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We evaluate the non-Markovian finite-temperature two-time correlation functions (CF’s) of system operators
of a pure-dephasing spin-boson model in two different ways, one by the direct exact operator technique and the
other by the recently derived evolution equations, valid to second order in the system-environment interaction
Hamiltonian. This pure-dephasing spin-boson model that is exactly solvable has been extensively studied as a
simple decoherence model. However, its exact non-Markovian finite-temperature two-time system operator CF’s,
to our knowledge, have not been presented in the literature. This may be mainly due to the fact, illustrated in this
article, that in contrast to the Markovian case, the time evolution of the reduced density matrix of the system (or
the reduced quantum master equation) alone is not sufficient to calculate the two-time system operator CF’s of
non-Markovian open systems. The two-time CF’s obtained using the recently derived evolution equations in the
weak system-environment coupling case for this non-Markovian pure-dephasing model happen to be the same
as those obtained from the exact evaluation. However, these results significantly differ from the non-Markovian
two-time CF’s obtained by wrongly directly applying the quantum regression theorem (QRT), a useful procedure
to calculate the two-time CF’s for weak-coupling Markovian open systems. This demonstrates clearly that the
recently derived evolution equations generalize correctly the QRT to non-Markovian finite-temperature cases. It
is believed that these evolution equations will have applications in many different branches of physics.
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I. INTRODUCTION

A quantum system is inevitably subject to the influence
of its surroundings or environments [1–6]. An environment
usually consists of a practically infinite number of degrees of
freedom and acts statistically as a whole identity referred as
a reservoir or bath of the open quantum system. Most often,
one is concerned with only the system dynamics and the key
quantity is the reduced system density matrix ρ(t) defined
as the partial trace of the total system-plus-reservoir density
operator ρT (t) over the reservoir degrees of freedom; i.e.,
ρ(t) = TrR[ρT (t)]. If the time evolution of the reduced density
matrix that can be Markovian or non-Markovian is known,
one is able to calculate the (one-time) expectation values or
quantum average of the physical quantities of the system
operators. But knowing the time evolution of the reduced
density matrix is not sufficient to calculate the two-time
(multiple-time) correlation functions (CF’s) of the system
operators in the non-Markovian case [7–9].

In the Markovian case, an extremely useful procedure to
calculate the two-time (multiple-time) CF’s is the so-called
quantum regression theorem (QRT) [1–4] that gives a direct
relation between the time evolution equation of the single-time
expectation values and that of their corresponding two-time
(multiple-time) CF’s. So knowing the time evolution of the
system reduced density matrix allows one to calculate all
of the two-time (multiple-time) Markovian CF’s. For the
non-Markovian case, it is known that the QRT is not valid in
general [10–13]. Recently, using the stochastic Schrödinger
equation approach and the Heisenberg equation of system
operator method, an evolution equation, valid to second order
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in system-environment coupling strength, for the two-time
(multiple-time) CF’s of the system operators has been derived
for an environment at the zero temperature and for a system
in an initial pure state [7–9]. This evolution equation has
been applied to calculate the emission spectra of a two-level
atom placed in a structured non-Markovian environment
(electromagnetic fields in a photonic band-gap material) [14].
In Ref. [8], an evolution equation for the reduced propagator
of the system state vector, conditioned on an initial state
of the environment differing from the vacuum, was derived
using the stochastic Schrodinger equation approach. It is
thus possible to use the reduced propagator to evaluate the
expectation values and CF’s of the system observables for
general environmental initial conditions, not necessarily an
initial vacuum state for the environment [8]. By using another
commonly used open quantum system technique, the quantum
master equation approach [1–6], we are able to extend the
two-time CF evolution equation to a non-Markovian finite-
temperature environment for any initial system-environment
separable state. The detailed derivation will be presented
elsewhere [15] but the essential results will be summarized
in Sec. II. The derived evolution equation that generalizes the
QRT to the non-Markovian finite-temperature case is believed
to have applications in many different branches of physics.

The purpose of this article is twofold: (a) We show that
in general the time evolution of the reduced density matrix
of the system (or the reduced quantum master equation)
alone is not sufficient to calculate the two-time CF’s of
the system operators of non-Markovian open systems, even
in the weak system-environment coupling case. We present
an evaluation of an exactly solvable non-Markovian model,
i.e., a pure-dephasing spin-boson model [8,16–21], to justify
the statement. The exact non-Markovian finite-temperature
two-time CF’s of the system operators of this model, to
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our knowledge, have not been presented in the literature.
(b) This exactly solvable model allows us to test the validity
of the derived non-Markovian finite-temperature evolution
equation of two-time CF’s presented in Sec. II. It will be
shown that the two-time CF’s obtained using the evolution
equation in the weak system-environment coupling limit [15]
in Sec. II for the exactly solvable non-Markovian model
happen to be the same as those obtained from the exact
evaluation. However, these results significantly differ from the
non-Markovian CF’s obtained by wrongly applying directly
the QRT. This demonstrates clearly that the derived evolution
equations generalize correctly the QRT to non-Markovian
finite-temperature cases.

The article is organized as follows. We first summarize the
important results of the newly obtained evolution equations
[15] that generalizes the QRT to the non-Markovian finite-
temperature case in Sec. II. After brief description of the pure-
dephasing spin-boson model in the beginning of Sec. III, we
calculate the exact time evolution of the reduced density matrix
of the system and one-time expectation values in Sec. III A.
The exact two-time CF’s are evaluated in subsection III B. In
Sec. IV, we use the derived evolution equations in Ref. [15]
to calculate the one-time and two-time CF’s. It is shown that
the results obtained in Sec. IV are the same as those by the
exact evaluation in Sec. III. This demonstrates the validity and
practical usage of the derived evolution equations in Ref. [15].
Numerical results and discussions are presented in Sec. V. A
short conclusion is given in Sec. VI.

