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We investigate pairwise quantum correlation as measured by the quantum discord as well as its classical
counterpart in the thermodynamic limit of anisotropic XY spin-1/2 chains in a transverse magnetic field for both
zero and finite temperatures. Analytical expressions for both classical and quantum correlations are obtained for
spin pairs at any distance. In the case of zero temperature, it is shown that the quantum discord for spin pairs farther
than second neighbors is able to characterize a quantum phase transition, even though pairwise entanglement
is absent for such distances. For finite temperatures, we show that quantum correlations can be increased with
temperature in the presence of a magnetic field. Moreover, in the XX limit, thermal quantum discord is found to
be dominant over classical correlation while the opposite scenario takes place for the transverse field Ising model
limit.
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I. INTRODUCTION

Since its conception, quantum mechanics has been ex-
tensively applied to condensed matter systems [1]. This
endeavor resulted in important conceptual and technological
advances. In the past few decades, this scenario has gained
even more strength with the birth of quantum-information
science (QIS) [2]. In this context, quantum spin systems have
played a central role in several applications for both quantum
communication [3] and quantum computation [4]. Indeed,
quantum spin models describe the effective interactions in
a variety of physical systems [5], for example, quantum Hall
systems, high-temperature superconductors, heavy fermions,
and magnetic compounds. More generally, low-dimensional
systems such as those described by interacting spins are
particularly interesting because of the presence of typically
pronounced quantum fluctuations as well as the possibility of
their realization by several distinct physical approaches [6,7].

A key concept in QIS is the quantum correlation among
parts of a composite quantum system, which is a fundamental
resource for several applications in quantum information
[2]. The existence of quantum correlations were first noted
in nonseparable (i.e., entangled) states. Entanglement was
pointed out by Schrödinger in 1935 [8] as the characteristic
trait of quantum mechanics. Since then, entanglement has been
basically the only kind of quantum correlation theoretically
and experimentally explored. However, in the past few years,
it has been realized that there exist nonclassical correlations
which are not captured by entanglement measures [9,10]. In
general, a quantum correlation, which can be measured by the
quantum discord (QD) [9], often arises as a consequence of
coherence between different partitions in a quantum system,
being present even in separable states. Recently, QD was ana-
lyzed in a number of contexts, for example, low-dimensional
spin models [11–15], open quantum systems [16–19], bio-
logical [20], and relativistic [21] systems. Moreover, there
exist strong indications that the QD is the resource respon-
sible for the speed up in the model of computation known
as deterministic quantum computation with one quantum
bit [22,23].

In this article we consider pairwise QD in an infinite
anisotropic XY spin-1/2 chain in the presence of an external
transverse magnetic field for both zero and finite temperatures.
Our aim is to explore, in the thermodynamical regime, the
behavior of QD for spin pairs arbitrarily distant and also
take into account the effect of temperature on the behavior
of correlations. Such contributions, which have not been
considered in previous works, will be shown to bring several
new effects to the subject. In particular, as we will show, the
QD for spin pairs more distant than second neighbors is able
to characterize a quantum phase transition (QPT). This is a
remarkable behavior, since a signature of the QPT can be
available through the QD even for distances where pairwise
entanglement is absent. Moreover, we will show that the QD
may increases with both temperature and magnetic field for
certain regions of parameter space. This result will extend, to
the thermodynamic limit, the previous analysis for two-spin
Hamiltonians reported in Ref. [13]. Finally, we will discuss the
dominance of quantum correlation over classical correlation
for different limits of the XY model, showing that the QD
is greater than its classical counterpart for the isotropic limit
(XX model), with the opposite scenario taking place for the
transverse field Ising model. These results generalize those of
Refs. [11] and [12].

II. CORRELATIONS IN BIPARTITE QUANTUM SYSTEMS

The information-theoretical measure of the total correlation
between the partitions of a bipartite quantum state ρAB is the
quantum mutual information [24,25]

I (ρAB) = S(ρA) + S(ρB ) − S(ρAB), (1)

where S(ρ) = −Trρ log2 ρ is the von Neumann entropy and
ρA (ρB) is the reduced-density operator of the partition A (B).
The nonclassical correlation present in ρAB can be quantified
by the quantum discord, which is defined as [9]

D(ρAB) ≡ I (ρAB) − C(ρAB), (2)
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where

