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Gauge-invariant hydrogen-atom Hamiltonian
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For quantum mechanics of a charged particle in a classical external electromagnetic field, there is an apparent
puzzle that the matrix element of the canonical momentum and Hamiltonian operators is gauge dependent.
A resolution to this puzzle was recently provided by us [X.-S. Chen et al., Phys. Rev. Lett. 100, 232002
(2008)]. Based on the separation of the electromagnetic potential into pure-gauge and gauge-invariant parts,
we have proposed a new set of momentum and Hamiltonian operators which satisfy both the requirement of
gauge invariance and the relevant commutation relations. In this paper we report a check for the case of the
hydrogen-atom problem: Starting from the Hamiltonian of the coupled electron, proton, and electromagnetic
field, under the infinite proton mass approximation, we derive the gauge-invariant hydrogen-atom Hamiltonian
and verify explicitly that this Hamiltonian is different from the Dirac Hamiltonian, which is the time translation
generator of the system. The gauge-invariant Hamiltonian is the energy operator, whose eigenvalue is the energy of
the hydrogen atom. It is generally time dependent. In this case, one can solve the energy eigenvalue equation at any
specific instant of time. It is shown that the energy eigenvalues are gauge independent, and by suitably choosing
the phase factor of the time-dependent eigenfunction, one can ensure that the time-dependent eigenfunction
satisfies the Dirac equation.
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I. INTRODUCTION

In quantum mechanics, the momentum and Hamiltonian
are the fundamental physical quantities of a system. The
momentum (Hamiltonian) operators are the space (time)
translation generators of the system. The momentum operators
satisfy the canonical momentum commutation relations.

Gauge invariance has been recognized as a first principle
through the development of the standard model. For a charged
particle in a classical external electromagnetic field, the
gauge-invariance principle requires that the matrix element
of any physical observable of the system should be gauge
invariant. However, there are apparent puzzles concerning
the momentum and Hamiltonian operators of the charged
particle. For example, the expectation value of the Hamiltonian
of the hydrogen atom is gauge dependent under a time-
dependent gauge transformation [1]. The matrix element of
the canonical momentum operator is also gauge dependent.

A resolution to this puzzle was recently given by us in [2]
(see X.-S. Chen et al., 2008). The key idea of our resolution
is to separate the electromagnetic potential into pure-gauge
and gauge-invariant parts. Based on this separation, we have
proposed a new set of momentum and Hamiltonian operators
which satisfy both the requirement of gauge invariance and the
relevant commutation relations.

In the present paper, following our previous work, we
show an explicit check for the case of the hydrogen-atom
problem: Starting from the total Hamiltonian of the coupled
electron, proton, and electromagnetic field, under the infinite
proton mass approximation, we derive the gauge-invariant
Hamiltonian of the hydrogen atom and verify the difference
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between this Hamiltonian and the time translation generator,
the Dirac Hamiltonian.

In Sec. II, we describe the conflict between gauge invariance
and canonical quantization of the momentum and Hamiltonian
operators for a charged particle in an external electromagnetic
field and our resolution to this problem. In Sec. III, we give
the explicit check for the case of the hydrogen-atom problem.
The last section provides a summary.

II. GAUGE INVARIANCE AND CANONICAL
QUANTIZATION OF THE MOMENTUM

AND HAMILTONIAN OPERATORS

In classical mechanics, the canonical momentum and
Hamiltonian for a nonrelativistic particle in an external
electromagnetic field Aµ are

�p = m�v − e �A, H = 1

2m
( �p + e �A)2 − eA0, (1)

where the charge of the particle is −e. These two dynamical
variables are gauge dependent and so are not observables
in classical gauge theory. After quantization, the momentum
�p is quantized as �p = −i �∇ (in coordinate representation),
irrespective of which gauge is chosen, even though the classical
canonical momentum is gauge dependent. The Hamiltonian is
quantized by replacing �p with −i �∇. The quantized momen-
tum operators satisfy the canonical momentum commutation
relations [pi,pj ] = 0.

After a gauge transformation,

ψ ′ = e−ief (x)ψ, A′µ = Aµ − ∂µf (x), (2)
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the expectation value of the foregoing operators transform as
follows:

〈ψ ′| �p|ψ ′〉 = 〈ψ | �p|ψ〉 − e〈ψ | �∇f |ψ〉,
(3)

〈ψ ′|H ′|ψ ′〉 = 〈ψ |H |ψ〉 + e〈ψ |∂f
∂t

|ψ〉.
The expectation values of these two operators are gauge depen-
dent. Therefore these expectation values are not measurable
and hence these operators are not observables.

