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Color-charge separation in trapped SU(3) fermionic atoms
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Cold fermionic atoms with three different hyperfine states with SU(3) symmetry confined in one-dimensional
optical lattices show color-charge separation, generalizing the conventional spin-charge separation for interacting
SU(2) fermions in one dimension. Through time-dependent density-matrix renormalization-group simulations,
we explore the features of this phenomenon for a generalized SU(3) Hubbard Hamiltonian. In our numerical
simulations of finite-size systems, we observe different velocities of the charge and color degrees of freedom when
a Gaussian wave packet or a charge (color) density response to a local perturbation is evolved. The differences
between attractive and repulsive interactions are explored and we note that neither a small anisotropy of the
interaction, breaking the SU(3) symmetry, nor the filling impedes the basic observation of these effects.
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One of the most intriguing effects of strong correlations
in low-dimensional systems is the separation of charge
and spin degrees of freedom. As a generic phenomenon, a
quantum particle carrying spin and charge converts in separate
spin (spinon) and charge (holon) excitations with generally
different velocities. On a microscopic bare level, there are
rare examples where this process can be exactly studied in
terms of explicit spinon and holon wave functions, as is the
case for the Kuramoto-Yokoyama model [1–3]. However, on a
low-energy effective-field-theory level, spin-charge separation
(SCS) manifests itself in a generic one-dimensional interacting
system belonging to the Luttinger liquid (LL) universality
class, where spinons and holons are described by independent
collective excitations [4]. Despite several attempts, the direct
observation of SCS has proved elusive [5]. So far, the best
experimental evidence is provided by tunneling between
quantum wires where interference effects relate to excitations
with different velocities [6].

Since recently, one possible avenue for the observation
of SCS is ultracold Bose or Fermi gases confined in optical
lattices. There, the interaction parameters and dimensionality
can be tuned with high precision by means of an atomic
Feshbach resonance or by changing the depth of the wells in an
optical lattice [7]. Several theoretical works have addressed the
possibility of observing SCS in cold-fermionic gases [8–13]
and in cold-bosonic gases [14] with two internal degrees
of freedom. Thanks to the special properties of cold atomic
systems, these theoretical proposals could address previously
unexplored features of SCS, such as the problem of the
breaking of the SU(2) symmetry and the description of SCS
at high energies. In particular, higher spin fermions can be
directly studied with cold atoms in more than two hyperfine
states. These kinds of systems could give rise to new phases
in optical lattices due to the emergence of triplets and quartets
(three- or four-fermion bound states) and other phenomena
[15–23]. At least the two alkali-metal atoms 6Li and 40K
are possible candidates for the experimental realization of
an SU(3) fermionic lattice with attractive interactions [18].
In the case of 6Li the scattering lengths for the three
possible channels of the three lowest lying hyperfine levels

(|F,m〉 = |1/2,1/2〉, |1/2, − 1/2〉, and |3/2, − 3/2〉) at large
magnetic fields become similar at a scattering length of
as ≈ −2500a0 [24]. Moreover, the realization of a stable
and balanced three-component Fermi gas has been recently
reported to potentially accomplish both an attractive and
repulsive regime with approximate SU(3) symmetry [25,26].
The scattering lengths of the different channels for the three
lowest hyperfine states of 40K near the Feshbach resonance
were also measured. In addition, the possibility of trapping
them optically was demonstrated [27].

It is the purpose of this work to use time-dependent
density-matrix renormalization-Group (TD-DMRG) [28–32]
simulations to study the phenomenology of color-charge
separation (CCS) in lattice systems with three different kinds
of fermions, where the color notation is inherited from the
quark description of high-energy SU(3) theories of quantum
chromodynamics. As one of the quantities to be obtained
from TD-DMRG, the different color and charge velocities are
extracted from time-dependent simulations and compared to a
low-energy LL approach.

The low-energy physics of cold fermionic atoms with three
different hyperfine states trapped in an optical lattice can be
described by an SU(3) version of the Hubbard Hamiltonian:

H = −t
∑
〈ij〉,α

(f †
iαfjα + H.c.) +

∑
i,α �=β

Uαβ

2
niαniβ . (1)

The sums α and β extend over the three colors red (r), green (g),
and blue (b) corresponding to three different hyperfine states.
The operators f

†
iα and fiα are the creation and destruction

operators of an atom on site i with color α. We consider
different values of the on-site interaction between the different
color pairs Uαβ to be able to include SU(3) symmetry-breaking
terms. The site label i goes from 0 to L − 1, with L being the
total number of lattice sites corresponding to the wells forming
the optical lattice. For cold atoms, there is an additional
harmonic confinement term that arises due to the Gaussian
profile of the laser beams. If this trap potential is weak, we can
assume to be located in the trap center where the confinement
can be considered constant. In the following calculations we
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ignore the confinement, since the SU(2) spin-charge separation
persists in a trap [13].