C(ρAB) ≡ S(ρA) − min
{�j }

S{�j }(ρA|B) (3)

is the classical correlation present in the composite state ρAB

[26]. In Eq. (3), the conditional entropy S{�j }(ρA|B) can be
defined as

S{�j }(ρA|B) =
∑

j

qjS
(
ρ

j

A

)
, (4)

with qj = Tr [(1A ⊗ �j )ρAB(1A ⊗ �j )] and ρ
j

A = TrB[(1A ⊗
�j )ρAB(1A ⊗ �j )]/qj . The minimum in Eq. (3) is taken over
a complete set of projective measures {�j } on the partition
B. For pure states, we have that both quantum and classical
correlations are equal to entanglement entropy [24,26]. On the
other hand, for mixed states, entanglement is only a part of
this nonclassical correlation [9,22,23].

In order to compare our results for the QD with those
for pairwise entanglement, we will use the entanglement of
formation as a measure of entanglement. The concurrence (c)
is monotonically related to the entanglement of formation by
the following expression:

E(ρAB) = Hbin{[1 +
√

1 − [c(ρAB)]2]/2},
where Hbin(x) = −x log2 x − (1 − x) log2(1 − x) is the
binary entropy. For two qubits the concurrence reduces to the
simple form [27]

c(ρAB) = max(0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4), (5)

where λi (i = 1,2,3,4) are the eigenvalues of ρABρ̃AB in
decreasing order, ρ̃AB = (σy

A ⊗ σ
y

B)ρ∗
AB(σy

A ⊗ σ
y

B)†, with ρ∗
AB

being the conjugate of ρAB in any basis, and σ
y
α is the

y component of the spin-1/2 Pauli operator for the partition
α (α = A,B). We note that all the aforementioned correlation
quantifiers are measured in bits, as usual.

III. THERMAL CORRELATIONS IN THE ANISOTROPIC
XY SPIN CHAIN

The one-dimensional XY model in a transverse field
describes a chain of spins anisotropically interacting in the
xy spin plane under the effect of a magnetic field in the
z direction. The system is governed by the Hamiltonian

H = −
N−1∑
j=0

{
λ

2

[
(1 + γ )σx

j σ x
j+1 + (1 − γ )σy

j σ
y

j+1

] + σ z
j

}
,

(6)

where σ k
j (k = x,y,z) is the k component of the spin-1/2

Pauli operator acting on site j state space, γ is the degree of
anisotropy (where we take for simplicity 0 � γ � 1), and λ

provides the strength of the inverse of the external transverse
magnetic field. We will be interested in the limit of an infinite
chain, namely, N → ∞.

The XY model is exactly solvable [28,29]. The Hamiltonian
can be diagonalized via a Jordan-Wigner map followed by a
Bogoliubov transformation (see, e.g., Ref. [30]). By taking the

thermal ground state, the reduced density operator for the sites
0 and n reads [31]

ρ0n = 1

4

{
I0n + 〈σ z〉(σ z

0 + σ z
n

) +
3∑

k=1

〈
σ k

0 σ k
n

〉
σ k

0 σ k
n

}
, (7)

with I0n being the identity operator acting on the state space
of the sites 0n. Although an unbroken state, ρ0n is able to
provide an exact description of the critical behavior as well as
its scaling in finite systems [31–35]. (For a detailed treatment
of the spontaneous symmetry breaking at zero temperature see
Refs. [36–38].)

Since the system is invariant by translations, the elements
of the two-site reduced-density operator depends only on the
distance (n) between the sites. The transverse magnetization
is given by [28]

〈σ z〉 = −
∫ π

0

(1 + λ cos φ) tanh(βωφ)

2πωφ

dφ, (8)

where ωφ =
√

(γ λ sin φ)2 + (1 + λ cos φ)2/2 and β = 1/kT

with k being Boltzmann’s constant and T the absolute
temperature. The two-point correlation functions read [29]

〈
σx

0 σx
n

〉 =

∣∣∣∣∣∣∣∣∣∣

G−1 G−2 · · · G−n

G0 G−1 · · · G−n+1

...
...

. . .
...

Gn−2 Gn−3 · · · G−1

∣∣∣∣∣∣∣∣∣∣
, (9)

〈
σ

y

0 σy
n

〉 =

∣∣∣∣∣∣∣∣∣∣

G1 G0 · · · G−n+2

G2 G1 · · · G−n+3

...
...