II. EVOLUTION EQUATION OF NON-MARKOVIAN
FINITE-TEMPERATURE TWO-TIME CF’S

A class of systems considered in [7–9] is modeled by the
Hamiltonian

H = HS + HI + HR

= HS +
∑

λ

h̄gλ(L†aλ + La
†
λ) +

∑
λ

h̄ωλa
†
λaλ, (1)

where HS and HR are system and environment Hamiltonians,
respectively, and HI stands for the Hamiltonian that describes
the interaction between the system and the environment. So L

acts on the Hilbert space of the system, a
†
λ and aλ are creation

and annihilation operators on the environment Hilbert space,
and gλ and ωλ are the coupling strength and the frequency of
the λth environment oscillator, respectively. The derivations
of the non-Markovian evolution equations of the two-time
(multitime) CF’s for the general Hamiltonian model (1) in
Refs. [7–9] (Eq. (6) in Ref. [7], Eq. (31) in Ref. [8] and
Eq. (60) in Ref. [9]) are presented for an environment at
the zero temperature and for a system state in an initial pure
state. It was mentioned in Ref. [8] that it is possible to use
the reduced stochastic system propagator that corresponds to
an initial state of the environment different from the vacuum
to evaluate the single-time expectation values and multitime
CF’s with more general initial conditions. But only a master
equation that is conditioned on initial bath states and is
capable of evaluating the single-time expectation values of
system observables for general initial conditions, both for
an initial pure state and mixed state, was derived [8]. In

Refs. [7–9], calculations of the two-time CF’s of system
observables for dissipative spin-boson models in thermal baths
are, however, presented even though in their derivations of the
two-time (multitime) evolution equations, the bath CF’s are
given in its zero-temperature form. This is possible due to the
reason that for a system-environment model with a Hermitian
system operator L = L† coupled to the environment, the linear
finite-temperature stochastic Schrödinger equation could be
written in a simple form of the zero-temperature equation
[19,22] if the zero-temperature bath CF is replaced with its
corresponding effective finite-temperature bath CF. As a result,
the evolution equation of thermal two-time (multitime) CF’s
for a Hermitian coupling operator L = L† also becomes equal
to its zero-temperature counterpart with the replacement of the
zero-temperature bath CF with its effective finite-temperature
bath correlation kernel. It is for this reason that the dissipative
spin-boson model with a thermal environment can be studied
with the two-time (multitime) evolution equations derived
in Refs. [7–9], since in that model L = σx = L†. But this
reduction of the finite-temperature evolution equation to its
zero-temperature form [7–9] is not valid for more general
non-Markovian finite-temperature cases where the system
coupling operators are not Hermitian, i.e., L �= L†. In other
words, if the system operator coupled to the environment is
not Hermitian L �= L†, the two-time (multitime) differential
evolution equations presented in Refs. [7–9] are valid for a
zero-temperature environment only.

By using another commonly used open quantum system
technique, the quantum master equation approach [1–6], it is
possible to obtain in the weak system-environment coupling
limit a two-time evolution equation for non-Markovian
finite-temperature environments with both Hermitian and
non-Hermitian system coupling operators and for any initial
system-environment separable states. The detailed derivation
will be presented elsewhere [15] but the important results are
summarized here. The second-order evolution equations of
the single-time expectation values for the class of systems
modeled by the Hamiltonian (1) is

d〈A(t1)〉/dt1

= (i/h̄)TrS({[HS,A]}(t1)ρ(0))

+
∫ t1

0
dτTrS(α∗(t1 − τ ){L̃†(τ − t1)[A,L]}(t1)ρ(0)

+α(t1 − τ ){[L†,A]L̃(τ − t1)}(t1)ρ(0)

+β∗(t1 − τ ){L̃(τ − t1)[A,L†]}(t1)ρ(0)

+β(t1 − τ ){[L,A]L̃†(τ − t1)}(t1)ρ(0)), (2)

and that of the two-time CF’s can be obtained as

d〈A(t1)B(t2)〉/dt1

= (i/h̄)TrS({[HS,A]}(t1)B(t2)ρ(0))

+
∫ t1

0
dτTrS(α∗(t1 − τ ){L̃†(τ − t1)[A,L]}(t1)B(t2)ρ(0)

+α(t1 − τ ){[L†,A]L̃(τ − t1)}(t1)B(t2)ρ(0)

+β∗(t1 − τ ){L̃(τ − t1)[A,L†]}(t1)B(t2)ρ(0)

+β(t1 − τ ){[L,A]L̃†(τ − t1)}(t1)B(t2)ρ(0))
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+
∫ t2

0
dτTrS(α(t1 − τ ){[L†,A]}(t1){[B,L̃(τ − t2)]}(t2)

× ρ(0) + β(t1 − τ ){[L,A]}(t1){[B,L̃†(τ − t2)]}(t2)ρ(0)).

(3)

Here L̃(t) = exp(iHSt/h̄)L exp(−iHSt/h̄) is the system
operator in the interaction picture with respect to HS , and

α(τ − s) =
∑

λ

(n̄λ + 1)|gλ|2e−iωλ(τ−s), (4)

β(τ − s) =
∑

λ

n̄λ|gλ|2eiωλ(τ−s). (5)

are known as the environment CF’s: α(τ − s) =
〈∑λ gλãλ(τ )

∑
λ′ gλ′ ã

†
λ′(s)〉 and β(τ − s) = 〈∑λ gλã

†
λ(τ )∑

λ′ gλ′ ãλ′ (s)〉, where ãλ(τ ) = aλe
−iωλτ and ã

†
λ(τ ) = a

†
λe

iωλτ

are the reservoir operators in the interaction picture.
We note here that for a Hermitian coupling operator L = L†

the finite-temperature evolution equations (2) and (3) reduce,
respectively, to their zero-temperature counterparts but with
the effective bath CF given by α(t1 − τ ) + β(t1 − τ ) [7–9].
This was pointed out to occur in general for N -time CF’s in
Refs. [7–9].

III. EXACT EVALUATIONS OF PURE DEPHASING
SPIN-BOSON MODEL

Here we consider an exactly solvable pure dephasing
model of

HS = (h̄ωS/2)σz, L = σz = L† (6)

to test the evolution equations (2) and (3). This pure
dephasing spin-boson model in which [HS,L] = 0 has been
extensively studied as a simple decoherence model in the
literature [8,16–21]. But most of the studies focus on the
discussion of the time evolution of the reduced density matrix
of the spin, or other one-time expectation values of the spin
system operators. Recently, the two-time CF’s of the system
operators at the zero temperature for this model was reported
in Ref. [8]. Nevertheless, to demonstrate the validity and
practical usage of the finite-temperature non-Markovian
evolution equation of the two-time CF’s (3), we present a
detailed evaluation of the exact finite-temperature two-time
CF’s for this simple model. These exact non-Markovian
finite-temperature two-time CF’s of the system operators, to
our knowledge, have not been presented in the literature.

