (1)

is the corresponding temporal probability density, normalized
as

∫
dτ�(τ ; ψ) = 1. We define the probability density opera-

tor �̂τ by

�̂τ ≡ d

dτ
F̂τ , (2)

normalized as ∫ ∞

−∞
dτ�̂τ = 1. (3)

The mean value of observed time can be written as∫ ∞

−∞
dτ τ�(τ ; ψ) = 〈ψ |

∫ ∞

−∞
dτ τ�̂τ |ψ〉 ≡ 〈ψ |T̂ |ψ〉, (4)

where

T̂ ≡
∫ ∞

−∞
dτ τ�̂τ (5)

is called the time operator associated with �̂τ . The second
moment, if it exists, is given by∫

dτ τ 2�(τ ; ψ) = 〈ψ |
∫

dτ τ 2�̂τ |ψ〉 (6)

and similarly for higher moments. It may happen that this is
not equal to 〈ψ |T̂ 2|ψ〉.

A clock time operator is called covariant with respect to
ordinary (parametric) time if for the states |ψ〉 ≡ |ψ0〉 and |ψt 〉
the probabilities of finding the measured time in the respective
intervals (−∞,τ ) and (−∞,τ + t) coincide, i.e., if

〈ψ0|F̂τ |ψ0〉 = 〈ψt |F̂τ+t |ψt 〉. (7)

This implies, choosing t = −τ ,

F̂τ = e−iĤ τ/h̄F̂0e
iĤ τ/h̄, (8)

�̂0 = −i

h̄
[Ĥ ,F̂0], (9)

�̂τ = e−iĤ τ/h̄�̂0e
iĤ τ/h̄. (10)

Note that 〈ψ |�̂τ |ψ〉 is non-negative because 〈ψ |F̂τ |ψ〉 is
nondecreasing. By a change of variable in Eq. (5), one
obtains

eiĤ t/h̄T̂ e−iĤ t/h̄ = T̂ + t. (11)

From this it follows by differentiation that Ĥ and T̂ satisfy the
canonical commutation relation

[T̂ ,Ĥ ] = ih̄, (12)

when sandwiched between (normalizable) vectors from the
domain of Ĥ .

Note that �̂0 and �̂τ are in general not operators on
the Hilbert space but only bilinear forms evaluated between
normalizable vectors from the domain of Ĥ . An expression
like 〈E|�̂0|E′〉 has to be understood as a distribution. Since
the diagonal E = E′ has measure 0, it is no contradiction that
Eq. (9) gives 0 on the diagonal while the following example
gives (2πh̄)−1.

Example: For a Hamiltonian Ĥ with nondegenerate con-
tinuous eigenvalues E and eigenvectors |E〉 with 〈E|E′〉 =
δ(E − E′), we put

〈E|�̂0|E′〉 ≡ 1

2πh̄
, (13)

so that in this case,

�̂0 = 1

2πh̄

∫
dEdE′|E〉〈E′|, (14)

�̂τ = 1

2πh̄

∫
dEdE′e−i(E−E′)τ/h̄|E〉〈E′|. (15)

The normalization condition in Eq. (3) is easily checked. The
corresponding clock time operator −ih̄∂E which results from
Eq. (5), has been considered the “canonical time operator in
the energy representation” [3,4,10], but note that |E〉 is unique
only up to a phase [3,11,12], and taking |E〉ϕ ≡ eiϕ(E)|E〉
instead of |E〉 leads, for different ϕ, to multiple “energy
representations,” even for a system without any degeneracy.
In the new basis, the “canonical operator” will be shifted by

h̄

∫
dEϕ′(E)|E〉〈E|. (16)

Moreover, the mean-square deviation �T 2 for a given state
depends on ϕ(E) in such a way that there is no choice
of ϕ(E) which would make �T minimal for all states, as
shown in the Appendix. Therefore, in this case, a minimality
condition imposed on �T cannot be fulfilled and does not lead
to a unique natural choice of time operator without further
additional restrictions. There must be additional physical
criteria to choose, and in fact several of them may be physically
significant. This will be exemplified below, see Sec. V.

