
RAPID COMMUNICATIONS

PHYSICAL REVIEW A 82, 011604(R) (2010)

Quantum chaos and thermalization in gapped systems
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We investigate the onset of thermalization and quantum chaos in finite one-dimensional gapped systems
of hard-core bosons. Integrability in these systems is broken by next-nearest-neighbor repulsive interactions,
which also generate a superfluid to insulator transition. By employing full exact diagonalization, we study chaos
indicators and few-body observables. We show that with increasing system size, chaotic behavior is seen over
a broader range of parameters and, in particular, deeper into the insulating phase. Concomitantly, we observe
that, as the system size increases, the eigenstate thermalization hypothesis extends its range of validity inside the
insulating phase and is accompanied by the thermalization of the system.
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The use of ultracold quantum gases to realize strongly
correlated phases of matter has been at the forefront of
research during the last decade [1]. Such systems will not
only help to understand phases and models introduced in
the past, but also will create and will provide the means to
investigate new exotic phases. Another major promise of the
field is the possibility for studying the dynamics of correlated
quantum systems in very controlled ways. For short times,
the collapse and revival of phase coherence was analyzed in
Ref. [2] after an interaction quench from the Bose-Einstein
condensate to the Mott insulating regime. Ab initio calculations
of various bosonic and fermionic lattice models reproduced
those observations [3–5]. A natural question that follows,
given the fact that these systems are nearly isolated, is whether
conventional statistical ensembles can describe experimental
observables after relaxation.

Recent experiments have found that relaxation toward
thermal equilibrium takes place in certain setups, but not
in others [6]. The lack of thermalization in the latter case
can be associated with the proximity to integrability [7]. At
integrability, several works have shown that thermalization
is not expected to occur [8], except for special conditions
and/or observables [3,9]. For generic nonintegrable systems,
thermalization is expected to occur and follows from the
eigenstate thermalization hypothesis (ETH) [10,11].

Interestingly, in numerical calculations for quenches across
a gapless to gapped phase, thermalization did not occur in the
gapped side, even when the system was nonintegrable [4]. As
a matter of fact, ETH, which was shown to hold in several
nonintegrable gapless systems [7,11], has been questioned
for gapped systems [12,13]. Questions raised include the
proximity to the atomic limit, finite-size effects [12], and
the effects of rare states [13] within the insulating phase.
Other studies that deal with spin and fermionic systems have
found that relaxation toward equilibrium occurs faster close
to a critical point [14]. The fact that, away from the ground
state, these systems are, in general, not insulating, even if
gaps are present in the spectrum, renders the debate more
interesting still. Why then would generic nonintegrable gapped
systems behave differently from gapless ones? Remarkably, in
disordered systems, insulating behavior may take place away
from the ground state [15], and those ones are expected to
behave differently.

In this Rapid Communication, we use various measures,
such as quantum chaos indicators [16] and eigenstate expec-
tation values of experimental observables [7] to understand
whether thermalization should occur in gapped systems. This
question is of interest for current experiments with ultracold
gases, where systems with insulating ground states such as the
bosonic and fermionic Mott insulators are studied. We show
that thermalization does occur in the gapped side of the phase
diagram and that, as the system size increases, thermalization
is observed deeper into that phase. We also find that ETH holds
for systems with larger gaps, as the system size is increased.
This supports the view that thermalization occurs in generic
nonintegrable systems independent of the presence or absence
of gaps in the spectrum. One does need to be careful with time
scales, temperature effects, and finite-size effects, which may
be more relevant close to integrable points [7] and in systems
with gaps [12]. We also study the long-time dynamics of these
gapped systems and address its universality.

We focus our study on the one-dimensional hard-core
boson (HCB) model with nearest-neighbor hopping t , and
nearest- and next-nearest-neighbor (NNN) interaction V and
V ′, respectively. The Hamiltonian is written as