A. Reduced density matrix and one-time expectation values

Before we derive the two-time CF’s, we evaluate the exact
time evolution of the reduced density matrix and one-time
expectation value for the non-Markovian spin-boson model. In
the interaction picture, the total density matrix of the combined
(spin plus bath) system at time t is given by

ρ̃T (t) = Ũ (t)ρT (0)Ũ †(t), (7)

where the time evolution operator is

Ũ (t) = eiH0t/h̄e−iH t/h̄

= T
[
e(−i/h̄)

∫ t

0 dτH̃I (τ )]. (8)

Here H0 = HS + HR , H̃I (t) = exp(iH0t/h̄)HI exp(−iH0t/h̄)
and T is the time-ordering operator which arranges the
operators with the earliest times to the right. From Eqs. (1)
and (6), a simple calculation gives

H̃I (t) =
∑

λ

h̄gλσz(e
iωλta

†
λ + e−iωλt aλ). (9)

This result allows us to calculate the time evolution operator
to be (see Appendix for details)

Ũ (t) = exp

[
−i

∫ t

0
dτ

∑
λ

gλσz(e
iωλτ a

†
λ + e−iωλτ aλ)

]

× exp

[
1

2

∫ t

0
dτ

∫ t

0
ds

∑
λ

|gλ|2eiωλ(τ−s)

]

× exp

[
−

∫ t

0
dτ

∫ τ

0
ds

∑
λ

|gλ|2e−iωλ(τ−s)

]
. (10)

The time integrations in the exponents in Eq. (10) can be easily
and analytically carried out. But we keep them in those forms
in Eq. (10) so it will be easier to identify them with the results
in Ref. [15]. If the time-ordering operation in Eq. (8) for Ũ (t)
were not performed, one could have just obtained the first term
(line) of Eq. (10) for Ũ (t). Thus the second and third terms
(lines) of Eq. (10) can be considered as the correction terms
due to the time-ordering operation.

The reduced density matrix can be obtained by tracing
over the reservoir’s degrees of freedom: ρ(t) = TrR[ρT (t)].
Suppose initially the state ρT (0) = ρ̃T (0) = ρ(0) ⊗ R0 is
factorized, where ρ(0) and R0 are initial system and ther-
mal reservoir(environment) density operators, respectively,
and R0 = exp(−HR/kBT )/TrR[exp(−HR/kBT )]. Then the
reduced density matrix elements in the interaction picture can
be written as

ρ̃mn(t) = ρmn(0)TrR[Ũ †{n}(t)Ũ {m}(t)R0], (11)

where ρ̃mn(t) ≡ 〈m|ρ̃(t)|n〉, Ũ {n}(t) ≡ 〈n|Ũ (t)|n〉, m,n = 0,1
and the states of the two-level system are defined as σz|0〉 =
|0〉, σz|1〉 = −|1〉. To evaluate Eq. (11), the well-known
formula of

eAeB = eA+Be
1
2 [A,B], (12)

valid for operators A and B both commuting with the
commutator [A,B], can be used to combine the evolution
operators together. One then obtains

Ũ †{0}(t1)Ũ {1}(t1)

= [Ũ †{1}(t1)Ũ {0}(t1)]†

= exp

[
2i

∫ t1

0
dτ

∑
λ

gλ(eiωλτ a
†
λ + e−iωλτ aλ)

]
. (13)

Then a useful identity [23] for the average over the thermal
reservoir (environment) density operator, R0, can be employed:〈

e
∑

λ cλaλ+dλa
†
λ

〉 = e
1
2

∑
λ cλdλ(2n̄λ+1), (14)

where cλ, dλ are complex numbers, and n̄λ =
[exp(h̄ωλ/kBT ) − 1]−1 stands for the thermal mean
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occupation number of the environment oscillators. As a result,
we obtain

TrR[Ũ †{0}(t)Ũ {1}(t)R0] = TrR[Ũ †{1}(t)Ũ {0}(t)R0]

= exp

[
−

∫ t

0
dτD(τ )

]
, (15)

where

D(τ ) = 2
∫ τ

0
ds[αeff(τ − s) + α∗

eff(τ − s)], (16)

αeff(τ − s) = α(τ − s) + β(τ − s), (17)

and α(t − τ ) and β(t − τ ) are defined in Eqs. (4) and (5),
respectively. It is easy to show that Ũ †{n}(t)Ũ {n}(t) = I and
TrR[Ũ †{n}(t)Ũ {n}(t)R0] = 1. Thus, using these results for the
reduced density matrix elements Eq. (11) in the interaction
picture and then transforming them back to the Schrödinger
picture ρ(t) = exp(−iHSt/h̄)ρ̃(t) exp(iHSt/h̄), we obtain the
exact reduced density operator in the matrix form of

ρ(t) =
[

ρ00(0) ρ01(0)e−F (t)

ρ10(0)e−F ∗(t) ρ11(0)

]
(18)

with F (t) = iωSt + ∫ t

0 dτD(τ ). The same result was ob-
tained in Ref. [19] using the stochastic Schrödinger equation
approach.