The same problem also exists in relativistic quantum me-
chanics. The gauge dependence of the expectation value of the
Hamiltonian of the electron in an external electromagnetic field
under a time-dependent gauge transformation was discussed
in [1].

To resolve the puzzle of gauge invariance of the expectation
value of canonical momentum, one introduces the gauge-
invariant operator

�P = �p + e �A. (4)

It is easy to check that the expectation value of this operator
is gauge invariant. However, the commutators between the
components of �P are

[P i ,Pj ] = ie(∂iAj − ∂jAi) = ieF ij , (5)

therefore �P does not satisfy the Lie algebra of canonical
momentum, so it cannot be the proper momentum opearator.

A resolution to this problem is given by us in [2]. Our idea
is to seek a unique separation Aµ = A

µ
pure + A

µ

phys, with A
µ
pure

a pure-gauge term having the same transformation property as
the full Aµ and giving null field strength, and A

µ

phys a physical
term which is gauge invariant. The condition that Apure gives
null field strength reads

∂µAν
pure − ∂νAµ

pure = 0. (6)

This equation cannot fix Apure uniquely. One needs to find an
additional condition to fix it. The spatial part of Eq. (6) is

�∇ × �Apure = �0. (7)

A natural choice of the additional condition is

�∇ · �Aphys = 0. (8)

That is, �Aphys and �Apure are the transverse component �A⊥ and
longitudinal component �A‖, respectively. The time component
A0 can be decomposed in the same manner. From the condition
F i0

pure = 0, one obtains

∂iA
0
phys = ∂iA

0 + ∂t

(
Ai − Ai

phys

)
. (9)

From Eq. (9) one can derive

A0
phys =

∫ x

−∞
dxi

(
∂iA

0 + ∂tA
i − ∂tA

i
phys

)
. (10)

(Here no summation over the index i is implied.)
Based on the preceding gauge field decomposition, we

introduce another momentum operator:

�ppure = �p + e �Apure. (11)

This operator satifies both the requirement of gauge invariance
(because �Apure has the same gauge transformation property as

the full �A) and the Lie algebra for the canonical momentum
(because A

µ
pure gives null field strength).

The long-standing puzzle of the gauge noninvariance of
the expectation value of the Hamiltonian [1] can be solved in
the same manner. For nonrelativistic quantum mechanics, we
define a new Hamiltonian:

H = ( �p + e �A)2

2m
− eA0 + eA0

pure = ( �p + e �A)2

2m
− eA0

phys.

(12)

The term eA0
pure is a pure gauge term which cancels the

unphysical energy appearing in −eA0 and then guarantees that
the expectation value of this Hamiltonian is gauge invariant.
It is a direct extension of Eq. (11) to the zeroth momentum
component.

Therefore, for a charged particle in a classical external
electromagnetic field, the gauge-invariant momentum (Hamil-
tonian) operator is not the space (time) translation generator of
the system. The gauge-invariant momentum and Hamiltonian
are observables, whereas the space and time translation
generators are not.

The Dirac Hamiltonian has the same unphysical energy
part, which must be canceled in the same manner as for
the Schroedinger Hamiltonian. (The distinction between the
gauge-invariant Hamiltonian and the time translation generator
in this case was also pointed out by Kobe and Yang in [3].)
In the rest of this paper, we do a check for the case of
the hydrogen-atom problem: Starting from the Hamiltonian
of the coupled electron, proton, and electromagnetic field,
under the infinite proton mass approximation, we derive the
gauge-invariant hydrogen-atom Hamiltonian and verify the
difference between this Hamiltonian and the time translation
generator, the Dirac Hamiltonian.