Ĥb =
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where standard notation has been used [7]. We restrict our
analysis to lattices with 1/3 filling (Nb = L/3); t = 1 sets
the energy scale, V = 6, and V ′ is varied (0 � V ′ � 9). For
V ′ < V ′

c = 3, the ground state is a gapless superfluid, whereas
for V ′ � V ′

c = 3, it is a gapped insulator [17].
Eigenstate expectation values (EEVs) of different observ-

ables, as well as the nonequilibrium dynamics and thermo-
dynamics of these systems, are determined using full exact
diagonalization of the Hamiltonian in Eq. (1). We study lattices
with up to 24 sites and 8 HCBs, which correspond to a total
Hilbert space of dimension D = 735 471. We take advantage
of the translational symmetry of the lattice to independently
diagonalize each Hamiltonian block with total momentum k;
the largest block in k space has dimension Dk = 30 667 [18].
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The Hamiltonian in Eq. (1) is integrable when V ′ = 0,
whereas the addition of NNN interaction leads to the onset
of chaos. Note that the integrable-chaos transition may occur
although random elements are nonexistent in the Hamiltonian
[16]. We start our study by addressing how quantum chaos
indicators, such as level spacing distribution, level number
variance, and inverse participation ratio (IPR) [18], change as
one moves away from the integrable point and eventually enter
the gapped region by increasing V ′. The outcomes are shown
to support our results on thermalization.

Level spacing distribution and level number variance
are obtained from the unfolded spectrum of each k sector
separately. The first is a measure of short-range correlations,
and the second is a measure of long-range correlations [19]. For
integrable systems, the distribution of spacings s of neighbor-
ing energy levels may cross, and the distribution is Poissonian
PP (s) = exp (−s), while for nonintegrable systems, level
repulsion leads to the Wigner-Dyson distribution. The form
of the latter depends on the symmetries of the system. Here,
it coincides with that of ensembles of random matrices with
time-reversal invariance, the so-called Gaussian orthogonal en-
sembles (GOEs): PGOE(s) = (πs/2) exp (−πs2/4). The level
number variance is defined as �2(l) ≡ 〈N (l,ε)2〉 − 〈N (l,ε)〉2,
where N (l,ε) is the number of states in the energy interval
[ε,ε + l] and 〈·〉 is the average over different initial values of
ε. For a Poisson distribution �2

P (l) = l, while for GOEs in the
limit of large l, �2

GOE(l) = 2[ln (2πl) + γ + 1 − π2/8]/π2,
where γ is the Euler constant.

Figures 1(a) and 1(b) show results for P (s) and �2(l),
respectively, for different values of V ′. The level spacing dis-
tribution is parametrized by β, which is used to fit P (s) with the
Brody distribution [20], PB(s) = (β + 1)bsβ exp (−bsβ+1),

FIG. 1. (Color online) (a) Parameter β of the Brody distribution
used to fit the average of the level spacing distributions over all sectors
with k = 1, . . . ,�L/2�. The inset shows the gap (between the lowest-
energy states) times L vs V ′. (b) Level number variance averaged
over the same k sectors, for L = 24, and compared to the Poisson
and GOE results. (c) Inverse participation ratio in the mean-field (mf)
(top) and momentum (bottom) basis vs energy; L = 24, k = 2, and
Dk = 30 624.

where b = [�( β+2
β+1 )]β+1 [18]. Two transitions are verified:

(i) from integrable [β → 0,�2(l) → l] to chaotic [β →
1,�2(l) → �2

GOE(l)] as V ′ increases from V ′ = 0, and (ii)
a departure from chaoticity for large values of V ′. Figure 1(a)
also shows a strong dependence of the results on the system
size. For larger systems, smaller values of V ′ suffice for the first
integrable-chaos transition, and larger values of V ′ are required
for the second transition. It is an open question whether, in the
thermodynamic limit, any value of V ′ �= 0 would implicate
chaoticity for these systems. However, for our finite systems,
we do find an overlap between the gapped phase and the
chaotic regime. The behavior of the gap � (times L) vs V ′
is depicted in the inset in Fig. 1(a). Notice the kink around
V ′

c ∼ 3, which signals the onset of the superfluid-insulator
transition.