With the exact time evolution of the reduced density matrix,
the one-time expectation value of the system operators

〈A(t1)〉 = TrS⊕R[A(t1)ρT (0)] = TrS[A(0)ρ(t1)], (19)

can be calculated exactly, where A(t1) represents a general
system Heisenberg operator(s) and ρ(t1) = TrR[ρT (t1)] is the
reduced Schrödinger density matrix operator at time t1. We
may also write in the interaction picture,

〈A(t1)〉 = TrS⊕R[Ã(t1)ρ̃T (t1)] = TrS[Ã(t1)ρ̃(t1)], (20)

where ρ̃T is defined in Eq. (7), ρ̃(t) = TrR[ρ̃T (t)] and Ã(t) =
exp(iH0t/h̄)A exp(−iH0t/h̄), and A = A(0). For a general

system operator A = ( c a

b d

)
, we obtain exactly from either

Eq. (19) or Eq. (20)

〈A(t1)〉 = e− ∫ t1
0 dτD(τ )(aρ10e

iωS t1 + bρ01e
−iωS t1 )

+ cρ00(0) + dρ11(0). (21)

B. Two-time correlation functions

In contrast to the Markovian case in which the QRT is
valid, the time evolution of the reduced density matrix of a
non-Markovian open system alone is not sufficient to obtain
the two-time system operator CF’s. This can be understood as
follows. The two-time CF’s of system operators A(t1)B(t2) for
t1 > t2 can be written as

〈A(t1)B(t2)〉
= TrS⊕R[U †(t1,0)AU (t1,0)U †(t2,0)BU (t2,0)ρT (0)]

= TrS⊕R[AU (t1,t2)BU (t2,0)ρT (0)U †(t2,0)U †(t1,t2)], (22)

where the Heisenberg evolution operators U (t1,t2) =
U (t1,0)U †(t2,0) and U (t,0) = exp(−iH t/h̄). If the environ-
ment is Markovian so the environment operator CF at two
different times is δ correlated in time, then we may regard
that the environment operator in U (t1,t2) is not correlated with
that in U (t2,0). So the trace over the environment degrees
of freedom for operator U (t1,t2) and operator U (t2,0) can be
performed independently or separately. Thus one may first
trace ρT (t2) = U (t2,0)ρT (0)U †(t2,0) over the environment
degrees of freedom to obtain the reduced density matrix
ρ(t2) = TrR[ρT (t2)]. Equation (22) in this case can be written
as

〈A(t1)B(t2)〉 = TrS⊕R[AU (t1,t2)(Bρ(t2) ⊗ R0)U †(t1,t2)]

= TrS[Aχ (τ )], (23)

where χ (τ ) is the effective reduced density matrix at time
τ = t1 − t2 with the initial condition χ (0) = Bρ(t2). Thus
knowing the time evolution of the reduced density matrix in
the Markovian case, one is able to calculate the two-time CF’s
of the system operators. This is also the reason why the QRT
works in the Markovian case. But the situation differ for a
non-Markovian environment as the environment operator in
U (t1,t2) may, in general, be correlated with that in U (t2,0).

The two-time CF’s of the system operators for the pure-
dephasing spin-boson model can also be evaluated exactly.
To evaluate the two-time CF of system operators A(t1)B(t2)
for t1 > t2, we express it in terms of the interaction picture
operators as

〈A(t1)B(t2)〉= TrS⊕R[U †(t1)AU (t1)U †(t2)BU (t2)ρT (0)]

= TrS⊕R[Ũ †(t1)Ã(t1)Ũ (t1)Ũ
†(t2)B̃(t2)Ũ (t2)ρT (0)],

(24)

where again an operator with a tilde on the top indicates that
it is an operator in the interaction picture with respect to the
free Hamiltonian H0. Compared with Eq. (20), Eq. (24) for
general non-Markovian open systems cannot be expressed
as a product of the reduced density matrix and system
operators. So again, the reduced density matrix alone is
not sufficient to obtain the non-Markovian two-time system
operator CF’s.

As we want to compare the results by the direct evaluation
with those by the evolution equation (3), we calculate, in
the following, the two-time CF’s 〈A(t1)B(t2)〉 for differ-
ent cases of system operators A and B. The structure of
the evolution equations in Ref. [15] or Eqs. (2) and (3)
in this article depends on the commutation relations of
operator A and operator L (or L†) and on the commu-
tation relations of operator B and operator L̃(τ − t2) (or
L̃†(τ − t2)), where L̃(t) = exp(iHSt/h̄)L exp(−iHSt/h̄) is the
system operator in the interaction picture with respect to HS .
For the pure-dephasing spin-boson model, HS = (h̄ωS/2)σz,
L = σz = L†, and then L̃†(t) = σz. So we will discuss the
two-time CF’s in the following three cases and the trivial
case of 〈σz(t1)σz(t2)〉 = 〈σz(0)σz(0)〉 = 1 is obvious due to
[σz,H ] = 0.

Case 1. [A,L] �= 0 and [B,L̃(t)] = 0. In this case, let us
set A = aσ+ + bσ−, and B = σz. Then Ã(t) = aσ+eiωS t +
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bσ−e−iωS t and B̃(t) = σz. It is easy to see from Eq. (10)
that Ũ (t) commutes with B̃(t) but anticommutes with Ã(t),
i.e., [Ũ (t),B̃(t)] = 0 and {Ũ (t),Ã(t)} = 0. Using these re-
sults and the fact that U †{n}(t)U {n}(t) = I , we obtain from
Eq. (24)

〈A(t1)B(t2)〉 = −aρ10(0)eiωS t1 TrR[Ũ †{0}(t1)Ũ {1}(t1)R0]

+ bρ01(0)e−iωS t1 TrR[Ũ †{1}(t1)Ũ {0}(t1)R0].

(25)

Substituting the result of Eq. (15) into Eq. (25), we arrive at
the exact two-time CF’s

〈A(t1)B(t2)〉 = e− ∫ t1
0 dτD(τ )(−aρ10(0)eiωS t1 + bρ01(0)e−iωS t1 ).

(26)

Case 2. [A,L] = 0 and [B,L̃(t)] �= 0. In this case, let A =
σz, and B = aσ+ + bσ−. Similar to the calculations in Case 1,
we obtain

〈A(t1)B(t2)〉 = e− ∫ t2
0 dτD(τ )(aρ10(0)eiωS t2 − bρ01(0)e−iωS t2 ).

(27)

The exact two-time CF’s of Eqs. (26) and (27) depend on only
one time variable, t1 or t2, respectively, since one of the system
operator σz(t) = σz(0) is time independent.