B. Arrival time operators

Time-of-event and in particular time-of-arrival operators
and probability densities are similar to clock operators (for
reviews of this concept, see [13,14]). Physically, we expect
that a free particle in one dimension will arrive with certainty
at a given detection point (including negative times and
ignoring the case of zero momentum which is of measure
zero for an arbitrary physical wave packet). Similarly a free
particle in three dimensions will arrive at an infinitely extended
plane. Also, a particle on a half-line with reflecting boundary
conditions and without additional potential is expected to
arrive once at the boundary and, at least on classical grounds,
twice at any other point. In the latter case, it is meaningful
to consider the first arrival at a given point, because this
should be in principle observable. In all these cases, the total
arrival probability and first arrival probability, respectively,
are 1. The corresponding arrival time operators are denoted
by T̂ A and �̂A

t , respectively, and when compared with clock
operators, their formal properties are identical up to a change
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of sign, e.g., in the conjugacy relations or the formulation of
covariance [15]. This means that in contrast to clock times, if
the particle’s state is shifted in time by t0, it should arrive a
time t0 earlier, and the temporal probability density should be
shifted by t0 to earlier times. These are, in other words, waiting
times until an event occurs, which depend on the time when
we set the stopwatch to zero, and decrease if we reset it at
a later instant. Thus the analog of the cumulative probability
operator in Eq. (7) must now satisfy

〈ψ0|F̂ A
τ |ψ0〉 = 〈ψt |F̂ A

τ−t |ψt 〉
(17)

F̂ A
τ = eiĤ τ/h̄F̂ A

0 e−iĤ τ/h̄.

With �̂A
t ≡ dF̂ A

t /dt and �̂A
0 = i

h̄
[Ĥ ,F̂ A

0 ], we have

T̂ A =
∫

dt t eiĤ t/h̄�̂A
0 e−iĤ t/h̄, (18)

�̂A
t = eiĤ t/h̄�̂A

0 e−iĤ t/h̄, (19)〈
ψt0 |T̂ A|ψt0

〉 = 〈ψ0|T̂ A|ψ0〉 − t0,
(20)〈

ψt0 |�̂A
t |ψt0

〉 = 〈
ψ0|�̂A

t+t0
|ψ0

〉
.

In addition, the operator should incorporate the location where
the arrivals are observed. For free particles coming in from
one side and arrivals at a plane, this was achieved in Ref. [16]
by postulating invariance of the probability density under a
combination of space reflection and time reversal. It is evident
that these properties still do not specify the operator uniquely.
For physical reasons, one will also demand for an optimal
arrival-time observable that the arrival-time probability density
has minimal variance, analogous to the postulate in Ref. [16]
for free particles in three-dimensional space. This means
that no other arrival-time observable can be measured more
precisely.

III. GENERAL FORM OF COVARIANT TIME OPERATORS

We begin with covariant clock time operators associated
with a given Hamiltonian H . For simplicity, we first consider
the case when Ĥ has only nondegenerate continuous eigenval-
ues E, with generalized eigenvector |E〉 and normalization

〈E|E′〉 = δ(E − E′).

We will determine the most general form of �̂0 which, through
Eqs. (1)–(10), leads to a covariant probability density operator
and corresponding time operator.

The simple example in Eq. (14) can be generalized to

�̂0 = 1

2πh̄

∫
dE dE′b(E)|E〉〈E′|b(E′),

where the bar denotes complex conjugation, and, more
generally, it will be shown that

�̂0 = 1

2πh̄

∑
i

∫
dEdE′bi(E)|E〉〈E′|bi(E′), (21)

T̂ = 1

2πh̄

∑
i

∫
dt t

∫
dE dE′e−i(E−E′)t/h̄

× bi(E)|E〉〈E′|bi(E′) (22)

are the most general forms of �̂0 and T̂ , where the functions
bi(E) have to satisfy certain properties in order that the total
probability is 1 and that the second moment in Eq. (6) is finite.
Indeed, for given state |ψ〉, the total temporal probability is,
with ψ(E) ≡ 〈E|ψ〉,∫ +∞

−∞
dt〈ψ |e−iĤ t/h̄�̂0e

iĤ t/h̄|ψ〉

=
∑

i

∫
dt

2πh̄

∣∣∣∣
∫

dEe−iEt/h̄ψ(E)bi(E)

∣∣∣∣
2

=
∑

i

∫
dE dE′δ(E − E′)ψ(E)bi(E)bi(E′)ψ(E′)

=
∑

i

∫
dEψ(E)

∑
i

bi(E)bi(E)ψ(E). (23)

This equals 1 for every state |ψ〉 if and only if∑
i

bi(E)bi(E) = 1. (24)

Similarly,

〈ψ |T̂ |ψ〉 = ih̄

∫
dEψ̄(E)ψ ′(E)

+ ih̄

∫
dE|ψ(E)|2

∑
bi(E)b′

i(E). (25)

Note that
∑

bi b̄
′
i is purely imaginary, from Eq. (24), and thus

vanishes if bi is real.
The second moment is∫

dt t2〈ψ |e−iĤ t/h̄�̂0e
iĤ t/h̄|ψ〉

= h̄
∑

i

∫
dt

2π

∣∣∣∣
∫

dE∂Ee−iEt/h̄ψ(E)bi(E)

