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Thermal Casimir-Polder shifts in Rydberg atoms near metallic surfaces
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The Casimir-Polder (CP) potential and transition rates of a Rydberg atom above a plane metal surface at finite
temperature are discussed. As an example, the CP potential and transition rates of a rubidium atom above a
copper surface at 300 K are computed. Close to the surface we show that the quadrupole correction to the force
is significant and increases with increasing principal quantum number n. For both the CP potential and decay
rates one finds that the dominant contribution comes from the longest wavelength transition and the potential
is independent of temperature. We provide explicit scaling laws for potential and decay rates as functions of
atom-surface distance and principal quantum number of the initial Rydberg state.
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Rydberg atoms—atoms excited to large principal quantum
numbers n—have attracted much attention in recent decades
[1,2]. Aside from the inherent interest of studying such extreme
states, the exaggerated properties of these highly excited atoms
make them ideal for examining the properties of a variety of
systems that would be awkward to probe by other means.
The large cross sections and weakly bound outer electrons
associated with Rydberg atoms make them extremely sensitive
to small-scale perturbations and dispersion potentials, such as
the van der Waals (vdW) and Casimir–Polder (CP) potentials
[3].

For example, the strong scaling of the free-space vdW
potential between two Rydberg atoms with n (∝ n11) leads
to the Rydberg blockade mechanism which has been put
forward as a candidate for implementing controlled gate
operations between isolated atoms [4,5]. The effect relies on
the massive level shift that one Rydberg atom experiences in
close proximity to another.

Level shifts of similar origin arise if the atoms are brought
into the vicinity of a macroscopic body. With the increasing
ability to trap and manipulate atoms close to macroscopic
bodies, the effects of these surface (CP) potentials have become
a subject of great interest. Applications range from novel
atom trapping methods [6] to atom chip physics [7]. Thus,
it is of both fundamental and practical interest to understand
the interplay between atoms in highly excited states and field
fluctuations emanating from macroscopic bodies.

In this Rapid Communication we provide evidence that
dispersion forces have a sizable effect on the energy levels of
highly excited Rydberg atoms when brought close to metallic
surfaces, with shifts on the order of several GHz expected
at micrometer distances. Due to the large atom size, next-to-
leading order terms in the multipole expansion of the radiation
field give additional contributions in the MHz range. Despite
the existence of large numbers of thermal photons at 300 K at
the relevant atomic transition frequencies, the level shifts are
in fact temperature independent [8].

For a given atom-field coupling Ĥint, the CP potential for
an atom in state |n〉 and the radiation field in state |q〉 is given
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by the position-dependent part of the energy shift which, to
second order in perturbation theory, reads

δEn = 〈n,q|Ĥint|n,q〉 +
∑

n′,q ′ �=n,q

|〈n,q|Ĥint|n′,q ′〉|2
En+q − En′+q ′

, (1)

where En+q are the unperturbed energy eigenvalues
of the atom-field system. In the long-wavelength approxima-
tion, the electric field couples to the atomic dipole moment d̂
via the interaction Hamiltonian,

Ĥint = −d̂ · Ê(rA), (2)

with the electric field given in terms of the classical Green
tensor (for a recent review see, e.g., [9]),

Ê(r) =
∑

λ=e,m

∫
d3r ′

∫
dω Gλ(r,r′,ω) · f̂λ(r′,ω) + h.c., (3)

with

Ge(r,r′,ω) = i
ω2

c2

√
h̄

πε0
Imε(r′,ω)G(r,r′,ω), (4)

Gm(r,r′,ω) = −i
ω

c

√
h̄

πε0

Imµ(r′,ω)

|µ(r′,ω)|2 [G(r,r′,ω) × ←−∇ ′
]. (5)

The Green tensor G(r,r′,ω) solves the Helmholtz equation
for a point source and contains all the information about the
geometry of the system. The bosonic vector fields f̂λ(r,ω)
describe collective excitations of the electromagnetic field and
the linearly absorbing dielectric matter.

The CP potential at temperature T acting on an atom in
state |n〉 via a dipole interaction (2) is given by [10]

U
dip
CP (rA)

= µ0kBT

∞∑
j=0

′ξ 2
j

[
α(iξj ) • G(1)(rA,rA,iξj )

]

+µ0

∑
k �=n

ω2
knn(ωkn)(dnk ⊗ dkn) • ReG(1)(rA,rA,ωkn),

(6)

where • denotes the Frobenius inner product (A • B =∑
i1...ik

Ai1...ikBi1...ik ) and the primed summation means that
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the term with j = 0 contributes only with half-weight. Here
G(1)(rA,rA,ω) is the scattering part of the Green tensor. The
atomic polarizability is defined as

α(ω) =
⎡
⎣1

h̄

∑
k �=n

dnk ⊗ dkn

(ωkn + ω)
+ dnk ⊗ dkn

(ωkn − ω)

⎤
⎦ , (7)

with ωkn = (Ek − En)/h̄ denoting the atomic transition fre-
quencies. The frequencies ξj = 2πkBTj/h̄, j ∈ N are the
Matsubara frequencies and n(ω) = [eh̄ω/kBT − 1]−1 is the
thermal photon number distribution.