. . .
...

Gn Gn−1 · · · G1

∣∣∣∣∣∣∣∣∣∣
, (10)

and 〈
σ z

0 σ z
n

〉 = 〈σ z〉2 − GnG−n, (11)

10

1

λ

γ

Critical XX

Critical XY

Critical Ising

FIG. 1. (Color online) Quantum phase diagram for the anisotropic
XY spin-1/2 chain. The XX model obtained by setting γ = 0
displays a critical line for λ ∈ [0,1]. The Ising model obtained for
γ = 1 exhibits a critical point at λ = 1.
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FIG. 2. Quantum discord between
(a) first, (b) second, (c) third, and
(d) fourth nearest neighbors and entangle-
ment of formation between (e) third and
(f) fourth nearest neighbors as a func-
tion of anisotropy (γ ) and λ at zero
temperature.

where

Gn =
∫ π

0

tanh(βωφ)

2πωφ

{cos(nφ)(1 + λ cos φ)

− γ λ sin(nφ) sin φ} dφ. (12)

The total correlation in (7) is quantified by the
quantum mutual information as I (ρ0n) = S(ρ0) +
S(ρn) − S(ρ0n) with S(ρ0) = S(ρn) = −∑1

i=0{[1 +
(−1)i〈σ z〉]/2} log2{[1 + (−1)i〈σ z〉]/2} and S(ρ0n) =
−∑1

i,j=0(ξi log2 ξi + ξj log2 ξj ), where ξi = [1 + 〈σ z
0 σ z

n 〉 +
(−1)i

√
(〈σx

0 σx
n 〉 − 〈σy

0 σ
y
n 〉)2 + 4〈σ z〉2]/4 and ξj = [1 −

〈σ z
0 σ z

n 〉 + (−1)j (〈σx
0 σx

n 〉 + 〈σy

0 σ
y
n 〉)]/4. We can compute the

QD and its classical counterpart by extremizing Eqs. (2)
and (3) over the following complete set of orthonormal
projectors {�β = |�β〉〈�β |,β = ‖, ⊥} onto the nth nearest
neighbor, where |�‖〉 ≡ cos(θ/2)|0〉n + eiϕ sin(θ/2)|1〉n
and |�⊥〉 ≡ e−iϕ sin(θ/2)|0〉n − cos(θ/2)|1〉n. Remarkably,
a numerical analysis implies that the extremization is
achieved, for any values of γ , λ, and T , by the choice

FIG. 3. (Color online) Derivative of the quantum discord between
fourth nearest neighbors with respect to λ at zero temperature.
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FIG. 4. (Color online) Derivative of the classical correlation be-
tween fourth nearest neighbors with respect to λ at zero temperature.

θ = π/2 and ϕ = 0. Then, the relevant measurement for
the model is given by {|+〉〈+|,|−〉〈−|}, with |+〉 and
|−〉 denoting the up and down spins in the x direction,
namely, |±〉 = (|↑〉z ± |↓〉z)/√2. This result generalizes the
extremization obtained for the transverse field Ising model at
zero temperature in Ref. [12], and it allows us to write the
classical correlation as

C(ρ0n) = Hbin(p1) − Hbin(p2), (13)

where

p1 = 1

2
(1 + 〈σ z〉), (14a)

p2 = 1

2

(
1 +

√〈
σx

0 σx
n

〉2 + 〈σ z〉2
)
. (14b)

Thus the quantum correlation in state (7) is simply given by

D(ρ0n) = I (ρ0n) − C(ρ0n). (15)

A. Correlations at zero temperature and QPTs

Let us first consider the XY model at zero temperature. Such
a model has a quantum phase diagram displayed in Fig. 1 (see,
e.g., [28,29,39]).