∣∣∣∣
2

= h̄2
∑

i

∫
dE∂E(ψ(E)bi(E))∂E(bi(E)ψ(E))

= h̄2
∫

dE

{
|ψ ′(E)|2 +

∑
i

|b′
i(E)|2|ψ(E)|2

+ 2Re
∑

i

bi(E)b′
i(E)ψ(E)ψ ′(E)

}
(26)

by Eq. (24). This is finite if and only if the contributions from
the first and second terms are finite; and for the latter to hold for
all infinitely differentiable functions ψ(E) vanishing outside a
finite interval (i.e., with compact support in E), one must have∑

i

|b′
i(E)|2 integrable over any finite interval. (27)

Equation (21) gives the most general form of �̂0 leading
to a covariant time operator when the functions bi satisfy
Eqs. (24), and the second moment is finite for states with
〈E|ψ〉 of compact support if and only if Eq. (27) holds.

For a given �̂0, one can construct the functions bi as
follows. One chooses a maximal set {|gi〉} of vectors satisfying

〈gi |�̂0|gj 〉 = δij /2πh̄. (28)
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Such a maximal set is easily constructed by the standard
Schmidt orthogonalization procedure. Then a possible set {bi}
is given by

bi(E) = 2πh̄〈E|�̂0|gi〉. (29)

Equation (21) is then a realization of the given �̂0. Mathemati-
cal details, in particular regularity properties, will be presented
elsewhere [17]. It should be noted that the functions bi in the
decomposition of �̂0 in Eq. (21) are not unique.

For the case of degenerate eigenvalues of Ĥ , we first
consider the case where the degeneracy is indexed by a discrete
number and such that

〈E,α|E′,α′〉 = δαα′δ(E − E′). (30)

For simplicity we assume the same degeneracy for each E.
Then Eqs. (21)–(27) generalize as

�̂0 = 1

2πh̄

∑
i

∫
dE dE′

×
∑
αα′

bi(E,α)|E,α〉〈E′,α′|bi(E′,α′), (31)

∑
i

bi(E,α)bi(E,α′) = δαα′ , (32)

second moment = h̄2
∫

dE

∣∣∣∣∣∂E

∑
α

bi(E,α)ψ(E,α)

∣∣∣∣∣
2

, (33)

∑
i

|b′
i(E,α)|2 integrable over any finite interval (34)

for each α, where ψ(E,α) ≡ 〈E,α|ψ〉 and bi(E,α) =
2πh̄〈E,α|�̂0|gi〉. Again Eq. (31) gives the most general
form of �̂0 leading to a covariant time operator through
Eqs. (1)–(10). The case of the continuous degeneracy param-
eter can be reduced to the discrete case.

These results carry over in a corresponding way to arrival
times with normalized probability densities.

IV. UNIQUENESS OF TIME OPERATOR: TIME
REVERSAL, SYMMETRIES, AND MINIMAL

VARIANCE

As seen in the previous section, there are many covariant
clock time operators. For uniqueness, additional, physically
motivated conditions are needed. Requiring minimal variance
by itself does not make T̂ unique, not even in the case of a
nondegenerate spectrum of Ĥ , since in general it may not be
possible to fulfill this requirement simultaneously for all states
with second moment unless, in addition, one restricts the set
of functions bi by symmetry requirements, as we shall now
discuss.

The time-reversal operator, here denoted by 
̂, is an
antiunitary operator (in coordinate representation 
̂c|x〉 =
c|x〉 for any c). If the dynamics is time-reversal invariant,
it is natural to demand that


̂T̂ 
̂ = −T̂ , (35)

and similarly for the probability density. By Eq. (9) this implies


̂�̂0
̂ = �̂0. (36)

It will now be shown for the nondegenerate eigenvalue case
that time-reversal invariance of the Hamiltonian Ĥ and of �̂0,
and minimal �T together imply uniqueness of T̂ and �̂t .
For each eigenvalue E of Ĥ one can choose a 
̂ invariant
eigenvector, denoted by |E
〉,


̂|E
〉 = |E
〉. (37)

This means a specific choice of phase factor and a real function
in position space. Equation (36) implies �̂0 = 1/2(�̂0 +

̂�̂0
̂), and the general form of �̂0 in Eq. (21) then implies
that bi(E) can be chosen real. Then, from Eqs. (25) and (26),
one finds

〈ψ |T̂ |ψ〉 =
∫

dEψ(E)
h̄

i
ψ ′(E), (38)

second moment = h̄2
∫

dE|ψ ′(E)|2

+ h̄2
∑

i

∫
dE|ψ |2|b′

i(E)|2. (39)

