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Negative refraction with low absorption using Raman transitions with magnetoelectric coupling
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We suggest a scheme for obtaining negative refraction that does not require the simultaneous presence of an
electric-dipole and a magnetic-dipole transition near the same transition frequency. The key idea of the scheme
is to obtain a strong electric response by using far-off-resonant Raman transitions. We propose to use a pair
of electric-dipole Raman transitions and utilize magneto-electric cross coupling to achieve a negative index of
refraction without requiring negative permeability. The interference of the two Raman transitions allows tunable

negative refraction with low absorption.
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More than four decades ago, Veselago predicted that materi-
als with a simultaneous negative permittivity and permeability
would acquire a negative index of refraction, n < 0 [1]. These
materials exhibit many seemingly strange properties such as
the electromagnetic vectors forming a left-handed triad (hence
the term left-handed materials) and the Poynting vector being
antiparallel to the k vector. The key practical application
for these materials was discovered in the year 2000 when
Pendry demonstrated that a slab with a negative index of
refraction can image objects with, in principle, unlimited
resolution [2]. Since Pendry’s suggestion, the interest in these
materials has been continuously growing and there have been
a large number of theoretical developments and experimental
advances [3-8]. Initial experiments have demonstrated such
materials in the microwave region of the spectrum by using
metal wires and split-ring resonators [5—8]. Recently, utilizing
advances in nanolithography techniques, several groups have
reported a negative index of refraction at optical frequencies
in metal and dielectric nanostructures [9-12]. A key difficulty
of these experiments, which is particularly pronounced in
the optical domain, is the large absorption that accompa-
nies negative refraction. The performance of the left-handed
materials is typically characterized by the figure of merit
F = —Re(n)/|Im(n)|. For all recent experiments in the optical
region, the figure of merit is of order unity, F ~ 1, which is
a key limitation for many potential applications. It therefore
remains a big challenge to obtain negative refraction with low
absorption in the optical region of the spectrum.

The chief difficulty for obtaining negative refraction in the
optical region of the spectrum is the weakness of the magnetic
response. It is difficult to obtain a negative permeability
with low absorption since typical transition magnetic-dipole
moments are much smaller than the electric-dipole moments.
To alleviate this problem, recently, a chiral route to negative
refraction has been suggested [13,14]. Here, the key idea is
to use a magnetoelectric cross coupling where the medium’s
electric polarization is coupled to the magnetic field of the
wave and the medium’s magnetization is coupled to the electric
field. Under such conditions, a negative index of refraction
can be achieved without requiring a negative permeability.
Building on this idea, Fleischhauer and colleagues have
recently suggested a promising scheme that achieves negative
refraction with low absorption using quantum interference
[15,16]. Their scheme utilizes the dark state of the electro-
magnetically induced transparency (EIT) to reduce absorption

1050-2947/2010/82(1)/011806(4)

011806-1

PACS number(s): 42.50.Gy, 42.65.An, 42.65.Dr

while enhancing the chiral response. The work of Fleischhauer
and colleagues improves on the pioneering efforts of Oktel and
Mustecaplioglu [17] and Thommen and Mandel [18].

All of these current suggestions require a strong magnetic-
dipole transition and a strong electric-dipole transition near the
same transition frequency. This requirement puts a stringent
constraint on the energy level structure of systems where
negative refraction can be achieved. In this article, we
suggest an alternative route that overcomes this constraint.
To overcome the need for an electric-dipole transition at a
specific frequency, we use two-photon Raman transitions that
can be very far detuned from the electronic state. We obtain a
strong electric-dipole response with low absorption by using a
pair of Raman transitions: one amplifying and one absorptive
in nature. The interference of these two transitions result in
a strong enhancement of the permittivity while minimizing
absorption. We then coherently couple to a magnetic-dipole
transition to obtain a chiral response and achieve a negative
index of refraction through magnetoelectric cross coupling.

Before proceeding with a detailed description of our
suggestion, we summarize the chiral approach to negative
refraction. Consider a probe beam with electric-field and
magnetic-field components £, and B,, respectively. In a
material with magnetoelectric cross coupling, the medium
polarization P, and the magnetization M, are given by [15,16]
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where x g and y, are the electric and magnetic susceptibilities,
and &gp and &gp are the complex magnetoelectric coupling
(chirality) coefficients, respectively. The index of refraction
of the medium for a plane wave of a particular circular
polarization can be found by using Egs. (1) and Maxwell’s
equations:
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Here,e = 1 + xgand u = 1 + yy are the relative permittivity
and permeability of the medium. As shown in Eq. (2), the
chirality coefficients result in additional contributions to the
index of refraction. The key idea behind the chiral approach
is that, in the optical region, one typically has the scaling
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FIG. 1. The energy level diagram of our suggestion. £, and B,
are the electric-field and magnetic-field components for the probe
laser beam. |g) — |m) is a magnetic-dipole transition induced by
the probe magnetic-field B,. Two strong control laser beams, E,
and E,, induce two electric-dipole Raman transitions for the probe
beam. The Raman transitions can be very far detuned from the excited
state |e). Therefore, the system does not require |g) — |m) and
|g) — |e) transitions to be near the same frequency. €2,, induces
magnetoelectric cross coupling (chirality).