The QD for the first, second, third, and fourth nearest
neighbors in the thermal ground state (7), close to zero
temperature, is displayed in Figs. 2(a)–2(d). As expected,
QD decreases as we increase the distance between the sites.
However, we also see a clear difference in the amount of
quantum correlation between the regions where λ < 1 and
λ > 1. Although the maximum value of QD decreases as
we increase the distance between the sites, the slope in
the critical region gets more evident for far neighbors. The
maximum increasing rate of the QD as a function of λ

occurs at the quantum phase transition line (λ = 1). We
also note that the nonclassical correlation is created when
the magnetic field increases. The derivative of the quantum
discord between fourth nearest neighbors with respect to λ

is depicted in Fig. 3. So, the quantum discord between far
neighbors can be used to characterize the QPT. It is important to
mention that, even when entanglement is not present, the QPT
can be clearly revealed through the singular behavior of QD.
In Figs. 2(e) and 2(f) we note that, for a considerable range
of γ , the entanglement of formation is zero (i.e., there is no
entanglement) for third and fourth nearest neighbors. In the
particular case of the transverse field Ising model (γ = 1),
entanglement is indeed completely absent for sites farther
than second nearest neighbors [32]. On the other hand, QD
is non-null (where the entanglement is zero) and its behavior
reveals that, for γ = 1 and λ > 1, we have a considerable
amount of nonclassical correlation between far sites. It is
worthwhile to observe that the pairwise classical correlation
can also be employed to detect a QPT in a very evident
way. In the Ising model, for example, the first derivative of
the classical correlation with respect to λ is not analytic at
the critical point, while the second derivative of quantum
discord presents such a nonanalicity [12]. This behavior of
the classical correlation also holds in the XY model for the
whole range of values of γ considered here, as depicted in
Fig. 4.

FIG. 5. (a) Classical and (b) quantum correlations between second nearest neighbors in the XX model as a function of temperature (kT )
and inverse of the magnetic field (λ).
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FIG. 6. (a) Classical and (b) quantum correlations between second nearest neighbors in the transverse Ising model as a function of
temperature (kT ) and inverse of the magnetic field (λ).

B. Correlations at finite temperatures

In order to introduce finite temperature, we begin by
considering the thermal state of the XX model (γ = 0).
For this limit, we plot the thermal classical and quantum
correlations for the second nearest neighbors in Fig. 5. Similar
results are obtained for other nearest neighbors. We note that
the quantum discord is typically greater than its classical
counterpart and it indeed may increases with temperature (in
a given region) for some values of λ, as is evident near the
critical value λ = 1. This result extends, to the thermodynamic
limit, the previous analysis for two-spin Hamiltonians reported
in Ref. [13]. The increase of QD with temperature when a
magnetic field is present is a consequence of the fact that,
when the field is turned on, the ground state tends to be less
correlated than some low-lying excited states. So the effect of
the temperature is to populate such correlated excited states,
leading to the net effect of increasing QD. Naturally, this
effect tends to disappear as the temperature gets too large.
This is similar to the behavior of entanglement observed
in Ref. [40].

Let us now turn our attention to the transverse Ising model
(γ = 1) at finite temperatures. Classical correlation and QD
for second nearest neighbors are shown in Fig. 6. Note that QD
still increases with temperature but this effect is feeble when
compared with the same behavior in the XX model. We also
observe that the classical correlation is typically greater than
the quantum discord for any temperature. This is the opposite
scenario in comparison with the XX model. Remarkably, for a
weak magnetic field, QD available in the XX model overcomes
that of the transverse Ising model. So, applications of the
XY model in QIS tends to offer more quantum correlation
as a resource in the isotropic limit (the XX model) than in the
Ising limit.

IV. CONCLUSION

In summary, we have examined pairwise QD and its classi-
cal counterpart in the thermodynamic limit of the anisotropic
XY spin-1/2 chain in the presence of an external transverse
magnetic field. We have considered the system at both zero
and finite temperatures, providing an analytical expression for
both classical and quantum correlations for spin pairs at any
distance. Remarkably, we have shown that the quantum discord
between far neighbors is able to characterize a QPT, even for
distances where pairwise entanglement is absent. This is a
consequence of the longer range of nonclassical correlation
(that is nonvanishing for far neighbors) in comparison with
the usual short-range behavior of pairwise entanglement.
Concerning the thermal effect on correlations, we have shown
how QD can be increased with temperature as the transverse
magnetic field is varied. Moreover, we have also outlined the
dominance of the QD over the classical correlation for the
XX model in opposition to the Ising limit. Generalization of
these results for larger subsystems and further analysis of the
typical behavior of QD for quantum critical phenomena in-
cluding spontaneous symmetry breaking (at zero temperature)
are left for a future investigation.

Note added. Recently, we became aware of an analytical
expression (see Ref. [41]) for the classical correlation in a
class of states that includes the Z2 symmetric states. Such an
analytical formula confirms our numerical verification that
results in Eq. (13).
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