Hence �T minimal means in this case that the second moment
is minimal, and the latter holds if and only if b′

i(E) ≡ 0, i.e.,

bi(E) ≡ ci,
∑

c2
i = 1,

by Eq. (24). Inserting this into Eq. (21) one sees that the
functions bi can be replaced by the single function b(E) ≡ 1.
Thus one obtains

�̂0 = 1

2πh̄

∫
dE dE′|E
〉〈E′


|,

�̂t = 1

2πh̄

∫
dE dE′ e−i(E−E′)t/h̄|E
〉〈E′


|, (40)

T̂ =
∫

dt �̂t ,

with time reflection invariant |E
〉. The (nonorthogonal)
eigenfunctions |τ 〉 of T̂ with eigenvalue τ are given by

|τ 〉 = 1√
2πh̄

∫ ∞

0
dEe−iEτ/h̄|E
〉, (41)

and T̂ can be written as

T̂ =
∫ ∞

−∞
dτ τ |τ 〉〈τ |. (42)

Therefore uniqueness holds in the nondegenerate case if time-
reversal invariance and minimal �T are demanded.

In the degenerate eigenvalue case, this is no longer true
and one needs additional conditions to obtain uniqueness, as
discussed elsewhere [17]. Here we simply state some results.
With a reflection invariant potential in one dimension, the clock
time operator becomes unique and can be explicitly determined
if, in addition to covariance under time reversal and minimal
variance, one also demands invariance under space reflection.
With a rotation invariant potential in three dimensions, the time
operator becomes unique and can be explicitly determined if,
in addition to covariance under time reversal and minimal vari-
ance, one also demands invariance under rotations and reflec-
tion x1 → −x1. Analogous results hold for normalized arrival
time operators. In particular, a generalization of the result of
Ref. [16] is obtained [17].
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V. APPLICATION TO ARRIVAL TIMES

Evidently the techniques of the previous sections can be
applied in a completely analogous way to the study of arrival
time operators. To illustrate this, we consider in the following
the motion of a particle on the half-line x � 0, without
additional potential, and study its arrival times at the origin
and at an arbitrary point.

In the classical case, an incoming free particle of energy
E is reflected at the origin and then travels back to infinity.
Hence, for each point a �= 0, there is a first and second time
of arrival which we denote by ta1 and ta2 . For the time-reversed
trajectory, the first arrival at a is at time taθ,1 = −ta2 and the
second arrival at time taθ,2 = −ta1 , as is easily calculated. For
the origin, a = 0, there is only one arrival and

t0
θ = −t0. (43)

The corresponding arrival time operator for arrivals at the
origin is denoted by T̂ A

f . It is natural to demand the analogous
relation to Eq. (43), i.e.,


̂T̂ A
f 
̂ = −T̂ A

f , (44)

and time-reversal invariance of �̂A
f,0, where �̂A

f,t is the
associated probability density operator.

If a �= 0, a classical free particle on the positive half-line,
coming in from infinity with velocity |v|, arrives first at time
ta1 at the point a, and then at time t0 at the origin,

ta1 = t0 − a/|v|. (45)

If T̂ A
1 denotes the corresponding time operator for the first

arrival at a, we may demand

T̂ A
1 = T̂ A

f − a/|v̂|, (46)

where |v̂| =
√

2Ĥ /m is the velocity operator.

A. Free particle on a half-line

We first consider arrivals at the origin for free motion
on the half-line x � 0, with reflecting boundary conditions
at x = 0. The eigenfunctions can be labeled by the energy
E = k2h̄2/(2m). Real, and thus 
̂ invariant, eigenfunctions
for energy E which vanish at the origin are

〈r|Ef 〉 = i

h̄

√
m

2πk
(e−ikr − eikr ), (47)

where the subscript f in |Ef 〉 refers to the free Hamiltonian
and where we have written r to indicate r ≡ x � 0. These
eigenfunctions are normalized as 〈Ef |E′

f 〉 = δ(E − E′) on
the half-line.

For the probability density operator for arrivals at the origin
invariance under time reversal means


̂�̂A
f,0
̂ = �̂A

f,0. (48)

By the results of the last section, the operators �̂A
f,t and T̂ A

f

become unique if invariance under time reversal holds and
minimal variance is assumed. From Eq. (40) one obtains, with

a change t → −t and replacing |E
〉 by |Ef 〉,

�̂A
f,t = 1

2πh̄

∫
dE dE′ei(E−E′)t/h̄|Ef 〉〈E′

f |,
(49)

T̂ A
f =

∫
dt t�̂0

f,t .

This arrival time operator is just the negative of the clock
time operator of Eq. (40), with Eqs. (41) and (42) holding
correspondingly.