The IPR measures the level of delocalization of the
eigenstates [21]. Contrary to the two previous quantities,
IPR depends on the basis chosen for the analysis. For an
eigenstate |ψα〉 of Eq. (1) written in the basis vectors |φj 〉
as |ψα〉 = ∑Dk

j=1 c
j
α|φj 〉, we have IPRα ≡ (

∑Dk

j=1 |cj
α|4)−1. In

Fig. 1(c), we investigate IPR in two bases: the mf basis
(IPRmf), where the |φj 〉’s are the eigenstates of the integrable
Hamiltonian (V ′ = 0); and the k basis (IPRk), where the |φj 〉’s
are the total momentum basis vectors. Small vs large values of
IPRmf separate regular from chaotic behavior [22] and signal
delocalization during the first integrable-chaos transition. The
reduction of IPRk indicates localization in k space, which
in our model, results from approaching the atomic limit in
the presence of translational symmetry. Hence, it explains the
departure from chaoticity for V ′ 
 V ′

c [18].
The structures of the eigenstates are intimately connected

to the thermalization process. As stated by the ETH, thermal-
ization is expected to occur when the expectation values of
experimental observables (with respect to eigenstates of the
Hamiltonian that are close in energy) are very similar to each
other and, hence, are equal to the microcanonical average, that
is, thermalization occurs at the level of eigenstates. This is
certainly the case with GOEs, where the amplitudes c

j
α for

all |ψα〉’s are independent random numbers. GOE eigenstates
in any basis then lead to IPRGOE ∼ Dk/3 [22]. For our
lattices, IPRmf and IPRk may approach the GOE value only
in the middle of the spectrum, as expected for systems with
finite-range interactions [16,23]. States at the edges, even in
the chaotic limit, are more localized. In addition, as shown in
the panels of Fig. 1(c), the values of IPRs for eigenstates close
in energy fluctuate significantly as one moves away from the
chaotic limit, namely, as V ′ → 0, where the system becomes
localized in the mf basis, and for V ′ 
 V ′

c , where the system
becomes localized in the k basis. Thus, ETH is not expected
to hold in these regions. On the contrary, for intermediate
values of V ′, IPRmf and IPRk become smooth functions of
energy, especially for E < 0. We may, therefore, anticipate
compliance with the ETH even after the opening of the gap.

To verify the relation between ETH and the chaos measures
analyzed previously, we have studied the EEVs of one- and
two-body observables for different values of V ′ as one crosses
the superfluid to insulator transition. We have found qualita-
tively similar results for them, so we only report here on the
kinetic energy [K = ∑

i −t(b̂†i b̂i+1 + H.c.)] and the

011604-2



RAPID COMMUNICATIONS

QUANTUM CHAOS AND THERMALIZATION IN GAPPED . . . PHYSICAL REVIEW A 82, 011604(R) (2010)

FIG. 2. (Color online) (a) EEVs of K (top) and n(k) (bottom) vs
energy per site for the full spectrum (which include all momentum
sectors). Results are shown for four different values of V ′ and L = 24.
Panels (b) and (c) average relative deviation of the EEVs of (b) K

and (c) n(k = 0) with respect to the microcanonical result vs V ′, for
T = 3 (see text) and three different lattice sizes. T = 3 (L = 24)
corresponds to E = −10.7 for V ′ = 1, E = −10.0 for V ′ = 3, E =
−11.7 for V ′ = 5, and E = −19.3 for V ′ = 9.

momentum distribution function [n(k)]. Both are one-body
observables, although the former one is local, while the latter
is not. K and n(k) are routinely measured in cold gases
experiments.

Figure 2(a) depicts the EEVs of K and n(k) for all
eigenstates of the Hamiltonian and for different values of V ′.
For small values of V ′ (V ′ < 2 for L = 24), there are large
fluctuations of the EEVs of both observables over the entire
spectrum. As V ′ increases and one departs from integrability,
these fluctuations reduce in the center of the spectrum, and
ETH becomes valid. To increase V ′ even further (beyond the
superfluid to insulator transition), increases the fluctuations of
the EEVs once again as the eigenstates begin to localize in
k space. These results are in clear agreement with what we
expected based on the chaos indicators [18].

To be more quantitative, we study the average deviation
of the EEVs with respect to the microcanonical result
(�mic). For an observable O, we define �micO = (

∑
α |Oαα −

Omic|)/(
∑

α Oαα), where the sum is performed over the
microcanonical window and Oαα are the EEVs of Ô. The
microcanonical expectation values are computed as usual. We
average over all eigenstates (from all momentum sectors) that
lie within a window [E − �E,E + �E], and take �E = 0.1.
We have checked that our results are independent of the exact
value of �E in the neighborhood of �E = 0.1. Here, we
select E such that, for different values of V ′, the effective
temperature (T = 3) is the same for all systems sizes [24].

