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Self-similar spectral structures and edge-locking hierarchy in open-boundary spin chains
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For an anisotropic Heisenberg (XXZ) spin chain, we show that an open boundary induces a series of
approximately self-similar features at different energy scales, high up in the eigenvalue spectrum. We present a
nonequilibrium phenomenon related to this fractal structure, involving states in which a connected block near
the edge is polarized oppositely to the rest of the chain. We show that such oppositely polarized blocks can be
“locked” to the edge of the spin chain and that there is a hierarchy of edge-locking effects at various orders of the
anisotropy. The phenomenon enables dramatic control of quantum-state transmission and magnetization control.
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I. INTRODUCTION

Rapid advances in nanostructure and cold-atom technolo-
gies have ensured that explicit temporal evolution of many-
body quantum states far from equilibrium are no longer of
academic interest only, as was the case in the traditional
bulk solid-state context. In such novel nonequlibrium settings,
spectral features far from the ground state can be as important
as the properties of low-lying excitations. Partly motivated
by these new possibilities, there has been intense theoretical
interest in the control of quantum states, for example, quantum-
state transfer through spin chains [1].

In this work, we present and analyze a phenomenon associ-
ated with the high-energy spectrum of open-boundary spin- 1

2
chains governed by an anisotropic Heisenberg interaction, that
is, open XXZ chains. The open boundary causes a hierarchy of
self-similar structures at different energy scales. This “fractal”
structure is not present in the periodic spin chain but pops
into existence when a single bond is severed to produce
an open chain. We demonstrate an associated dynamical
effect—a block of spins anti-aligned to an otherwise polarized
background can be spatially “locked” if placed appropriately
at or near the edge. We reveal the sense in which these
configurations are close to being stationary states of the
Hamiltonian. The presence of such stable arrangements open
up simple but powerful possibilities for controlling spin state
(magnetization) transport through operations on a few spins.

The XXZ chain is a basic model of condensed-matter
physics and has long been the subject of sustained theoretical
activity. The open chain has received far less detailed attention
than the periodic case, and even less material is available for
physics far from the ground state. Localization phenomena
and intricate spectral structures in the XXZ chain are thus
obviously of fundamental interest. In addition, the XXZ model
has recently been shown to describe Josephson junction arrays
of the flux qubit type [2] and also may be realizable in optical
lattices [3] or with polaritons in coupled arrays of cavities [4].
The mechanisms for quantum control uncovered by our results
should be possible to implement in one of these setups in the
foreseeable future.

The open antiferromagnetic XXZ chain with L sites is
described by the Hamiltonian

HXXZ = Jx

L−1∑

j=1

(
Sx

j Sx
j+1 + S

y

j S
y

j+1 + �Sz
jS

z
j+1

)
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The SzSz term acts as an “interaction,” penalizing alignment of
neighboring spins. The in-plane terms (Sx

j Sx
j+1 + S

y

j S
y

j+1) =
1
2 (S+

j S−
j+1 + S−

j S+
j+1) provide “hopping” processes. Since

HXXZ preserves total Sz, the dynamics is always confined to
sectors of fixed numbers N↑ of up-spins. We mostly consider
the large � regime, where the localization phenomena to be
described are most robust. Energy and time are measured in
Jz = Jx� and J−1

z = (Jx�)−1 units. Hopping is an O(�−1)
process in these units.

We first describe in Sec. II the dynamical phenomenon,
namely, the hierarchy of edge-locked configurations. In
Sec. III, we describe the effect of the open boundary on the
spectrum, in particular the self-similar structure and how this
structure explains the edge-locking effects. Section IV explains
how the hierarchy of spectral separations can be understood
from the competition between two mechanisms in degenerate
perturbation theory. Section V points out possibilities for
using the edge-locking phenomena as the basis for control
mechanisms of magnetization transport.

II. EDGE-LOCKED STATES

In Fig. 1, we show some example configurations, that is,
positions of up-spin blocks near the edge in a background
of down-spins. In the configurations shown on the left, the
↑ blocks are locked by the edge at large �, while the ↑’s
in the right-column configurations are not edge locked. In
dynamic terms, the configurations in the left column are stable,
while those shown on the right decay away. Of course, stability
should be understood in terms of time scales relevant to the
edge-locking physics and are not absolute.