Note that the vanishing of the wave function at r = 0 is not
an obstacle to define these operators in a physically meaningful
manner. A similar situation is found for antisymmetrical wave
functions on the full line. It was shown in [18] that the ideal
time-of-arrival distribution follows in a limiting process from
an operational measurement model that considers explicitly a
weak and narrow detector.

We now turn to first arrivals at a �= 0. Using Eq. (12), a
simple calculation shows that

eiam|v̂|/h̄T̂ A
f e−iam|v̂|/h̄ = T̂ A

f − a/|v̂|. (50)

Since the right-hand side equals T̂ A
1 , by Eq. (46), this implies

an analogous relation for the probability density operator �̂A
1,t

for T̂ A
1 ,

�̂A
1,t = eiam|v̂|/h̄�̂A

f,t e
−iam|v̂|/h̄. (51)

Using Eq. (49), this can be written as

�̂A
1,t = 1

2πh̄

∫
dE dE′ei(E−E′)t/h̄ei(k−k′)a|Ef 〉〈E′

f |, (52)

which explicitly gives the temporal probability density opera-
tor for the first arrival at the point a of a free particle on the
positive half-line. For a → 0, one recovers Eq. (49).

B. Asymptotic states and Smith’s delay time

We now apply the free-particle result in Eq. (49) to the
asymptotic states of a particle in a potential on the half-line
whose Hamiltonian has no bound states and to which scattering
theory applies. Although for fixed E the eigenstate is unique
up to a phase, there are physically relevant eigenstates |E±〉
which correspond to an incoming (+) and outgoing (−) plane
wave, respectively, as well as the 
 invariant state, denoted by
|E
〉. Their relation and asymptotics are |E−〉 = 
̂|E+〉 and,
with the scattering phase shift δ = δ(E),

〈r|E+〉 ∼ 1

h̄

√
2m

kπ

i

2
(e−ikr − e2iδeikr ),

〈r|E−〉 = 〈r|E+〉 = e−2iδ〈r|E+〉, (53)

〈r|E
〉 = e−iδ〈r|E+〉.
The Møller operators �̂± satisfy

�̂± ≡ lim
t→∓∞ eiĤ t/h̄e−iĤf t/h̄ =

∫ ∞

0
dE|E±〉〈Ef |,

(54)
|E±〉 = �̂±|Ef 〉.
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G. C. HEGERFELDT, J. G. MUGA, AND J. MUÑOZ PHYSICAL REVIEW A 82, 012113 (2010)

The freely moving asymptotic states |ψin〉 and |ψout〉 are
mapped by �± to the actual state |ψ〉,

|ψ〉 = �̂±
∣∣ψ in

out

〉
,

(55)
|ψout〉 = Ŝ|ψin〉,

where Ŝ = �̂
†
−�̂+ is the S operator. Note that, by Eq. (53),

Ŝ =
∫ ∞

0
dE|Ef 〉e2iδ〈Ef |, (56)

so that e2iδ is the eigenvalue of Ŝ for the state |Ef 〉.
It is convenient to introduce also the operator

�̂
 ≡
∫ ∞

0
dE|E
〉〈Ef | (57)

and define operators T̂ A
±,
 by

T̂ A
±,
 ≡ �̂±,
T̂ 0

f �̂
†
±,


=
∫

dt t

∫
dE dE′ei(E−E′)t/h̄|E±,
〉〈E′

±,
|. (58)

The last line shows that −T̂ A
±,
 are possible clock time

operators for the particle in the potential. Since the states
|E±,
〉 differ only by a phase, the same calculation that leads
to Eq. (16) gives

T̂ A
± = T̂ A


 ∓ h̄

∫
dE

∂δ

∂E
|E
〉〈E
|. (59)

From Eq. (55) it follows that the expectation values of T̂ A
+ , T̂ A

− ,
and T̂ A


 may be interpreted in terms of the asymptotic states
and the free-motion arrival time operator T̂ A

f ,

〈ψ |T̂ A
+,−,
|ψ〉 = 〈ψin,out,io|T̂ A

f |ψin,out,io〉, (60)

where the freely moving state |ψio〉 is defined by

|ψio〉 ≡ Ŝ1/2|ψin〉, (61)

and can be considered as an interpolation between |ψin〉 and
|ψout〉 = Ŝ|ψin〉. With Eq. (57), one can write

|ψio〉 = �
†

|ψ〉. (62)

Taking expectation values of Eq. (59) with |ψ〉 and using
Eqs. (60) and (54), together with the fact that |E±,
〉〈E±,
|
all coincide since the phases drop out, yields〈

ψ in
out

∣∣T̂ A
f

∣∣ψ in
out

〉 = 〈ψio|T̂ A
f |ψio〉 ∓ h̄

∫
dE

∂δ

∂E
|〈Ef |ψin〉|2.