Results for �micK and �micn(k = 0) are presented in
Figs. 2(b) and 2(c) [18]. They show that, in general, as
the system size increases: (i) The average deviations of
both observables decrease, and (ii) the upturn that occurs as
localization starts to set in k space moves toward larger values
of V ′. A comparison between the lower and upper panels in

Fig. 2 also shows that where �micK and �micn(k = 0) are
minimal, so are the maximal fluctuations of K and n(k = 0) in
the individual eigenstates, and they decrease with increasing
systems size [18]. Hence, ETH is valid in that regime and we
find no indications of rare states [13]. The above results are
in agreement with the chaos measure predictions and indicate
that, for thermodynamic systems, ETH may be valid, away
from the edges of the spectrum, even if one is deep into the
insulating side of the phase diagram.

Equipped with this knowledge, we are now ready to study
the dynamics of such systems after a quench. Our initial states
are always selected from the eigenstates of (1) with t = 1,
V = 6, V ′

ini and zero total momentum, and then we quench
V ′

ini → V ′. After a systematic analysis, we have found that
the short-time dynamics depends strongly on the initial state
and the final Hamiltonian, so we will focus here on the long-
time dynamics and the outcome of relaxation. As discussed
previously [5,7,11], after relaxation, observables are well
described by the diagonal ensemble Odiag = ∑

α |Cα|2Oαα ,
where Cα is the overlap of the initial state with eigenstate α of
the Hamiltonian.

In Fig. 3, we show the normalized difference between the
time-evolving expectation value of K and n(k) and the diago-
nal ensemble prediction δK (left panels) and δnk (right panels),
respectively. We define δK(τ ) = |K(τ ) − Kdiag|/|Kdiag| and
δnk(τ ) = [

∑
k |n(k,τ ) − ndiag(k)|]/[

∑
k ndiag(k)]. In order to

verify the universality of our results, for each value of V ′ used
for the dynamics, we prepared nine initial states selected from
the eigenstates of the Hamiltonian with different values of V ′

ini
(excluding V ′) and studied the dynamics for all of them. The
long-time dynamics was found to be very similar, independent
of the initial state. In Fig. 3, we depict the average over those
nine different time evolutions [18]. These plots show that after
long times, observables relax to values similar to those pre-
dicted by the diagonal ensemble, and those predictions become
more accurate with increasing system size. Only for V ′ = 9 do
we find large time fluctuations of K , which is a consequence
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FIG. 3. (Color online) Dynamics of the normalized difference
between the evolving expectation values of K (left panels) and n(k)
(right panels) and the diagonal ensemble prediction. Average over
the evolution of nine initial states selected from the eigenstates
of the Hamiltonian with V ′

ini = 0,1, . . . ,9 (excluding the V ′ used
for the dynamics). The nine states for each V ′ were chosen such
that the (conserved) energies during the time evolution are the same
in all cases, and T = 3. Given the energy of the initial state in the
final Hamiltonian E = 〈ψini|Ĥ |ψini〉, T is computed by following
Ref. [24].
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FIG. 4. (Color online) Relative differences between the predic-
tions of the microcanonical and diagonal ensembles for (a) K and (b)
n(k) vs V ′, for T = 3.0 and T = 5.0. Results are shown for L = 21,
Nb = 7 and L = 24, Nb = 8. The diagonal ensembles correspond to
the quenches from the nine V ′

ini of Fig. 3 to V ′, and the curves are
averages over the nine relative differences. Relative differences are
computed in exactly the same way as δK and δnk in Fig. 3.

of the approach to localization in k space. However, even these
time fluctuations decrease with increasing system size.

Once it is known that the relaxation dynamics brings
observables to the values predicted by the diagonal ensemble,
and that the accuracy of that prediction improves with
increasing system size, all we need to do to check whether the
system thermalizes or not is to compare the predictions of the
diagonal ensemble with the microcanonical ones. For larger
systems, one could also compare with the canonical ensemble,
but this is not adequate here due to finite-size effects [7].

In Fig. 4, we depict the comparison between diagonal and
microcanonical ensembles. Results are shown for the same
set of quenches and initial states presented in Fig. 3, and
for an additional set of initial states such that the effective
temperature of the relaxed systems is a bit higher, namely,
T = 5 [18]. The results for T = 3 and T = 5 are in qualitative
agreement with each other for our two observables of interest.