The simplest and most robust edge states are those in which
the block starts at the very edge site, such as configurations
a through d in Fig. 1. Even a single ↑ spin placed in this
way is localized at the edge. For N↑ up-spins placed this way,
we call these configurations |LN↑,(1)〉 or |RN↑,(1)〉, depending
on whether the block is at the left edge or right edge of
the chain. Figs. 1(a) through 1(d) are thus |L1,(1)〉 through
|L4,(1)〉. The subscript (1) indicates that the ↑ blocks start at site
j = 1.

The second class of edge states are those where the block
starts at the j = 2 site (or ends at j = L − 1). We call these
|LN↑,(2)〉 or |RN↑,(2)〉. For such states to be edge locked, one
needs blocks of three or more ↑’s, that is, N↑ � 3. This
is indicated in Fig. 1 by showing |L1,(2)〉, |L2,(2)〉 on the
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FIG. 1. (Color online) A few ↑ spins at the left edge of an almost
polarized spin chain. The leftmost ten spins are shown; the remaining
spins to the right are all ↓’s. The configurations on the left (a–f) are
edge locked, while those on the right (g–l) are not.

right column (not edge locked) as g and h, and |L3,(2)〉,
|L4,(2)〉 on the left column (edge locked) as e and f. Similarly,
blocks starting at j = 3 (or ending at j = L − 2) are stable
only for N↑ � 5. Generalizing, state |LN↑,(k)〉 having a block
starting at site k will be stable via edge-locking only if
N↑ � (2k − 1).

The edge-locking effects are due to spectral separation
of the stable states from other states (Sec. III), which
prevents hybridizations that might enable propagation of the
oppositely polarized blocks. The spectral separation can be
understood using perturbative arguments at small �−1. In
the hierarchy described previously, the first class of edge
locking (blocks starting at the edge site) is a zeroth-order
effect, while edge locking at the second level (blocks starting
at next-to-edge site) is an O(�−2) effect. Generally, the
level-k edge locking of this hierarchy is an O(�−2(k−1))
effect.

A. Temporal dynamics

Figure 2 demonstrates the edge-locking phenomenon
through explicit time evolution of several configurations. The
top row shows the evolution of N↑ = 2 states |L2,(1)〉 and
|L2,(2)〉. The first is an edge-locked state and shows very little
evolution, while the second is not locked, and thus the ↑↑
block propagates to the right.

The lower panels show N↑ = 3 states. Now there are two
configurations where the ↑↑↑ block is locked by the left edge.
We have chosen a moderate value of � so that the O(�−2)
locked state |L3,(2)〉 can be clearly seen to have weaker locking
than the O(�0) locked state |L3,(1)〉. [Figure 2(d) has more
dynamics and larger oscillations than 2(c).] Obviously, the
higher order locking can be made more robust by using a
larger �.

Figure 2 shows results for L = 18 sites, but a longer chain
displays identical time evolutions at the time scales shown.
The size plays a role only when the propagating block meets
the other edge and gets reflected. It is clear that the unlocked
blocks in Figs. 2(b) and 2(e) are still propagating to the right
at the time scales shown.
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FIG. 2. (Color online) Dynamics of open XXZ chain (� = 4),
initiated with N↑ = 2 or N↑ = 3 oppositely polarized spins near the
left edge. Initial configurations are shown on top of each panel. In the
edge-locked cases (a, c, d), local spin values 〈Sz

j 〉 do not vary much
from their initial values.

III. SPECTRAL STRUCTURES

The hierarchy of edge-locking effects presented in Sec. II
is intimately related to (and is due to) intricate structures in the
eigenvalue spectrum of the open XXZ chain. In this section,
we describe the hierarchy of spectral separations and explain
how these structures lead to the edge-locking hierarchy.

A. Periodic versus open chain

Figure 3 shows energy spectra in the N↑ = 3 sector. At
large �, the spectrum separates into well-separated bands. In
the periodic chain, the bands correspond to cases where the
three ↑ spins are next to each other (top band), two are next
to each other (middle band), or no two ↑ spins neighbor each
other (bottom band). In general, with N↑ (< L/2) up-spins in
a periodic large-� chain, the spectrum is separated into N↑
bands. The topmost band is maximally ferromagnetic and has
the minimal number (two) of favorable ↑-↓ bonds and (L − 2)
unfavorable (↑-↑ or ↓-↓) bonds.