III. DERIVATION OF THE GAUGE-INVARIANT
HYDROGEN-ATOM HAMILTONIAN

Let us start from the coupled-field Lagrangian for electron,
proton, and electromagnetic field,

L = − 1
4FµνF

µν + ψ̄e

(
iγ µD(e)

µ − m
)
ψe

+ ψ̄p

(
iγ µD(p)

µ − M
)
ψp, (13)

with D(e)
µ = ∂µ − ieAµ and D

(p)
µ = ∂µ + ieAµ (here e is the

charge of the proton). From this Lagrangian one can derive the
total energy of the system:

H =
∫

d3x

[
ψ†

e (i �α · �D(e) + βm)ψe

+ψ†
p(i �α · �D(p) + βM)ψp + 1

2
(E2 + B2)

]
. (14)

To proceed, we decompose the gauge potential �A in terms
of its transverse and longitudinal parts:

�A = �Aphys + �Apure = �A⊥ + �A‖.
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Then one has

�E = −�∇A0 − ∂

∂t
�Apure − ∂

∂t
�Aphys

= −�∇A0
phys − �∇A0

pure − ∂

∂t
�Apure − ∂

∂t
�Aphys

= −�∇A0
phys − ∂

∂t
�Aphys

= −�∇A0
phys − ∂

∂t
�A⊥

≡ �E‖ + �E⊥, (15)

where we have used the condition that A
µ
pure gives null field

strength. The total electromagnetic field energy then separates
into two terms,

1

2

∫
d3x(E2 + B2) = 1

2

∫
d3xE2

‖ + 1

2

∫
d3x(E2

⊥ + B2),

(16)

where the cross term �E‖ · �E⊥ vanishes by an integration by
parts. The first term on the right-hand side of (16) is the total
energy associated with the Coulomb field. In fact, from the
Gauss law �∇ · �E = eψ

†
pψp − eψ

†
eψe = ρp + ρe, one has

�∇ · �E‖ = −∇2A0
phys = ρp + ρe. (17)

From Eq. (17) one can obtain A0
phys

A0
phys = − 1

∇2
(ρp + ρe). (18)

One then has

1

2

∫
d3xE2

‖ = −1

2

∫
d3x �E‖ · �∇A0

phys

= 1

2

∫
d3x �∇ · �E‖A0

phys

= −1

2

∫
d3x(ρp + ρe)

1

∇2
(ρp + ρe)

= 1

4π

∫
d3xd3yρe(�x,t)

1

|�x − �y|ρp(�y,t)

+ 1

8π

∫
d3xd3yρe(�x,t)

1

|�x − �y|ρe(�y,t)

+ 1

8π

∫
d3xd3yρp(�x,t)

1

|�x − �y|ρp(�y,t). (19)

The second term on the right-hand side of (16) is the energy
of the transverse electromagnetic field. The total energy of the
system then separates into the following terms:

H =
∫

d3xψ†
e (i �α · �D(e) + βm)ψe

+
∫

d3xψ†
p(i �α · �D(p) + βM)ψp

+ 1

4π

∫
d3xd3yρe(�x,t)

1

|�x − �y|ρp(�y,t)

+ 1

8π

∫
d3xd3yρe(�x,t)

1

|�x − �y|ρe(�y,t)

+ 1

8π

∫
d3xd3yρp(�x,t)

1

|�x − �y|ρp(�y,t)

+ 1

2

∫
d3x( �E2

⊥ + �B2). (20)

Now let us turn to the hydrogen-atom problem. Here one
assumes that the proton is infinitely massive, that is, M → ∞.
In this limit the proton plays the role of a static source situated
at a fixed point in space which, for convenience, one takes to
be the origin. The electromagnetic current of the proton is then

jµ
p (�x,t) = (ρp(�x,t), �jp(�x,t)) = (eδ3(�x),�0). (21)

To find out the energy of the electron in the electromagnetic
field of the proton, one needs to derive the electromagnetic
potential Aµ. The equation of motion for Aµ is

∂2Aµ − ∂µ(∂ · A) = jµ
p + jµ

e . (22)

Using Eqs. (21) and (22) can be written as

∂2A0 − ∂

∂t

(
∂A0

∂t
+ �∇ · �A

)
= −∇2A0 − ∂

∂t
( �∇ · �A)

= eδ3(�x) + ρe, (23)

∂2 �A + �∇
(

∂A0

∂t
+ �∇ · �A

)
= �je. (24)

When solving Eqs. (23) and (24), one needs to choose a gauge.
In the following we choose the gauge

�∇ · �A(�x,t) = χ (�x,t) = ∇2f (�x,t), (25)

where f (�x,t) is an arbitrary function. From Eq. (23) one can
derive A0:

A0(�x,t) = e

4πr
− ∂

∂t
f (�x,t) + 1

4π

∫
d3y

ρe(�y,t)

|�x − �y| . (26)

Substituting (26) into Eq. (24) gives

∂2 �A(�x,t) + �∇
(

−∂2f (�x,t) + 1

4π

∫
d3y

1

|�x − �y|
∂

∂t
ρe(�y,t)

)

= �je(�x,t), (27)

whereby one can derive �A:

�A(�x,t) = �∇f (�x,t) + (∂2)
−1 �je(�x,t)

+ 1

4π

∫
d3y(∂2)

−1
( �x − �y

|�x − �y|3
∂

∂t
ρe(�y,t)

)
. (28)

From Eqs. (26) and (28) we can attribute ( e
4πr

− ∂f

∂t
, �∇f ) to

be the electromagnetic potential produced by the static proton
source in the gauge (25).

Now we can isolate the energy of the electron in the
electromagnetic field of the proton from the total en-
ergy of the system Eq. (20). We only need to consider
terms involving the electron field. These are

∫
d3xψ

†
e (i �α ·

�D(e) + βm)ψe and 1
4π

∫
d3xd3yρe(�x,t) 1

|�x−�y|ρp(�y,t). The term
1

8π

∫
d3xd3yρe(�x,t) 1

|�x−�y|ρe(�y,t) represents the electron self-
energy and one does not need to take it into account.
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The term
∫

d3xψ
†
e (i �α · �D(e) + βm)ψe can be written as∫

d3xψ†
e (i �α · �D(e) + βm)ψe

=
∫

d3xψ†
e (−i �α · �∇ + e�α · �A + βm)ψe

=
∫

d3xψ†
e (−i �α · �∇ + e�α · �∇f + βm)ψe

−
∫

d3x �je(�x,t) · (∂2
x

)−1 �je(�x,t)

− 1

4π

∫
d3xd3y �je(�x,t) · (

∂2
x

)−1
( �x − �y

|�x − �y|3
∂

∂t
ρe(�y,t)

)
.

(29)

Here the first term on the right-hand side of Eq. (29) is
the kinetic energy of the electron and the �j · �A part of the
interaction energy of the electron with the electromagnetic
field of the proton. The second and third terms on the
right-hand side of Eq. (29) represent the self-interaction energy
of the electron field, which we do not need to consider.

The electron-proton Coulomb energy term is

1

4π

∫
d3xd3yρe(�x,t)

1

|�x − �y|ρp(�y,t)

= e

4π

∫
d3xρe(�x,t)

1

|�x|
=

∫
d3xψ†

e

(
− e2

4πr

)
ψe. (30)

So the energy of the electron in the electromagnetic field of
the proton is∫

d3xψ†
e

(
−i �α · �∇ + e�α · �∇f + βm − e2

4πr

)
ψe. (31)

From this expression one reads out the hydrogen-atom
Hamiltonian:

H = �α · ( �p + e �∇f ) + βm − e2

4πr
. (32)

In contrast, from the Lagrangian (13) one can derive the
equation of motion of the electron field:

(iγ µ∂µ + eγ µAµ − m)ψe = 0. (33)

Substituting Eqs. (26) and (28) into Eq. (33) and dropping all
terms nonlinear in ψe, one obtains the linearized equation of
motion of the electron field:[

iγ µ∂µ + eγ 0

(
e

4πr
− ∂f

∂t

)
− e �γ · �∇f − m

]
ψe = 0.

(34)

Equation (34) is just the Dirac equation of an electron in the
external electromagnetic field of the proton source:

i
∂

∂t
ψe =

(
−i �α · �∇ + e�α · �∇f + βm − e2

4πr
+ e

∂f

∂t

)
ψe

= HDψe, (35)

where HD is the Dirac Hamiltonian, which is the time
translation generator. Here one notes that the presence of the

term e
∂f

∂t
in HD is necessary for the gauge invariance of the

Dirac equation under time-dependent gauge transformation.
Denoting the electromagnetic potential produced by the

static proton source as Aµ = (A0, �A) = ( e
4πr

− ∂f

∂t
, �∇f ), one

can write

H = �α · ( �p + e �A) + βm − eA0
phys (36)

and

HD = �α · ( �p + e �A) + βm − eA0. (37)

Thus we have explicitly verified that the gauge-invariant
hydrogen-atom Hamiltonian is different from the Dirac
Hamiltonian.