They show that the microcanonical ensemble predicts the
outcome of the relaxation dynamics with high accuracy for
the intermediate values of V ′, where ETH was shown to be
valid (cf. Fig. 2) and where quantum chaos was seen to emerge
(cf. Fig. 1). It also shows that (i) the predictions of the micro-
canonical ensemble become more accurate with increasing
system size, and (ii) the increasing disagreement between the
microcanonical prediction and the outcome of the relaxation
dynamics, after crossing the superfluid to insulator transition,
moves to larger values of V ′ as the system size increases.

To summarize, our studies indicate that thermalization
does occur in gapped systems. If integrability is broken,
ETH was shown to be valid, away from the edges of the
spectrum, even if gaps are present in the spectrum and
the ground state of the system is an insulator. We verified
that ETH holds where quantum chaos develops and that
thermalization closely follows the validity of ETH (i.e., we
found no instance where the rare event scenario put forward in
Ref. [13] emerges in these systems). Our analysis of different
lattice sizes showed that: (i) The range of parameters over
which ETH applies increases with increasing system size; in
particular, ETH becomes valid deeper into the insulating side
of the phase diagram, and (ii) away from integrability, the
fluctuations of the eigenstate expectation values of few-body
observables decrease with increasing systems size. Further
studies are needed to understand the dependence of the
short-time dynamics on the initial state as well as the final
Hamiltonian, and to determine the precise scaling, with system
size, for the onset of ETH and quantum chaos.
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011604-4

http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1038/nature00968
http://dx.doi.org/10.1103/PhysRevA.74.053616
http://dx.doi.org/10.1103/PhysRevA.74.053616
http://dx.doi.org/10.1103/PhysRevLett.98.180601
http://dx.doi.org/10.1103/PhysRevLett.98.180601
http://dx.doi.org/10.1103/PhysRevLett.98.210405
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1038/nature06149
http://dx.doi.org/10.1103/PhysRevLett.103.100403
http://dx.doi.org/10.1103/PhysRevA.80.053607
http://dx.doi.org/10.1103/PhysRevA.80.053607
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1103/PhysRevLett.97.156403
http://dx.doi.org/10.1103/PhysRevLett.97.156403
http://dx.doi.org/10.1088/1742-5468/2007/06/P06008
http://dx.doi.org/10.1103/PhysRevLett.100.100601
http://dx.doi.org/10.1103/PhysRevLett.100.100601
http://dx.doi.org/10.1103/PhysRevA.78.013626
http://dx.doi.org/10.1103/PhysRevA.78.013626
http://dx.doi.org/10.1103/PhysRevA.80.063619
http://dx.doi.org/10.1103/PhysRevLett.102.127204
http://dx.doi.org/10.1103/PhysRevLett.102.127204
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1103/PhysRevA.79.021608
http://dx.doi.org/10.1103/PhysRevA.81.053604
http://dx.doi.org/10.1103/PhysRevA.81.053604
http://arXiv.org/abs/arXiv:0907.3731
http://dx.doi.org/10.1103/PhysRevLett.103.056403
http://dx.doi.org/10.1103/PhysRevLett.103.056403
http://dx.doi.org/10.1103/PhysRevLett.102.130603
http://dx.doi.org/10.1088/1367-2630/12/5/055017
http://dx.doi.org/10.1103/PhysRevB.75.155111
http://dx.doi.org/10.1103/PhysRevB.73.035113
http://dx.doi.org/10.1103/PhysRevB.73.035113
http://dx.doi.org/10.1103/PhysRevE.81.036206
http://dx.doi.org/10.1103/PhysRevE.81.036206
http://dx.doi.org/10.1103/PhysRevB.56.12939
http://dx.doi.org/10.1103/PhysRevB.56.12939
http://link.aps.org/supplemental/10.1103/PhysRevA.82.011604
http://link.aps.org/supplemental/10.1103/PhysRevA.82.011604
http://dx.doi.org/10.1016/S0370-1573(97)00088-4
http://dx.doi.org/10.1103/RevModPhys.53.385
http://dx.doi.org/10.1016/0370-1573(90)90067-C
http://dx.doi.org/10.1016/S0370-1573(96)00007-5
http://dx.doi.org/10.1016/S0370-1573(00)00113-7