Figure 3(b) shows the effect of open boundaries. The
spectrum described previously for the periodic chain now
acquires an explosion of additional features. The periodic-
chain bands get split, because the edge allows additional
possibilities for numbers of favorable and unfavorable bonds.
In addition, several of these new bands have additional
substructures. While these structures are all interesting and
deserve to be analyzed in detail, in this work we are only be
concerned with the top two bands of the open chain, which
both emerge from the topmost band of the periodic chain and
hence are related to periodic-chain configurations with all ↑
spins in a connected block.

B. Spectral explanation of edge locking

The topmost band has only two states, and these are the most
obvious edge-locked states. At �−1 = 0, this is a degenerate
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FIG. 3. (Color online) Energy spectra for (a) periodic XXZ chain and (b) open XXZ chain. In each case, L = 13, N↑ = 3, and � = 10.
Compared to the periodic chain, the open-chain spectrum has extra features, some of which are highlighted in insets. With N↑ = 3, there are
two classes of edge-locked states, the two states of the top band (main plot) and two of the four states separating out from the next band (upper
inset). The lower insets show additional spectral structures induced by the edge.

two-dimensional manifold spanned by |LN↑,(1)〉 and |RN↑,(1)〉.
At finite �−1, other configurations contribute to the two states,
but for small enough �−1, the eigenstates are dominated by
|LN↑,(1)〉 ± |RN↑,(1)〉.

The edge block in |LN↑,(1)〉 is strongly locked because this
state is hybridized mainly with |RN↑,(1)〉. From |LN↑,(1)〉, it is
energetically possible to tunnel into the |RN↑,(1)〉 state, but such
a process is exponentially suppressed at large chain lengths.
Thus |LN↑,(1)〉 can be regarded as stationary for practical
purposes, as Figs. 2(a) and 2(c) demonstrate dynamically.

The other edge-locking effects are weaker and can be seen
by zooming into the second band from the top, which consists
of configurations with two favorable bonds [Fig. 3(b), upper
inset]. Four states separate out from the rest of this band,
with O(�−2) splitting. For N↑ = 3, these four states are linear
combinations of |L3,(2)〉, |R3,(2)〉, and

|↑↑↓↓↓ . . . ↓↓↓↑〉 and |↑↓↓↓ . . . ↓↓↓↑↑〉.
The rest of the band is dominated by linear combinations of the
remaining configurations containing the ↑ spins in connected
blocks farther from the edge.

Due to the spectral separation, the four states are not
hybridized with the remaining block configurations. This locks
the |L3,(2)〉 and |R3,(2)〉 configurations to their respective edges,
because from any of these states, tunneling to the other three
of the submanifold is a very high-order process.

C. Fractal hierarchy in spectrum

For N↑ = 3, only the first two classes of edge-locked states
are present, as indicated by the two solid arrows in Fig. 3(b). An
additional level of the hierarchy becomes available with each
increase of N↑ by two. The associated spectral separations
can be seen by successively zooming in within the next-to-
top band. Figure 4 (left four panels) shows this for N↑ = 8,
where four edge-locked configurations appear. Figure 4 (right)
displays the associated gaps scaling as δk ∼ �2k−1.

For large N↑ and long chains (L > 2N↑), the same structure
of four states separating from the rest can be seen at many

different energy scales by successively zooming in, and the
successive structures become more self-similar, that is, a
fractal structure emerges in the large-N↑, large-L, limit.

IV. PHYSICAL REASON FOR SPECTRAL SEPARATIONS

The spectral separation of the top two states is relatively
trivial: |LN↑,(1)〉 and |RN↑,(1)〉 are the only configurations
having a single favorable anti-aligned bond and therefore
have higher energy than the next (L − 2) states which involve
configurations with two favorable bonds.

The higher levels of the spectral-separation hierarchy are
more subtle and can be understood through power counting
based on degenerate perturbation theory around the Ising
(�−1 = 0) limit. We give a brief explanation for the second
level, namely the separation of states |LN↑,(2)〉 and |RN↑,(2)〉
from the states |LN↑,(k)〉 with 2 < k < (L − N↑).

At �−1 = 0, the configurations with two favorable bonds
are all degenerate. At small finite �−1, these spread out to
form the next-to-top band. The hybridization of these levels
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FIG. 4. (Color online) Left: hierarchy of subband splittings seen
by zooming in successively. Here N↑ = 8 (L = 20, � = 10), so the
first four levels of the hierarchy are present. For large N↑ and L, the
splitting structures are self-similar. Right: Energy splittings scale as
δ1 ∼ �0, δ2 ∼ �−2, δ3 ∼ �−4, and δ4 ∼ �−6.
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happens at order �−N↑ , because N↑ hops are required to
connect configurations |LN↑,(k)〉 and |LN↑,(k+1)〉, for example,

|L3,(k)〉 = (S+
k+2S

−
k+3)(S+

k+1S
−
k+2)(S+

k S−
k+1)|L3,(k+1)〉

for N↑ = 3. Thus, the spreading or dispersion of the next-to-
top band is of order �−N↑ .