Case 3. [A,L] �= 0 and [B,L̃(t)] �= 0. Suppose
A = aσ+ + bσ−, and B = a′σ+ + b′σ−. In this case,
both Ã(t) and B̃(t) anticommute with both Ũ (t) and Ũ †(t).
Furthermore, Ã(t1)B̃(t2) = ab′σ+σ− exp[iωS(t1 − t2)] +
ba′σ−σ+ exp[−iωS(t1 − t2)]. Thus we can obtain from
Eq. (24)

〈A(t1)B(t2)〉 = ab′ρ00(0)eiωS (t1−t2)TrR[Ũ †{0}(t1)Ũ {1}(t1)

× Ũ †{1}(t2)Ũ {0}(t2)R0] + ba′ρ11(0)e−iωS (t1−t2)

× TrR[Ũ †{1}(t1)Ũ {0}(t1)Ũ †{0}(t2)Ũ {1}(t2)R0].

(28)

It is obvious from Eq. (28) that to evaluate the general two-time
CF, we need to take into account the correlations of the
reservoir operators of the evolution operators between different
time periods of [0,t2] and [0,t1] before the trace over the
environment is performed. Using Eqs. (12), (13), and (14),
we get

TrR[Ũ †{0}(t1)Ũ {1}(t1)Ũ †{1}(t2)Ũ {0}
I (t2)R0]

= exp

[
−

∫ t1

0
dτD(τ ) −

∫ t2

0
dτD(τ ) +

∫ t1

0
dτD̃(τ,t2)

]
,

(29)

where

D̃(τ,t2) = 4
∫ t2

0
ds αeff(τ − s). (30)

The term
∫ t1

0 dτD̃(τ,t2) in Eq. (29) describes the cross-time
contribution of the environment CF’s of the reservoir operators
in the evolution operators Ũ {n}(t1) and Ũ †{n}(t2) [or Ũ †{n}(t1)
and Ũ {n}(t2)] of the two different time periods [0,t1] and [0,t2].
We can see this from D̃(τ,t2) of Eq. (30) and in Eq. (29) that

the environment CF αeff(τ − s), defined in Eq. (17), has the
time variable τ in [0,t1] and the time variable s in [0,t2].
On the other hand, the time evolution of the reduced density
matrix (11) is involved with the reservoir operator CF’s in
the evolution operators of only the same time interval. As a
result, it, alone, cannot provide us with the full information to
evaluate the non-Markovian two-time CF, even in the weak
system-environment coupling case. Similarly, we find that
TrR[Ũ †{1}

I (t1)Ũ {0}
I (t1)Ũ †{0}

I (t2)Ũ {1}
I (t2)R0] has the same result

as Eq. (29). Substituting these results into Eq. (28), finally we
arrive at the two-time CF

〈A(t1)B(t2)〉
= exp

[
−

∫ t1

0
dτD(τ ) −

∫ t2

0
dτD(τ ) +

∫ t1

0
dτD̃(τ,t2)

]
× (ab′ρ00(0)eiωS (t1−t2) + ba′ρ11(0)e−iωS (t1−t2)). (31)

This non-Markovian finite-temperature two-time CF, to our
knowledge, has not been presented in the literature.

IV. EVALUATION BY DERIVED NON-MARKOVIAN
FINITE-TEMPERATURE EVOLUTION EQUATIONS

In this section, we will use the derived evolution equations
in Ref. [15] to compute the one-time expectation values
and two-time CF’s to compare with the exact expressions
evaluated in Sec. III. Despite the fact that the evolution
equations in Ref. [15] derived perturbatively, the results
obtained this way for the pure-dephasing spin-boson model
happen to be the same as the exact expressions by the direct
evaluation.

A. Quantum master equation and one-time expectation values

Before going to calculate the CF’s, it is instructive to derive
the master equation of the reduced system density matrix
for the model. After some calculations, we obtain for the
Hamiltonian in the form of Eq. (1) a time-convolutionless
non-Markovian master equation [5,6,24–28] valid to second
order in the system-environment interaction strength

dρ(t)

dt
= 1

ih̄
[HS,ρ(t)] −

∫ t

0
dτ {α(t − τ )[L†L̃(τ − t)ρ(t)

− L̃(τ − t)ρ(t)L†] + β(t − τ )[LL̃†(τ − t)ρ(t)

− L̃†(τ − t)ρ(t)L] + H.c.}, (32)

where α(t − τ ) and β(t − τ ) are defined in Eqs. (4) and
(5), respectively, H.c. indicates the Hermitian conjugate of
previous terms, and an operator with a tilde on the top
indicates that it is an operator in the interaction picture. For the
pure-dephasing spin-boson model, Eq. (32) gives the master
equation of the reduced system density matrix

dρ(t)

dt
= −iωS

2
[σz,ρ(t)] − D(t)

2
[ρ(t) − σzρ(t)σz], (33)

where D(t) is defined in Eq. (16). It is not difficult to show
that the exact expression of the density matrix (18) is the
solution of the master equation (33) although the master
equation is derived perturbatively. Non-Markovian dynamics
usually means that the current time evolution of the system
state depends on its history, and the memory effects typically
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enters through integrals over the past state history. However,
the non-Markovian system dynamics of some class of open
quantum system models may be summed up and expressed as
a time-local, convolutionless form [29] where the dynamics
is determined by the system state at the current time t

only. This time-local, convolutionless class of open quantum
systems may be treated exactly without any approximation.
The quantum Brownian motion model or the damped harmonic
oscillator bilinearly coupled to a bosonic bath of harmonic
oscillators [29–31] is a famous example of this class. The pure-
dephasing spin-boson model considered here also belongs
to this class, and the non-Markovian effect in the master
equation (33) is taken into account by the time-dependent
coefficient D(t) instead of memory integral. This time-local,
convolutionless property and the fact of [L,Hs] = 0 allow
the exact system density matrix Eq. (18) to be obtained from
Eq. (33).

Since the exact solution of the system density matrix
(18) can be calculated from the perturbatively derived master
equation (33), one may expect that the exact non-Markovian
finite-temperature one-time expectation values and two-time
CF’s of the pure-dephasing model can be obtained from the
evolution equation (3). We show below that this is indeed
the case, and at the same time the agreement of the results
demonstrates the validity and practical usage of the evolution
equation (3).