The reflective part of the scattering Green tensor of an
infinitely extended planar metal that fills the lower half-space
z < 0 is given by [11]

G(1)(r,r′,ω) =
∫

d2k‖
(2π )2

R(k‖,z,z′,ω)eik‖·(r‖−r′
‖), (8)

with r‖ = (x,y,0), k‖ = (kx,ky,0), and k‖ = |k‖|. The reflec-
tion tensor R(k‖,z,z′,ω) has the form,

R(k‖,z,z′,ω) = −i

8π2β+

∑
σ=s,p

rσ eiβ+(z+z′)e+
σ ⊗ e−

σ . (9)

Here, the unit vectors for s-polarized and p-polarized waves
are e±

s = ek‖ × ez and e±
p = (k‖ez ∓ β+ek‖)/q. The func-

tions rs = [ε(ω)β+ − β−]/[ε(ω)β+ + β−] and rp = [β+ −
β−]/[β+ + β−] are the usual Fresnel reflection coefficients
for those waves with wave numbers β− = √

q2ε(ω) − k2‖
and β+ = √

q2 − k2‖ , and q = ω/c. The permittivity of the
metal surface is modeled by the Drude relation, ε(ω) =
1 − ωp/ω(ω + iγ ), where ωp and γ are the plasma frequency
and the relaxation rate of the metal, respectively. Magnetic
effects will be neglected.

Matrix elements of the dipole operator d̂ = er̂ = er̂er for
the transition between two electronic states |n,l,j,m〉 (n,
principal quantum number; l,j ,m, quantum numbers for orbital
and total angular momentum and z component of the latter) and
|n′,l′,j ′,m′〉 factor into a radial and an angular part according
to

〈n′,l′,j,m′|d̂|n,l,j,m〉 = e〈Rn′,l′,j ′ |r̂|Rn,l,j 〉〈l′j ′m′|er |ljm〉,
(10)

where |Rn,l,j 〉 are the radial wave functions. The radial
matrix elements are computed numerically using the Numerov
method [12,13] in which the suitably scaled radial Schrödinger
equation is integrated inward until an inner cutoff point
(commonly the radius of the rump ion). The eigenenergies are
computed as En,l,j = −R/n∗2 (R is the Rydberg constant)
where n∗ = n − δn,l,j is the effective quantum number and
δn,l,j the quantum defect [14] whose values are tabulated in
the literature [15].

To evaluate the angular part, we first convert from the jm

basis to a mlms basis (ml , ms are the z components of orbital
angular momentum and spin) by summing over the relevant
Clebsch-Gordan coefficients,

〈l′j ′m′|er |ljm〉=
∑
mlm

′
l

ms

Cj,l,1/2
m,ml,ms

C
j ′,l′,1/2
m′,m′

l ,ms
〈Yl′,m′

l
|er |Yl,ml

〉, (11)

with the orbital-angular momentum eigenstates |Yl,ml
〉 being

spherical harmonics. Matrix elements in the mlms basis are
computed by rewriting the radial unit vector in terms of
spherical harmonics [Ylm ≡ Ylm(ϑ,ϕ)],

er =
√

2π

3

⎛
⎜⎝

Y1,−1 − Y1,1

i(Y1,−1 + Y1,1)√
2Y1,0

⎞
⎟⎠ , (12)

and using the integral relation [d� ≡ sin ϑ dϑ dϕ],∫
d�Yl1,m1Yl2,m2Yl3,m3

=
√√√√ 1

4π

3∏
ν=1

(2lν + 1)

(
l1 l2 l3

0 0 0

)(
l1 l2 l3

ml1 ml2 ml3

)

(13)

that expresses the angular integral over three spherical har-
monics in terms of Wigner 3j symbols.