xm ~ o’xe and (Egp.Epg) ~ axg, where a = 1/137 is the
fine structure constant. Since the values of the chirality
coefficients are smaller only by a factor of « instead of a2,
negative refraction can be achieved without the need for
negative permeability and at much smaller atomic densities
compared to those of nonchiral schemes. Negative refraction
with chirality requires appropriate phase control of the chirality
coefficients which can be achieved through coherent magneto-
electric coupling. One typically chooses the phase such that the
chirality coefficients are imaginary, égp = —&pp = i€, and
Eq. (2) reads n = ,/ep — &. Achieving n < 0 then requires
&> Jeu.

We proceed with a detailed description of our suggestion.
Noting Fig. 1, we consider a five-level system interacting with
four laser beams. We wish to achieve a negative index of
refraction for the probe laser beam with field components
E, and B,, respectively. We take the atomic system to have
a strong magnetic transition with the dipole-moment fig),
near the frequency of the probe laser beam. As mentioned
previously, the system does not have a strong electric-dipole
transition near the probe laser frequency. The electric-dipole
response is obtained by using two-photon Raman transitions
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through the excited state |e). At the heart of the scheme
is the recently predicted and experimentally demonstrated
“refractive index enhancement with vanishing absorption”
technique [19,20]. Starting with the ground state |g), we
induce two Raman transitions using the probe laser and two
intense control lasers with electric field amplitudes E.; and
E», respectively. Since the order at which the probe laser
beam is involved in each Raman transition is different, this
scheme achieves two resonances: one amplifying and one
absorptive in nature. The strength and the position of these
two resonances can be controlled by varying the intensities
and the frequencies of the control laser beams. It is the
interference of these two resonances that results in the
control of the index of refraction while maintaining small
absorption. The magnetoelectric cross coupling is achieved
through coherent coupling of states |2) and |m) with a separate
laser beam of Rabi frequency €2,,,. States |g), |1), |2), and |m)
have the same parity, which is opposite to the parity of state
le). Since states |2) and |m) have the same parity, the coherent
coupling €2, cannot be electric-dipole, but instead can be
achieved through the magnetic-field of a strong laser or through
a separate two-photon transition (not shown). The two-photon
detunings from the two Raman transitions are defined as §w; =
(01 — wg) — (w1 — wp) and dwy = (@2 — w,) — (W) — W2).
The quantity Swp = (w, — wg) — wp is the detuning of the
probe laser beam from the |g) — |m) magnetic transition.
Swyy, is the detuning of the magnetoelectric coupling laser
beam from the |2) — |m) transition. To obtain a closed loop,
we require dwp = Swy + dwayy,.

We focus our attention on the case where the single photon
detunings of the laser beams from the excited state |e) are
much larger than the coupling rates. This allows adiabatic
elimination of the probability amplitude of state |e) and
therefore reduces the problem to an effective four-level system.
We solve the Schrodinger’s equation with the decay rates added
phenomenologically at steady state and in the perturbative
limit, where most of the population stays in the ground state,
Pee ~ 1. We have verified the validity of this steady-state and
perturbative solution by direct numerical integration. From
the solution of the Schrodinger’s equation, we calculate the
relevant coherences and the medium’s polarization and mag-
netization. The details of these calculations will be reported
elsewhere. The end result for the susceptibilities and the
chirality coefficients, within the rotating wave approximation,
are
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where N is the atomic density and I', is the decay rate of
the excited state |e). The quantities dg., di., and d», are the
electric-dipole matrix elements between relevant states, and
Mgm 1s the magnetic-dipole matrix element for the |g) — |m)
transition. A,, A, and A, are the large single photon
detunings of the relevant transitions from the excited state
le). The quantities Sw;,8w,, and dwp are the detunings as
defined in Fig. 1, but modified to take into account the Stark
shifts due to the intense control beams E.; and E.,. y1, 2,
and y,, are the total linewidths of the respective states, which
include radiative decay, possible broadening mechanisms such
as collisions, and the power broadening due to control laser
beams.

We proceed with a numerical example for a model atomic
system. We consider a probe beam at a wavelength of A, =
600 nm. We take the radiative decay rate of state |e) tobe ', =
2w x 10 MHz and calculate the dipole matrix elements, d,,,
di., and dy,, using the Wigner-Weisskopf result and assuming
equal branching ratios, d;; = \/mwel.hic3 /a)f,. We apply a
similar procedure and assume a radiative decay rate of I", /137>
for the magnetic level |m) and calculate the corresponding
magnetic-dipole matrix element, (,,. To simulate a realistic
system, we assume an additional broadening mechanism (for
example, collisions) with a rate of y, = 27 x 1 MHz and add
this broadening to the linewidths of states |1), |2), and |m).
We take the wavelengths of electric-dipole (|g) — |e)) and
magnetic-dipole (|g) — |m)) transitions to be different by
AX = 0.1 nm. As we will discuss subsequently, this difference
can be larger at the expense of an increase in the required
control laser intensities. For simplicity, we assume the large
single photon detunings to be the same, A, = A} = A,.
We take the magnetoelectric coupling laser beam to be
resonant with the |2) — |m) transition and therefore take
Swp = dw,. We also assume that the control laser frequencies
are appropriately adjusted such that the two Raman resonance
frequencies coincide as the probe laser frequency is scanned,
30)1 = —5602.