For the pure-dephasing spin-boson model, HS =
(h̄ωS/2)σz, L = σz = L†, and we have L̃{†}(t) = σz. Taking
A = σi , i = x,y,z, in Eq. (2), we obtain straightforwardly the
evolution equations of the single-time expectation values as

d〈σx(t1)〉/dt1 = −D(t1)〈σx(t1)〉 − ωS〈σy(t1)〉, (34)

d〈σy(t1)〉/dt1 = −D(t1)〈σy(t1)〉 + ωS〈σx(t1)〉, (35)

d〈σz(t1)〉/dt1 = 0 (36)

with D(t1) defined in Eq. (16). With proper chosen values for
a, b, c, and d of a general operator A for σi , one can verify
that the exact expression of the expectation value of σi(t1) in
Eq. (21) satisfies Eqs. (34)–(36).

B. Two-time correlation functions

Before using Eq. (3) to calculate the non-Markovian
finite-temperature two-time CF’s, we discuss briefly below
the relation between the QRT and the evolution equation (3).
If the last two terms of Eq. (3) vanish, then the single-time
and two-time evolution equations (2) and (3) will have the
same form with the same evolution coefficients and thus
the QRT will be applicable. The last two terms of Eq. (3)
or more generally the last term of Eq. (17) in Ref. [15]
involve(s) the propagation from τ = 0 to τ = t2, and these
terms would vanish for the CF’s 〈A(t1)B(0)〉 as t2 = 0 in this
case. So the QRT is valid to calculate the CF’s 〈A(t)B(0)〉
of both Markovian and non-Markovian open systems, where
the system-environment density matrix is separable at t = 0.
The QRT is also valid and is often applied to calculate, in
the Markovian weak system-environment coupling case, more
general CF’s 〈A(t2 + τ )B(t2)〉 or equivalently 〈A(t1)B(t2)〉
with t2 �= 0. For example, the QRT is used to calculate the
Markovian steady-state CF’s, and in this case t2 is set to any of
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FIG. 1. (Color online) Time evolutions of the real part of the
system operator CF 〈σx(t1)σy(t2)〉 for four different cases: Markovian
(solid line), non-Markovian using the QRT (dashed line), and non-
Markovian (dot-dashed line) using Eq. (3) and exact operator evalua-
tion (dotted line). Other parameters used are ωS = 1, (kBT /h̄) = 0.1,

 = 5, γ = 0.1, and t2 = 0.2.

the large times when the steady state is reached. This is because
in the Markovian case, the last two terms of Eq. (3) vanish since
the time integration of the corresponding δ-correlated reservoir
CF’s, α(t1 − τ ) ∝ δ(t1 − τ ) and β(t1 − τ ) ∝ δ(t1 − τ ), over
the variable τ in the domain from 0 to t2 is zero as t1 > t2.
On the other hand, the QRT cannot be blindly applied to
calculate 〈A(t1)B(t2)〉 with t2 �= 0 in a general non-Markovian
open system due to the nonvanishing contributions of the cross
correlation of the reservoir operators at two different times: a
later time t1 and an earlier time in the period between 0 and
t2 (see the last two terms of Eq. (3) and also Fig. 1). In other
words, in contrast to the Markovian case, not only the initial
condition 〈A(t2)B(t2)〉 for the two-time evolution equation (3)
but also the equation (3) itself may depend on the choice of
the starting time t2 of the non-Markovian finite-temperature
two-time CF’s. In the steady state, the situation may change
when t2 is in any of the large times where the state and system
expectation values do not change with time any more. In this
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FIG. 2. (Color online) Time evolutions of the real part of the
system operator CF 〈σx(t1)σy(t2)〉 for different values of t2 using non-
Markovian Eq. (3). The results of the time evolutions coincide with
those obtained by the exact operator evaluation. Other parameters
used are ωS = 1, (kBT /h̄) = 0.1, 
 = 5, γ = 0.1. The insets show
the time evolutions of the real part of the expectation values 〈σx(t)〉
and 〈σy(t)〉.
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FIG. 3. (Color online) Time evolutions of the real part of the
system operator CF 〈σx(t1)σy(t2)〉 for four different cases: Markovian
(solid line), non-Markovian using the QRT (dashed line) and non-
Markovian (dot-dashed line) using Eq. (3) and exact operator evalua-
tion (dotted line). Other parameters used are ωS = 1, (kBT /h̄) = 0.1,

 = 5, γ = 0.1, and t2 = 10.

case, the contributions from the last two terms of Eq. (3)
saturate and do not depend on where time t2 is set in the
steady state, and thus both the Markovian and non-Markovian
CF’s may depend only on the time difference (t1 − t2) (see
also Fig. 2). But the nonvanishing contributions from the last
two terms of Eq. (3) would still make the non-Markovian
CF’s deviate from that obtained wrongly using the QRT in
the non-Markovian case or obtained using the QRT in the
Markovian case (see also Fig. 3).

For the time evolutions of system two-time CF’s of the pure-
dephasing spin-boson model, we also consider the following
three cases as in Sec. III. Note that L̃(t) = σz = L̃†(t).

Case 1. [A,L] �= 0 and [B,L̃(t)] = 0. In this case, let A =
σi, i = x,y, and B = σz. By using Eq. (3), it is easy to obtain

d〈σx(t1)σz(t2)〉/dt1 =−D(t1)〈σx(t1)σz(t2)〉 − ωS〈σy(t1)σz(t2)〉,
(37)

d〈σy(t1)σz(t2)〉/dt1 =−D(t1)〈σy(t1)σz(t2)〉+ ωS〈σx(t1)σz(t2)〉.
(38)

In this case, one can see that the evolution equations of
single-time expectation values 〈σi(t1)〉, Eqs. (34) and (35),
have the same forms as the evolution equations of two-time
CF’s 〈σi(t1)σz(t2)〉, Eqs. (37) and (38), respectively. Hence
the QRT is valid in this case. It is easy to check that taking
the derivative of Eq. (26) with respect to t1 with a = b = 1
(i.e., A = σx) and a = −b = −i (i.e., A = σy), one can obtain
the evolution equations for 〈σx(t1)σz(t2)〉 and 〈σy(t1)σz(t2)〉,
exactly the same as Eqs. (37) and (38), respectively.