(63)

One sees from this that the mean arrival time for the
interpolating state |ψio〉 lies between those of the ingoing and
outgoing wave. From Eq. (63),

〈ψout|T̂ A
f |ψout〉 − 〈ψin|T̂ A

f |ψin〉 = 2h̄
∫

dE
∂δ

∂E
|〈Ef |ψin〉|2.

(64)

The right-hand side of the last equation is the scattering time
delay of Smith [7], and it shows that the time for the outgoing
wave is shifted with respect to the time for the ingoing wave by
the scattering time delay. An example is shown in Figs. 1 and 2.

Ψ
Ψ
Ψ

Ψ

FIG. 1. (Color online) Probability densities before (t = 0) and
after (t = 190) the collision with a delta barrier. Dimensionless units
are used with m = h̄ = 1. The initial wave packet is ψ(k) = N [1 −
exp(−βk2)] exp[−(k − k0)2/(4�2

k)] exp(−ikx0)θ (k), where N is the
normalization constant, and θ (here) the Heaviside step function; ini-
tial wave number k0 = −π/2, �k = 0.045, β = 1/2; V = 20δ(x −
20); initial center of the wave packet x0 = 180. The delta potential is
rather opaque, so the the outgoing packet is advanced with respect to
the incoming state.

This extends the applicability of the concept of time delay,
usually restricted to the wave arrival at long distances from the
interaction region, to the time of arrival of the asymptotic
states at the origin. The time delay has also been related
to weak measurements, as discussed, e.g., in [19,20], and
the relation between that approach and the present operator
approach would be worth examining.

Time reversal. The behavior of T A
± with respect to

time reversal is determined by acting with the antilinear
operator 
̂,


̂T̂ A
± 
̂ = −T̂ A

∓ , (65)

Π

Π
Π

Π

FIG. 2. (Color online) Time-of-arrival distributions for arrivals at
x = 0 corresponding to the previous figure.
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whereas T̂ A

 simply changes sign. The operators T̂ A

± do not
simply change sign under time reversal as T̂ 0


 does, but their
behavior in Eq. (65) (changing the sign and exchanging the
operators) is perfectly physical: the time reversal of a trajectory
which moves toward the origin is a trajectory in the same
location but moving away from the origin. If the original
incoming trajectory requires a certain time τ to arrive at the
origin (with free motion), the reversed trajectory is outgoing,
and departed from the origin at −τ . These operators provide
in summary information of the free-motion dynamics of
incoming and outgoing asymptotes of the state, and scattering
time delays [21,22]. Thus, although the operator T̂ A


 is unique
when one applies the criteria of the previous section, it does
not supersede T̂ A

± since it does not describe the same physics,
and all three operators have their own legitimacy.

VI. APPLICATION TO LYAPUNOV OPERATORS
IN QUANTUM MECHANICS

In Ref. [8] an operator L̂ is called a Lyapunov operator if
for any normalized |ψ〉 and |ψt 〉 ≡ e−iĤ t/h̄|ψ〉, the expectation
value 〈ψt |L̂|ψt 〉 is monotonically decreasing to 0 as t → ∞
and goes to 1 for t → −∞. Reference [8] considered the
case of a Hamiltonian Ĥ with purely continuous eigenvalues
ranging from 0 to infinity and degeneracy parameter j . The
particular Lyapunov operator suggested there can be written
as

L̂S = i

2πh̄

∑
j

∫ ∞

0
dE

∫ ∞

0
dE′ |E,j 〉〈E′,j |

E − E′ + iε
. (66)

More generally, one may call a bounded operator L̂ a Lyapunov
operator if 〈ψt |L̂|ψt 〉 is just monotonically decreasing, without
specifying limits. However, it will be shown below, after
Eq. (67), that, without loss of generality, one can always
assume the above limiting behavior from 1 to 0 as t goes
from −∞ to +∞.

The above notion does not quite correspond to Lyapunov
functionals used in Ref. [9] to define irreversibility and an
arrow of time, since time-reversal invariance of the functional
was assumed there in order to have neutrality with respect to
past and future. It will be shown further below that there are no
time-reversal invariant Lyapunov operators if the Hamiltonian
is time-reversal invariant.

It is clear that the above properties do not define L̂ in
Eq. (66) uniquely. For example, one can introduce phases and
still get a Lyapunov operator. In this section, we are going
to determine the most general form of L̂ for a Hamiltonian
Ĥ with a purely (absolutely) continuous spectrum and give
conditions under which it becomes unique. It will also be seen
that to each L̂ there is an associated covariant time operator
T̂L.