On the other hand, since each |LN↑,(k)〉 is connected to itself
by two hops, for example,

|LN↑,(k)〉 = (S+
k S−

k−1)(S+
k−1S

−
k )|LN↑,(k)〉,

the states acquire energy shifts at order �−2. Considering the
energies of the intermediate states in this process, one can see
that the states |LN↑,(2)〉 and |RN↑,(2)〉 have a different energy
shift compared to the rest, due to the edge. For example, the
intermediate state in this process for |L3,(2)〉 is |↑↓↑↑↓↓↓ . . .〉,
which has an ↑ at the edge, while the intermediate state
in the case of |L3,(k>2)〉 is of type |↓ . . . ↓↑↓↑↑↓↓↓ . . .〉,
where the lone ↑ is in the interior. The intermediate states
have energies differing by ∼�/2 due to differing numbers
of favorable bonds. This leads to different O(�−2) shifts for
|L3,(2)〉 compared to that for |L3,(k>2)〉.

This O(�−2) separating effect competes with the O(�−N↑ )
hybridization. The separating effect wins only for N↑ > 2,
which is why the second level of the spectral gap hierarchy
exists only for N↑ > 2.

The argument is readily extended to higher stages of the
hierarchy. Blocks starting at site k have an O(�−2(k−1)) shift
distinct from the shift of the farther blocks and hence will be
separated from the band if 2(k − 1) < N↑.

V. QUANTUM CONTROL PROTOCOLS

The edge-locking phenomenon provides many opportuni-
ties for controlling the evolution and transport of magnetiza-
tion, provided that the experimental realization of the XXZ
chain allows single-site (or few-site) addressing. We point out
the most obvious possibilities.

If single-site spin-flipping probes (π pulse) can be imple-
mented, this can be used as a quantum switch to release a
locked block. For example, by flipping the first spin of the
locked block in |L3,(1)〉, one gets the state |L2,(2)〉, in which
the two-site block is not locked [Fig. 2(h)] and so starts
propagating. Similarly, by starting with a five- or six-site
oppositely polarized block at the edge, applying a π pulse
on the first two sites initiates the transmission of a signal
consisting of a block of spins anti-aligned to the background.
Once the signal reaches the other edge, the block could also
be locked to the other edge by π pulsing one or two spins at
the other edge at the appropriate time.

More complex dynamics can be launched by applying a
π pulse to a site internal to the locked block, for example, by
flipping the second site of the locked |L4,(1)〉 configuration. The
resulting state ↑↓↑↑↓↓↓↓ . . . has the following dynamics: the
↑ at site 3 moves to site 2 so that a two-site ↑↑ block then
stays locked to the edge, while a third ↑ propagates to the
right. While a complete explanation involves the lower energy
bands, which are beyond the scope of this article, the tendency
to lock blocks at the edge is clearly seen here too.

It is remarkable that these control mechanisms for magne-
tization transport do not require fine-tuned or spatially varying
interactions, as is common in the quantum-state transfer
literature [1]. The relevant physics here arise simply due to
an open edge.

VI. DISCUSSION

In this work, we have presented a hierarchy of self-similar
spectral separations in the open XXZ chain with large Ising
anisotropy. Associated with these spectral structures is a
hierarchy of edge-locking effects, which can be exploited for
the control of magnetization transport if single-site addressing
can be implemented in an XXZ chain realization.

A. Comments on the self-similar structures

In general, one can expect that at large � each eigenenergy
can be expanded separately in �−1, so that structures at every
scale (every order in �−1) might be expected to be generic.
However, as we have seen, in periodic chains the contributions
at every higher order tend to be the same for each eigenstate
within a band, so no structures appear. The presence of an
edge creates an opportunity to have different contributions for
different eigenstates, leading to subband structures at many
different scales.

We have used the word “fractal” in the colloquial sense,
where the word describes any self-similar structure. A more
rigorous usage would involve consideration of the fractal
dimension of the set under consideration. Unfortunately, for
discrete sets, fractal dimensions are often ambiguous and can
have different values for different definitions. In our case, the
set under question has points separated by distances of order
1, x, x2, x3, . . . (x = �−2). The box-counting dimension
(Minkowski-Bouligand dimension) is zero for this set, but
it is not ruled out that another common definition of fractal
dimension could give a nonzero value.