Case 2. [A,L] = 0 and [B,L̃(t)] �= 0. In this case, let A =
σz and B = σi, i = x,y. By using Eq. (3), we then easily
obtain

d〈σz(t1)σx(t2)〉/dt1 = 0, (39)

d〈σz(t1)σy(t2)〉/dt1 = 0. (40)

Indeed, Eq. (27) satisfies Eqs. (39) and (40), and
〈σz(t1)σi(t2)〉 = 〈σz(t2)σi(t2)〉, independent of t1.

Case 3. [A,L̃(t)] �= 0 and [B,L̃(t)] �= 0. In this case, let
A = σi,i = x, y, and B = σj ,j = x, y. Eq. (3) straightfor-
wardly yields

d〈σx(t1)σy(t2)〉/dt1 =−D(t1)〈σx(t1)σy(t2)〉− ωS〈σy(t1)σy(t2)〉
− D̃(t1,t2)〈σy(t1)σx(t2)〉, (41)

d〈σy(t1)σx(t2)〉/dt1 =−D(t1)〈σy(t1)σx(t2)〉+ ωS〈σx(t1)σx(t2)〉
− D̃(t1,t2)〈σx(t1)σy(t2)〉, (42)

d〈σx(t1)σx(t2)〉/dt1 =−D(t1)〈σx(t1)σx(t2)〉− ωS〈σy(t1)σx(t2)〉
+ D̃(t1,t2)〈σy(t1)σy(t2)〉, (43)

d〈σy(t1)σy(t2)〉/dt1 =−D(t1)〈σy(t1)σy(t2)〉+ ωS〈σx(t1)σy(t2)〉
+ D̃(t1,t2)〈σx(t1)σx(t2)〉, (44)

where D̃(t1,t2) is defined in Eq. (30). The evolution equations,
Eqs. (41)–(44), have different forms as those of single-time
expectation values due to the existence of D̃(t1,t2) terms. As
a result, the QRT does not hold in this case. Again, taking the
derivative of Eq. (31) with respect to t1 with properly chosen
values for a, b, a′, and b′, we arrive at the same evolution
equations as those from Eqs. (41) to (44). Alternatively, solving
the coupled equations, Eqs. (41)–(44), one would obtain the
solutions in a form as Eq. (31).

The agreement between the results obtained by the direct
operator evaluation and those obtained by solving the coupled
evolution equations demonstrates clearly the validity of the
equations (2) and (3), In addition, the easiness to obtain
Eqs. (34)–(36) from the evolution equation (2), and to obtain
Eqs. (37) and (38), Eqs. (39) and (40), and Eqs. (41)–
(44) from the evolution equation (3) illustrates the practical
usage of the non-Markovian finite-temperature evolution
equations (2) and (3).

V. RESULTS AND DISCUSSIONS

To calculate the two important functions D(t) and D̃(t1,t2),
we need to evaluate the environment CF

αeff(t1 − τ ) =
∫ ∞

0
dωJ (ω){coth(h̄ω/2kBT ) cos[ω(t1 − τ )]

− i sin[ω(t1 − τ )]}, (45)

where J (ω) = ∑
λ |gλ|2δ(ω − ωλ) is the spectral density of

the environment. We may consider any spectral density to
characterize the environment, but for simplicity we consider
an ohmic bath with exponential cut-off function as

J (ω) = γω exp(−ω/
), (46)

where 
 is the cut-off frequency and γ is a dimensionless
constant characterizing the interaction strength to the environ-
ment. At the zero temperature, the function D(t) and D̃(t1,t2)
have simple analytical forms:

D(t1) = 4γ

2t1

1 + 
2t2
1

, (47)

D̃(t1,t2) = 4γ
2t2[1 − 
2t1(t1 − t2) − i
(2t1 − t2)]

(1 + 
2t2
1 )[1 + 
2(t1 − t2)2]

. (48)
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Consequently, the one-time expectation values and the two-
time CF’s also have simple analytical expressions. For
example, the zero-temperature two-time CF’s of Eq. (26) in
case 1 and Eq. (31) in case 3 are

〈A(t1)B(t2)〉
= (

1 + 
2t2
1

)−2γ
[−aρ10(0)eiωS t1 + bρ01(0)e−iωS t1 ] (49)

and

〈A(t1)B(t2)〉 = [1 + 
2(t1 − t2)2]−2γ

× e
−4γ i(arctan(
(t1−t2))+arctan(
t2)− 
t1

1+
2 t22
)

× [ab′ρ00(0)eiωS (t1−t2) + ba′ρ11(0)e−iωS (t1−t2)],

(50)

respectively.
Figure 1 shows the the time evolutions of the real part of

the system operator CF 〈σx(t1)σy(t2)〉 at a finite temperature of
(kBT /h̄) = 0.1ωS . The time evolutions of the CF 〈σx(t1)σy(t2)〉
are obtained in four different cases: the first is in the Markovian
case, the second is in the non-Markovian case with a finite
cut-off frequency but wrongly applying the QRT method
[i.e., neglecting the last two terms of Eq. (3) or equivalently
neglecting the terms with D̃(t1,t2) in Eqs. (41)–(44)], the
third is in the non-Markovian case using the derived evolution
equations (41)–(44), and the fourth is the exact model using
the direct operator evaluation. The initial environment state is
in the thermal state and the system state is arbitrarily chosen
to be |�〉 = (

√
3

2 |e〉 + 1
2 |g〉). The Markovian case in Fig. 1

is described as follows. With the finite cut-off environment
spectral density and with the system parameters used in Fig. 1,
the Markovian approximation may actually not be valid. If,
however, we still assume that the environment correlation
time in Eq. (45) is much smaller than all of the system
time scales (i.e., Markovian approximation), then we may
replace the upper time integration limit in Eq. (16) to infinity
(i.e., t → ∞). As a result, the Markovian master equation
or evolution equations can be obtained by just replacing the
time-dependent coefficient D(t) in Eq. (33) or in Eqs. (34)
and (35) by its long-time limit value. At a finite temperature,
the Markovian (time-independent) coefficient from Eqs. (16),
(45), and (46) can be written as

D∞ = lim
t→∞ D(t) = 4γπkBT /h̄. (51)