Figure 2 shows the susceptibilities and the chirality co-
efficients, xg, xm, £rp, and &g, without the local-field
corrections as the frequency of the probe laser beam is
varied for an atomic density of N =5 x 10'% /cm®. Here
we take the intensities of the two control laser beams to
be 1,1 = 0.251 MW/cm2 and I, = 0.5 MW/(:rn2 and assume
Qo = i2mw x 2.12 MHz. As shown in Fig. 2, the magneto-
electric coupling causes an EIT-like level splitting for xg.
The imaginary part of xg becomes small near wp = 0 due
to the interference of the two Raman resonances. One of the
key differences of our approach compared to the scheme of
Fleischhauer [15,16] is that, since the electric-dipole response
is due to Raman transitions, its strength is controlled by the
intensity of the control laser beams. As a result, we do not
have the usual scaling xu ~ 062XE and (§gp.EE) ~ aXE.
Therefore, the magnitude of x can be made more comparable
to the chirality coefficients.

For materials with a refractive index substantially different
from unity, the microscopic local fields can be substantially
different than the averaged macroscopic fields. To calculate
the refractive index, we include both the electric and magnetic
Clausius-Mossotti-type local-field effects [16,21,22]. Figure 3
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FIG. 2. (Color online) The real (solid blue line) and imaginary
(dotted red line) parts of the susceptibilities and the chirality coef-
ficients without the local-field corrections. See text for parameters.
Since the electric-dipole response is due to Raman transitions, its
strength is controlled by the intensity of the control laser beams. As
a result, in our approach, the magnitude of xr is more comparable to
the chirality coefficients compared to earlier suggested schemes.
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FIG. 3. (Color online) The real (solid blue line) and the imaginary
(dotted red line) parts of the index of refraction for an atomic density

of N =5 x 10" /cm®. The index of refraction reaches a value of
n ~ —1 with a figure of merit of F > 10.
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FIG. 4. (Color online) The real (solid blue line) and the imaginary
(dotted red line) parts of the index of refraction for an atomic
density of N = 2 x 10'® /cm? (left) and N = 3 x 10'7 /cm?® (right).
The other parameters are identical to those used in Fig. 3. For
N =3 x 10", we obtain an index of refraction of n = —1 with a
figure of merit of F = 200.
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FIG. 5. (Color online) The required control laser intensity, /.,, as
the wavelength separation between the transitions, AA, is varied to
obtain results comparable to those of Figs. 2—4.

shows the real and imaginary parts of the refractive index for
parameters identical to those in Fig. 2. The index of refraction
reaches a value of n &~ —1 with a figure of merit of F > 10.
To show the critical dependence on atomic density, Fig. 4
shows the refractive index for N =2 x 10'®/cm® and N =
3 x 10" /cm? with parameters otherwise identical to those of
Fig. 3. For N = 3 x 10'7, we obtain an index of refraction of
n = —4 with low absorption. For n = —1 the figure of merit
is F =~ 200. We note that in Figs. 3 and 4, near Swg = 0,
the absorption is small and the figure of merit becomes very
large. However, at these probe laser frequencies, the index of
refraction is also small.
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As mentioned previously, for Figs. 2—4, the transition
wavelengths for the electric-dipole (|g) — |e)) and magnetic-
dipole (|g) — |m)) transitions are assumed to be different
by AA = 0.1 nm. This wavelength separation can be larger
at the expense of an increase in the required control laser
intensities. Figure 5 demonstrates this result. Here we plot
the required control laser intensity, /., as the wavelength
separation between the transitions, AA, is varied to obtain
results comparable to those of Figs. 2—4. The two transition
wavelengths may be different by as much as AA = 10 nm and
the scheme will still work with experimentally accessible laser
systems. This gives considerable flexibility on the energy level
structure of our scheme which may enable an experimental
implementation.

In conclusion, we have suggested an alternative approach
for achieving negative refraction that does not require the
simultaneous presence of an electric-dipole and a magnetic-
dipole transition near the same frequency. We are currently
investigating a suitable system where our approach may
be experimentally implemented. As mentioned in Ref. [15],
rare-earth atoms such as dysprosium vapor show considerable
promise. Detailed assessment of our approach in such systems
will be among our future investigations. We also expect
our technique to be applicable in other systems including
molecules and solid-state structures [23].
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