To show that one can assume the above limit behavior, we
put, for a given general Lyapunov operator L̂,

L̂t ≡ e−iĤ t/h̄L̂eiĤ t/h̄, (67)

so that L̂t is monotonically increasing, by the monotonic
decrease of 〈ψt |L̂|ψt 〉. From the boundedness of L̂ and from
monotonicity it follows that L̂±∞ exists as operator limits in
the weak sense, i.e., for expectation values. Moreover, L̂±∞

commutes with e−iĤ t/h̄, and therefore L̂′ ≡ L̂ − L̂−∞ is also a
Lyapunov operator, with L̂′

t � 0. Then L̂′′ ≡ L̂′−1/2L̂′L̂′−1/2 is
a Lyapunov operator satisfying L̂′′

−∞ = 0 and L̂′′
∞ = 1 so that

〈ψt |L̂′′|ψt 〉 is monotonically decreasing from 1 to 0, proving
the above claim.

To determine the general form of L̂ with such a limit
behavior for t → ±∞, we note that by monotonicity

�̂L
t ≡ d

dt
L̂t = e−iĤ t/h̄ −i

h̄
[Ĥ ,L̂]eiĤ t/h̄ � 0, (68)

i.e., expectation values of ˙̂Lt are non-negative for all t , in
particular,

�̂L
0 = −i

h̄
[Ĥ ,L] � 0, (69)

where the commutator is again to be understood in the weak
sense via matrix elements and where �̂L

0 is in general not an
operator but only a bilinear form, as in Eq. (9). From Eq. (68)
and from L̂−∞ = 0, one obtains

L̂ =
∫ 0

−∞
dt e−iĤ t/h̄�̂L

0 eiĤ t/h̄. (70)

From Eq. (68) one sees that

�L(t ; ψ) ≡ 〈ψ |�̂L
t |ψ〉 � 0 (71)

is a non-negative density which integrates to 1 for each normed
state, i.e., it can be regarded as a probability density and hence
L̂t behaves like the cumulative probability operator F̂τ in
Eq. (1). Therefore,

T̂L ≡
∫

dt t e−iĤ t/h̄�̂L
0 eiĤ t/h̄ (72)

is an analog of the time operator T̂ in Eq. (5). Alternatively,
1 − L̂−t behaves as the cumulative arrival probability operator
F̂ A

t in Eq. (17).
Example: Let �̂L

0 given by Eq. (14). Then, by Eq. (70), L̂

is given by

L̂ = 1

2πh̄

∫ 0

−∞
dt

∫
dE dE′ e−i(E−E′)t/h̄|E〉〈E′|, (73)

which is readily seen to agree with L̂S in Eq. (66) in the case
of nondegeneracy.

For free motion on the half-line, with |E〉 = |Ef 〉 from
Eq. (47), the Lyapunov property of this example simply reflects
the monotonous accumulation of arrivals at the origin, since a
change of integration variable gives

〈ψt |1 − L̂|ψt 〉 =
∫ t

−∞
dt ′〈ψ |�̂0

f,t ′ |ψ〉. (74)

With a potential on the half-line and taking |E〉 = |E±〉 of the
previous section, one obtains the accumulation of arrivals of
the freely moving packets |ψin〉 and |ψout〉, and for |E〉 = |E
〉
the corresponding accumulation of arrivals for |ψio〉.

The most general form of L̂ is obtained from the most
general form of �̂L

0 which is given by Eqs. (31) and (32). If
�̂L

0 is known, then L̂ is given by Eq. (70), and in this way
one obtains the most general form of the Lyapunov operator L̂

with the above limit behavior for t → ±∞. Uniqueness of L̂
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may be achieved for particular Hamiltonians by demanding,
e.g., time-reflection invariance of T̂l , special symmetries, and
minimal variance �TL, as in Secs. IV and V.

We finally show that for a time-reversal invariant Hamilto-
nian there is no nontrivial time-reversal invariant Lyapunov
operator. Indeed, if 
̂Ĥ 
̂ = Ĥ and 
̂L̂
̂ = L̂, then one
obtains, for initial state 
̂|ψ〉 ≡ |(
̂ψ)〉,

〈(
̂ψ)t |L̂|(
̂ψ)t 〉 = 〈ψ−t |L̂|ψ−t 〉 (75)

by the antiunitarity of 
̂. Now, for increasing t , the expression
on the left-hand side decreases, while the one on the right-hand
side increases. This is only possible if both sides are constant
in t . Alternatively, one can conclude from Eq. (69) that both
�̂L

0 and 
̂�̂L
0 
̂ = −�̂L

0 are positive operators, which is only
possible if �̂L

0 = 0. This means that L̂ commutes with Ĥ ,
which also leads to the constancy of both sides in Eq. (75).