Here we give some further discussion on the Dirac
Hamiltonian and the gauge-invariant Hamiltonian. In our
approach we use the Dirac Hamiltonian in the time-dependent
Dirac equation, because the Dirac Hamiltonian is the time
translation generator. The gauge-invariant Hamiltonian is the
energy operator of the system, whose eigenvalue is the energy
of the hydrogen atom. The gauge-invariant Hamiltonian is
generally time dependent. In this case, one can solve the
energy eigenvalue equation at any specific instant of time.
It can be shown that the energy eigenvalues are gauge
independent, and by suitably choosing the phase factor of
the time-dependent eigenfunction, one can ensure that the
time-dependent eigenfunction satisfies the Dirac equation. The
proof is as follows.

Let HC be the gauge-invariant Hamiltonian in the Coulomb
gauge,

HC = �α · �p + βm − e2

4πr
, (38)

and Hf (t) be the gauge-invariant Hamiltonian in a general
gauge,

Hf (t) = �α · ( �p + e �∇f ) + βm − e2

4πr
. (39)

It can be easily seen that Hf (t) and HC are connected by a
time-dependent unitary transformation:

e−ief (�x,t)HCeief (�x,t) = Hf (t). (40)

HC has the following energy eigenvalue equation,

HC[e−iEntψn(�x)] = En[e−iEntψn(�x)], (41)

where En is the energy eigenvalue of the hydrogen atom in
the Coulomb gauge and e−iEntψn(�x) is the corresponding
stationary-state wave function. From (40) and (41) one can
derive

Hf (t)[e−ief (�x,t)e−iEntψn(�x)] = En[e−ief (�x,t)e−iEntψn(�x)].

(42)

So, at each instant of time t , Hf (t) has the same eigenvalues
as the Coulomb gauge Hamiltonian, with e−ief (�x,t)e−iEntψn(�x)
being the corresponding instantaneous eigenfunction. In ad-
dition, since e−iEntψn(�x) satisfies the time-dependent Dirac
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equation in the Coulomb gauge,

i
∂

∂t
[e−iEntψn(�x)] =

(
�α · �p + βm − e2

4πr

)
[e−iEntψn(�x)],

(43)

from the gauge invariance of the Dirac equation, one has

i
∂

∂t
[e−ief e−iEntψn(�x)]

=
[
�α · ( �p + e �∇f ) + βm − e2

4πr
+ e

∂f

∂t

]

× [e−ief e−iEntψn(�x)]. (44)

Therefore, the instantaneous eigenfunction e−ief e−iEntψn(�x)
of the time-dependent gauge-invariant Hamiltonian Hf (t)
satisfies the time-dependent Dirac equation.

IV. SUMMARY

Gauge invariance has long been recognized as a first
principle through the development of the standard model.
However, for the quantum mechanics of a charged particle in
a classical external electromagnetic field, there is an apparent
puzzle that the matrix element of the canonical momentum
and Hamiltonian operators is gauge dependent. A resolution
to this puzzle is provided by us in [2]. Based on the separation
of the electromagnetic potential into pure-gauge and gauge-

invariant parts, we have proposed a new set of momentum and
Hamiltonian operators which satisfy both the requirement of
gauge invariance and the relevant commutation relations.

In this paper we did a check for the case of the hydrogen-
atom problem: Starting from the Hamiltonian of the coupled
electron, proton, and electromagnetic field, under the infinite
proton mass approximation, we derive the gauge-invariant
hydrogen-atom Hamiltonian and verify explicitly that this
Hamiltonian is different from the Dirac Hamiltonian, which
is the time translation generator of the system. Therefore, the
Dirac Hamiltonian, which determines the time evolution of
the system, is not an observable, whereas the gauge-invariant
Hamiltonian is. The gauge-invariant Hamiltonian is the energy
operator, whose eigenvalue is the energy of the hydrogen
atom. It is generally time dependent. In this case, one can
solve the energy eigenvalue equation at any specific instant
of time. It is shown that the energy eigenvalues are gauge
independent, and by suitably choosing the phase factor of
the time-dependent eigenfunction, one can ensure that the
time-dependent eigenfunction satisfies the Dirac equation.
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