We may see that D∞ → 0 as the temperature T → 0. This is
because in the Markovian limit, the decoherence or dephasing
is strongly dependent on the infrared behavior (ω → 0 modes)
of the environment in the pure dephasing model. Since the
spectral density considered in Eq. (46) is ohmic, we then have
J (ω → 0) = 0, and thus D∞ → 0 at T = 0. This is in contrast
to other quantum open system models with a resonant type
of system-environment coupling, in which the environment
modes near the system resonance frequency are relevant to the
relaxation and decoherence. We can see from Fig. 1 that the
difference between the results of the Markovian QRT case and
the non-Markovian QRT case is visible, while the two-time
CF’s obtained by the non-Markovian evolution equation (3)
and by the exact operator evaluation are identical for the pure-
dephasing spin-boson model. The perfect agreement of the

results between the non-Markovian evolution equation case
and the exact operator evaluation case, and the significant
difference in the short time region between the non-Markovian
evolution equation case and the wrong non-Markovian QRT
case demonstrate clearly the validity and practical usage of
the evolution equation (3). All of the four cases approach one
another to zero in the long time region.

Figure 2 investigates the dependence of the exact two-time
system operator CF on the time variable t2. We see that the
time evolutions of the real part of the CF 〈σx(t1)σy(t2)〉 as a
function of t = t1 − t2 for the values of t2 � 1 behave quite
differently, but they approach one another for t2 � 2. When
t2 � 5, the steady state is reached as indicated in the time
evolutions of the expectation values 〈σx(t)〉 and 〈σy(t)〉 shown
in the insets of Fig. 2. In this case, the time evolutions of the
two-time CF are independent of the choices of the starting
time of t2 in the steady state and depend only on the time
difference t = t1 − t2 for the parameters used in Fig. 2. This
can also be seen from the analytical expression of the exact
zero-temperature CF (50). The zero-temperature CF (50) is
a function of variables t1 and t2, but for a large value of
the cut-off frequency 
, when t2 is reasonably large, the
CF depends almost only on t = t1 − t2. Figure 3 shows the
time evolutions of the real part of the steady-state (t2 = 10)
system operator CF 〈σx(t1)σy(t2)〉 obtained in four different
cases as in Fig. 1. As expected, the non-Markovian evolution
equation case coincides with the exact operator evaluation
case. They are, however, significantly different from the
wrong non-Markovian QRT case and Markovian QRT case,
even though the time evolutions of the steady-state two-time
CF’s depend only on the time difference t = t1 − t2. One
can also see that the CF’s of the Markovian QRT and the
non-Markovian QRT cases approach each other much more
closely in the steady state than in Fig. 1.

VI. CONCLUSION

We have evaluated the exact non-Markovian finite-
temperature one-time expectation values and two-time CF’s
of the system operators for the exactly solvable pure-dephasing
spin-boson model. The evaluation has been performed in two
ways, one by exact direct operator technique without any
approximation and the other by the evolution equations (2) and
(3) valid to second order in the system-environment interaction
Hamiltonian. Since the non-Markovian dynamics of the
pure-dephasing spin-boson model can be cast into a time-local,
convolutionless form and [L,Hs] = 0, the results obtained by
the second-order evolution equations (2) and (3) turn out to be
exactly the same as the exact results obtained by the exact direct
operator evaluation. The agreement of the results between the
two different approaches demonstrates clearly the validity of
the evolution equations (2) and (3). Furthermore, it is easy to
obtain Eqs. (37) and (38), Eqs. (39) and (40), and Eqs. (41)–
(44) from the evolution equation (3). Other non-Markovian
open quantum system models that are not exactly solvable can
be proceeded in a similar way to obtain the time evolutions
of their two-time system operator CF’s valid to second order
in the system-environment interaction Hamiltonian. This
illustrates the practical usage of the evolution equations. It is
thus believed that the evolution equations (2) and (3), which
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generalize the QRT to the non-Markovian finite-temperature
case will have applications in many different branches of
physics.
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APPENDIX: DERIVATION OF TIME EVOLUTION
OPERATOR

To show the time evolution operator of Eq. (10), we begin
from Eq. (8) with H̃I (t) given by Eq. (9). Since H̃I (t) in
Eq. (9) contains only two major terms, which are, respectively,
proportional to aλ and a

†
λ, one is tempting to evaluate the

time-ordered exponent by the reverse operator identity of
Eq. (12)

eA+B = eAeBe− 1
2 [A,B], (A1)

valid for the commutator [A,B] commuting with both A

and B. As the exponent operates at different times and
[H̃I (t),H̃I (τ )] �= 0, it is not correct to use the precise form of
Eq. (A1). The proper procedure done in [20,32] is to separate
the two terms of Eq. (9) in the time-ordered exponent of

Eq. (8) by

Ũ (t) = exp

(
−i

∫ t

0
dτ

∑
λ

gλσze
iωλτ a

†
λ

)

× T
{

exp

[
− i

∫ t

0
dτei

∫ τ

0 ds
∑

λ gλσze
iωλsa

†
λ

×
(∑

λ

gλσze
−iωλτ aλ

)
e−i

∫ τ

0 ds
∑

λ gλσze
iωλsa

†
λ

]}
,

(A2)

where T is the time-ordering operator. Then using the identity
e−φa

†
λaλe

φa
†
λ = aλ + φ in the exponent of the time-ordered

term in Eq. (A2), we obtain

Ũ (t) = exp

(
−i

∫ t

0
dτ

∑
λ

gλσze
iωλτ a

†
λ

)

× exp

(
−i

∫ t

0
dτ

∑
λ

gλσze
−iωλτ aλ

)

× exp

[
−

∫ t

0
dτ

∫ τ

0
ds

∑
λ

|gλ|2e−iωλ(τ−s)

]
. (A3)

We have dropped the time-ordering operator in Eq. (A3).
Using the operator identity of Eq. (12) to combine the first
two terms in Eq. (A3), we then obtain Eq. (10). Note that
the first term in Eq. (10) is just exp[−(i/h̄)

∫ t

0 dτH̃I (τ )] if
the time-ordering operator for Ũ (t) is not performed. The
correct time-ordering procedure generates extra phase factors
in Eq. (A3) and thus in Eq. (10).
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