VII. DISCUSSION AND OUTLOOK

We have provided the most general form of covariant,
normalized time operators. This is important to set a flexible
framework where physically motivated conditions on the
observable may be imposed. The application examples include
clock time operators, time-of-arrival operators, and Lyapunov
operators.

Experimentally, a number of interesting open questions
remain for quantum clocks and arrival time measurements.
For example, quantum clocks are basically quantum systems
with an observable that evolves linearly with time. To evaluate
the possibility to compete with current atomic clocks [23],
the observable must be realized in a specific system. We
have described an ideal observable (by imposing antisymmetry
with respect to time reversal and minimal variance), and the
analysis of the operational realization is now pending. A
similar analysis for the ideal arrival time-of-arrival distribution
of Kijowski has been carried out in terms of an operational
quantum-optical realization with cold atoms (see Ref. [14]
for a review). Indeed, cold atoms and quantum optics offer
examples of times of events (other than arrivals), such as jump
times, excitation times, and escape times, admitting a treatment
in terms of covariant observables. Modeling and understanding
these quantities and their statistics may improve our ability to
manipulate or optimize dynamical processes.

On the theory side, an open question is how to adapt the
proposed framework, possibly in combination with previous
investigations [18,21,22,24–27], to arrival times when a
particle moves in a potential.

Finally, we have shown that Lyapunov operators follow
naturally from covariant time observables. Associated with
time-of-arrival operators, they account for the monotonous
accumulation of arrivals for freely moving asymptotic states
from the infinite past independently of the state chosen. Note
that the “infinite past” here is an idealized construct, since it
must be assumed that the wave has been evolving forever,
ignoring the fact that in practice the state may have been
prepared at some specific instant. In other words, the Lyapunov
operator does not depend on that preparation instant, and when
applied to the state it takes into account its idealized (not
necessarily actual) past, whether or not that past has been fully
or partially realized.

We have also shown at the end of the last section that in
theories with a time-reversal invariant Hamiltonian, there are
no time-reversal invariant Lyapunov operators. In Ref. [9], it
was argued that in order to characterize a system as irreversible
and single out a direction of time a Lyapunov functional should
be time-reversal invariant. Hence, if one accepts this view of
Ref. [9] then, by our result, quantum mechanics for finitely
many particles should indeed not be irreversible and should
not exhibit an arrow of time if the Hamiltonian is time-reversal
invariant.
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APPENDIX: MINIMAL VARIANCE AND
NONUNIQUENESS OF TIME OPERATOR

We show for the case of a nondegenerate spectrum of Ĥ

that minimal variance alone does not imply uniqueness of T̂ .
We first consider a state |ψ〉 such that, with a given choice
of generalized eigenvectors, 〈E|ψ〉 ≡ ψ(E) is real. Then the
first term on the right-hand side of Eq. (25) is the integral of a
total derivative and therefore vanishes, as does the third term
on the right-hand side of Eq. (26), by Eq. (24). Thus

�T 2 =
∫

dE|ψ ′|2 +
∑

i

∫
dE|b′

i |2|ψ |2

−
(∫

dE|ψ |2i
∑

i

bib
′
i

)2

. (A1)

By Schwarz’s inequality, the last term can be estimated as∣∣∣∣∣
∑

i

∫
dE|ψ |2bib

′
i

∣∣∣∣∣
2

�
∑

i

∫
dE|ψ |2|bi |2

∑
i

∫
dE|ψ |2|b′

i |2, (A2)

where the first sum on the right-hand side yields 1 and the
equality sign holds if and only if

b′
i(E) = γ bi(E), γ = constant, (A3)

which implies ∑
bib

′
i = γ̄

∑
bibi = γ̄ . (A4)

Since the left-hand side is purely imaginary, from Eq. (24),
this implies γ = iλ with λ real. Thus, for real ψ(E),

�T 2 �
∫

dE|ψ ′(E)|2, (A5)
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with equality holding if and only if Eq. (A3) holds with γ =
iλ,λ real, i.e., if and only if

bi(E) = cie
iλE, λ real,

(A6)∑
i

bi(E)bi(E) =
∑

|ci |2 = 1.

These functions give the same time operator and density as the
single function

b(E) = eiλE. (A7)

With this choice, �T 2 becomes minimal for real ψ(E).

For a state given by eiϕ(E)ψ(E), with real ψ(E) and ϕ(E),
the same argument gives, upon replacing bi by e−iϕ(E)bi , that
one has minimal variance if and only if

bi(E) = cie
i[λ−ϕ(E)]. (A8)

This differs from Eq. (A6), as does the analog ei[λ−ϕ(E)] of the
single function in Eq. (A7).

Hence among the set of all allowed functions
bi(E), there is no choice of functions such that �T

becomes minimal for all states with finite second
moment.
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