B. Itinerant models

Edge-related localization and spectral separation were
reported previously in itinerant models [5,6]. The physics
in Refs. [5,6] correspond to only the second level of the
hierarchy reported here. The first level is absent in those
itinerant models. To the best of our knowledge, the existence
of an entire fractal structure and the associated dynamical
hierarchy, arising from severing a single bond of the periodic
chain, has never been noted. A similar hierarchy presumably
exists also in the itinerant models but has yet to be studied.

The XXZ chain model is generally considered to be
equivalent to the spinless fermion model with nearest-neighbor
couplings. However, if the interaction is of V nini+1 form as
in Ref. [6] (ni are site occupancies), the spectral structure
associated with open-chain edge localization is strikingly
different from the XXZ chain. The physics becomes identical
if one uses the V (ni − 1

2 )(ni+1 − 1
2 ) form, which involves

interactions between unoccupied sites.

C. Experimental realizations

The most promising route toward observing and exploiting
the reported phenomena arguably involves coupled optical-
cavity arrays [4,7]. In the past few years, there has been
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an active effort toward designing a range of lattice models
based on coupled photon cavities, each doped with atoms.
Neighboring cavities are coupled through intercavity photon
tunneling, and the intracavity interplay between the atomic
levels and photon modes determines the type of interaction.
In particular, Ref. [4] has presented a scheme to realize an
XXZ Hamiltonian, using atoms with a V -configuration level
structure in resonance with the cavity. It may be expected that
such a system can be realized in the laboratory within the time
scale of a decade or so. A particular advantage of such a setup
would be that each cavity can be individually driven by external
lasers, thus implementing single-site addressing, which is
essential for protocols like the quantum switch described in
Sec. V.

Another possible implementation is through Josephson
junction arrays, which in some arrangements (persistent-
current qubits [8,9]) are well described by an XXZ Hamil-
tonian, as detailed in Ref. [2]. Such arrays could be prepared
in nonequilibrium initial states and single-qubit addressing
should be straightforward, and thus could also be ideal for
exploration of the physics described here.

The more traditional realization of XXZ chains are bulk
materials with chain structures. There are several compounds
whose spin physics are reasonably well described by � > 1
XXZ Hamiltonians, such as CsCoCl3 and TlCoCl3 with � ∼
7 [10,11], and BaCo2V2O8 with � ∼ 2 [12]. Unfortunately,
single-site addressing is generally not feasible, and nonequi-
librium states generally relax rapidly to the ground state in
bulk materials. Nevertheless, it may still be possible to probe
the physics presented in this article. With the spins polarized
completely by a magnetic field above the saturation threshold,
a localized excitation (through neutrons or laser pulse) could
depolarize a few sites, moving the system to a magnetization
sector where edge states can be relevant. By applying an
excitation near one end of the material, one can watch for
response at the other end, which would indicate whether the

excited block is locked or propagating. The recent experiments
described in Ref. [13] provide a promising step in the direction
of laser excitation followed by transport, although the focus
there was on heat transport.

Finally, there is the possibility of using optical lattices to
realize spin Hamiltonians in general [3,14] and XXZ lattices
in particular [3]. An advantage of such setups would be
the optical tunability of spin couplings. Such a cold-atom
realization would have additional complications of realizing a
well-defined edge and accounting for harmonic traps. Both
these issues could in principle be mollified through trap-
shape manipulation; however, this is not a well-developed
technology. It might therefore be interesting to calculate how
well the interaction-induced edge-locking phenomena survive
when the sharp edge is replaced by a smoother boundary.

D. Open issues

This work raises several issues demanding further inves-
tigation. One expects nonequilibrium dynamical effects and
possibly additional localization phenomena associated with
the substructures of the lower bands (Fig. 3), which are yet
to be explored. Depending on the experimental realization(s)
that become available, the effects of terms beyond the XXZ
Hamiltonian relevant for the particular realization need to be
analyzed, and new control protocols can be designed for the
site-addressing methods that are possible. Finally, because the
XXZ model is Bethe ansatz solvable even with open boundary
conditions [15], it remains an open problem to find out how
the fractal subband structures in the high-energy spectrum are
reflected in the Bethe ansatz root structure.
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