The hopping term can be controlled by varying the depth
of the wells through the laser intensity. The optical lattice
potential that each of the hyperfine states is affected by is very
similar and the hopping rates can be considered equal for the
three different spin species (colors). In the rest of the article,
all energies are expressed in units of t ≡ 1. The interaction
strength in each channel is proportional to the corresponding
s-wave scattering length Uαβ = 4πh̄2aαβ/m. We do not take
into account the population of higher bands and spin-flipping
rates because in experiments these are usually negligible [33].

In the linear bosonization approach, being valid in the
weak-coupling limit, the low-energy effective theory of the
model can be expressed in terms of the collective fluctuations
of densities of the three spin species plus charge density.
Introducing three bosonic fields φα(x) and assuming that the
position x is measured in units of the distance between sites,
the density operators for each color can be written as

ρi,α ≈ ρ̄ + 1√
π

∂xφα(x) − 1

π
sin [2kF x +

√
4πφα(x)], (2)

where kF is the Fermi wave-vector and x corresponds to the
lattice site. We express the bosonized Hamiltonian in terms of
a total density described by a charge field,

�ch = 1√
3

∑
α

φα, (3)

and the relative spin densities described by two bosonic fields,

�3 = 1√
2

(φr − φb) and �8 = 1√
6

(φr + φb − 2φg). (4)

The subindices were chosen to correspond to the SU(3)
group Casimir operators J3 and J8. For an SU(3) symmetric
Hamiltonian, the model can be separated into a charge and a
color part, H = Hch + Hcol,

Hch = vch

2

[
1

K
(∂x�ch)2 + K(∂x�ch)2

]
, (5)

where vch = vF /K is the density velocity, K = (1 +
2U/πvF )−1/2 is the LL parameter, �ch is the conjugate field
of the bosonic field �ch, and

Hcol =
∑

µ=3,8

{
vF

2
[(∂x�µ)2 + (∂x�µ)2] − U

2π
(∂x�µ)2

}

+ U

2π2
cos

√
2π�3 cos

√
6π�8 − U

2π2
cos

√
8π�3.

(6)

Similarly, the color velocity is approximated as vcol =
vF

√
1 − U/(πvF ). However, due to the nonlinear cosine terms

in (6), we do not expect a linear relation between distance and
time for color excitations to hold for long times. If SU(3)
symmetry is not strictly observed there appear mixing terms
coupling density and color degrees of freedom. A renormaliza-
tion group analysis of this model can elucidate the low-energy
properties of the system [34,35]. The most important differ-
ence with respect to the SU(2) case is that for U >∼ 0, umklapp
processes present for commensurate fillings do not open a gap
in the charge sector. We expect a phase transition between

the MI and the LL at a finite value of U . In fact, with Monte
Carlo calculations, Assaraf et al. [34] estimated the critical in-
teraction scale at Ucr = 2.2, while recent DMRG calculations
suggest the critical point to be much closer to zero [36]. The
cosine terms for the color Hamiltonian are irrelevant for repul-
sive but relevant for attractive interaction and are responsible
for a gap opening in the color sector in the attractive case.

We now explain how the CCS appears in real-time
simulations of SU(3) spin chains. We study the time evolution
of the Hamiltonian (1) with the TD-DMRG algorithm [10,29].
We find the number of states needed to keep sufficient accuracy
during the time evolution to be >7000. Such huge demands
limit the system size we can simulate to L = 18 for periodic
boundary conditions (PBC) and to L = 48 for hard-wall
boundary conditions (HWBC), which is settled in the range
of present state of the art limits. For the small systems, the
finite-size effects are large. However, comparable simulations
on SU(2) systems provide the detailed knowledge that the
effects are rather independent of interaction parameters.
Comparison with exact results for U = 0 of the charge and
color velocities provide approximations to the Luttinger liquid
parameter, which we use as a tuning point to compare field
theory and numerical results.

We show snapshots of the time evolution for different
interaction strengths in Fig. 1 for the system with L = 18
and PBC. We calculate the ground-state |	0〉 of the SU(3)
Hamiltonian (1) with N = 27 fermions. Then, we put an extra
(green) fermion with an initial wave packet in the system that
travels to the right with a finite momentum centered around
k = 0.6π ,

|	+1(T = 0)〉 =
√

π

2σ 2

∑
x

e(ikx)e− (x−x0)2

2σ2 f †
x,green |	0〉, (7)

and a width of σ = 1.5. Choosing N = 27 leads to an
average density of 〈n〉 = 1.5 and an incommensurate filling
of ν = 0.5, the commensurate fillings being ν = 1/3 and 2/3.
Time is always measured in inverse units of the hopping
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FIG. 1. (Color online) Snapshots of the time evolution of an
additional fermion for filling ν = 0.5 and U = 0 (a), U = +1 (b),
U = −1 (c), and U = +5 (d). The initial state is a Gaussian wave
packet with average momentum k = 0.6π . In panels (b)–(d), the color
density of the quantum number j 8 (magenta dotted line) separates
from the charge density (black solid line).
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rate. The panels in the figure show the particle density 〈n〉 =
〈	+1(T )| ∑α f †

αfα|	+1(T )〉 and the corresponding densities
of the color quantum numbers j 3 and j 8 relative to the uniform
ground-state density at the initial time and at a finite time.
We observe a slight dispersion effect [Fig. 1(a)] due to the
finite width of the wave packet. Moreover, the velocity of the
excitation is not exactly the velocity of a plane wave with
momentum k. In Fig. 1(b), for the case U = 1, we see the
separation of density and color degrees of freedom. The initial
excitation separates and the color and charge density evolve
with different velocities. The decay of the charge-density
excitation is more rapid for strong repulsive interaction as it is
seen in the case U = 5, indicating the opening of the charge
gap. In similar ways, a gap in the color sector should open
for attractive interaction and spoil the color-density evolution
in that regime. However, in our example with U = −1, we
can still observe rather clean and stable CCS since, for the
finite system, the arising gap in the color sector is too small
to reasonably detect an enhanced color excitation decay. To
extract color and charge velocities, we applied two different
extraction methods. First, the velocity can be obtained by
dividing the number of sites traveled by the maximum of the
density by the time. It is more accurate to fit a Gaussian on the
density for every time step. There is a short transient time at
the beginning, followed by a plateau of constant velocity until
the packet hits the boundary. We extract the velocity of the
packet when it passes the median between the initial position
and the boundary and take a Gaussian-averaged value around
this position. As a second measure, for a definite plateau of
constant velocity, we use an L = 48 sites system with HWBCs
and replace the incident electron by an initial, small potential
perturbation. The time development of this method differs
mainly by the implicit stimulation of excited states around both
Fermi points. This leads to symmetric peaks running in both
directions and increasing the transient time at the start. Figure 2
shows snapshots of the initial time and a finite time step for
U = 1.5, where the perturbation is taken to be the derivative of
a Gaussian and is fitted for the two propagating wave packets.
We find that both methods provide similar results, while the
latter proves to be a considerable improvement in precision
and is put forward by us as a generally preferable method to
extract velocities from TD-DMRG.

Finally, the extracted velocities are shown as a function of
the uniform interaction in Fig. 3 using the latter method. On top
of the data, we show the expected relation for vcol(U ),vch(U )
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FIG. 2. (Color online) Snapshots of a perturbation at time T = 0
(thin lines) and a finite time step (thick lines and data points). The
dashed (solid) lines are fits to the color density of j 8 (charge density
n) with the corresponding data points.
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FIG. 3. (Color online) Velocity v(U ) of an initial Gaussian
perturbation. Results of our TD-DMRG simulations for both charge
density (+) and color density (×). The dashed lines represent
bosonization results, scaled to match the DMRG velocity at U = 0.
The solid lines are fits on a next-to linear dependency in U .

from bosonization, scaled to match the free fermion velocity.
This a priori renormalization covers all direct effects that lead
to deviations of the Fermi velocity due to finite width or the
central momentum k0 of the excitation and the finite-size
dispersion. Even for |U | up to 1, the agreement between
the bosonization estimate and the numerical data is found to
be excellent (dashed lines in Fig. 3). Moreover, the limits
of applicability of the low-energy expansion are reached.
However, upon extending the velocity expansion to higher
order in U , with vch = vF

√
1 + 2U/(πvF ) + aU 2, the fit

already covers the complete computed range in U (solid line
in Fig. 3) and the parameter a = −0.017 has the same order
and sign as the fit by Assaraf et al. [34] who chose a different
filling in their Monte Carlo simulations. Similarly, we obtain
a fit for vcol = vF

√
1 − U/(πvF ) + bU 2 with b = 0.015.

A possible candidate for realizing the trionic phase (U < 0)
is 6Li for which the magnetic field dependence of the three
scattering lengths has been measured [24]. The attractive U

interaction for magnetic fields around 1000 G can be estimated
as Urg = U0, Urb = 1.23U0, and Ugb = 1.06U0, due to the
ratios in the s-wave scattering rate in each channel [24]. It is
important to consider whether these anisotropies infringe on
the validity of the effects observed. In bosonization theory,
anisotropy introduces new terms that couple the charge and
color degrees of freedom so we would expect that high
anisotropies destroy charge-color separation [35]. However,
small and experimentally accessible anisotropies turn out to be
not decisively important. We have checked that the separation
effect of color and charge densities remains without much
change. Even for the special cases of commensurate fillings
where a stronger sensitivity on the color anisotropy may have
been suspected, the qualitative behavior persists.

In summary, we have performed TD-DMRG simulations of
cold fermionic atoms with three hyperfine states trapped in an
optical lattice. We have prepared the system in the ground state
and added a fermionic Gaussian wave packet with a definite
momentum or disturbed the initial ground state by adding
a Gaussian potential. Our simulation allowed us to observe
the color-charge separation in SU(3) fermionic systems in
a generic non-commensurate case. We have obtained the
charge and color velocities as a function of the interaction
from the real-time simulations for both the attractive and
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the repulsive case. Once we take into account finite-size
effects by renormalizing the noninteracting velocities, our
results at weak coupling are in good agreement with the LL
calculations.
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