When Rydberg atoms are held sufficiently close to a surface,
their effective radius 〈r〉 � a0n

2 (a0 is the Bohr radius) can be
on the order of micrometers and therefore a significant fraction
of the surface distance. The dipole approximation is then no
longer appropriate. In other words, the atom cannot be viewed
as a point-like particle, and its non-negligible size requires the
inclusion of contributions from higher-order multipoles. This
correction can be found via a similar method as described
previously, with the dipole interaction Hamiltonian replaced
by the quadrupole interaction Hamiltonian [16],

Ĥint = −Q̂ • [∇ ⊗ Ê(rA)]. (14)

In close analogy to the dipole case the CP potential for a
quadrupole interaction is found to be

U
quad
CP (rA) = µ0kBT

∞∑
j=0

′ξ 2
j α(4)(iξj )

• [∇ ⊗ G(rA,rA,iξj ) ⊗ ←−∇ ] + µ0

∑
k �=n

ω2
knn(ωkn)

× (Qnk ⊗ Qkn) • [∇ ⊗ ReG(rA,rA,ωkn) ⊗ ←−∇ ],

(15)

with the quadrupole moment operator Q̂ = e(r̂ ⊗ r̂)/2 and the
atomic quadrupole polarizability defined as

α(4)(ω) = 1

h̄

∑
k �=n

[
Qnk ⊗ Qkn

(ωkn + ω)
+ Qnk ⊗ Qkn

(ωkn − ω)

]
. (16)

The matrix elements for the quadrupole transitions can again
be evaluated by factoring Q̂ = (e/2)r̂2er ⊗ er and computing
the matrix elements between the radial and angular parts of
the wave functions separately. Evaluation of the radial integral
is again performed numerically. The tensor product of unit
vectors in spherical harmonic form reads er ⊗ er =

√
2π
15 A

with

Axx
yy

= ±Y2,−2 ± Y2,2 −
√

2

3
Y2,0 +

√
10

3
Y0,0, (17a)

Axy = Ayx = i(Y2,−2 − Y2,2), (17b)

010901-2



RAPID COMMUNICATIONS

THERMAL CASIMIR-POLDER SHIFTS IN RYDBERG . . . PHYSICAL REVIEW A 82, 010901(R) (2010)

38 39 40 41 42 44 45 46 470

0.2

0.4

0.6

0.8

1

(43)
Principal quantum number n

Dipole
Quadrupole

FIG. 1. (Color online) Relative contributions from different tran-
sitions to the CP dipole and quadrupole level shift of the state 43s of
87Rb.

Axz = Azx = Y2,−1 − Y2,1, (17c)

Ayz = Azy = i(Y2,−1 + Y2,1), (17d)

Azz =
√

8

3
Y2,0 +

√
10

3
Y0,0. (17e)

The angular matrix elements can then be evaluated using
Eq. (13).

As can be seen from Eqs. (6) and (15), the CP potential
is comprised of a pair of sums, one over the Matsubara fre-
quencies and one over all available atomic transitions. It turns
out, however, that due to the finite-temperature environment
only a limited number of dipole and quadrupole transitions
contribute significantly to the total level shift. This effect
is depicted in Fig. 1, where we show the relative contributions
of the dipole transitions 43s → np and quadrupole transitions
43s → nd to the total level shift of the 43s state of 87Rb.
Note that the dominant transitions are different for dipole
and quadrupole shifts. This is due to the differing quantum
defects for the respective target p and d states. Moreover,
for each of these individual (long-wavelength) transitions the
first term in the Matsubara sum (with j = 0) dominates at
the micrometer atom-surface distances envisaged here, and all
other terms can be safely neglected. Remarkably, we observe
that the CP potential is independent of temperature from
T = 0 − 300 K and beyond. As was recently shown [8], this is
due to the dominance of contributions from transitions whose
wavelengths far exceed atom-surface separations.

Figure 2(a) shows the total CP potential (and hence level
shifts) UCP = U

dip
CP + U

quad
CP for various ns states (with n =

32,43,54) of 87Rb near a copper surface at 300 K. As we are
not interested in a particular transition channel, the weighted
sum over all possible final states has been taken.

One observes that for very small (yet experimentally
achievable and indeed desirable) distances of less than 2 µm
the expected level shifts rapidly grow to GHz sizes. At
these distances, we also observe significant deviations of the
total shift from the dipole contribution (6) alone due to the
increasingly important quadrupole shifts [Eq. (15)] which
themselves can be as large as several MHz [inset in Fig. 2(a)].

Related to the energy level shift is a line broadening effect
(i.e., an increased rate of spontaneous decay due to strong
nonradiative processes) as the atom approaches the surface
[9,16]. This strongly enhanced body-induced spontaneous
decay partially counteracts the expected increase in lifetime
as a function of the principal quantum number n in free space
(�0 ∝ n−3) [1].
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FIG. 2. (Color online) (a) Casimir-Polder level shifts of the states
32s (dotted line), 43s (dashed line), and 54s (solid line) of 87Rb near
a copper surface at 300 K; total shift and quadrupole contribution
alone (inset). (b) Spontaneous decay rate near a copper surface at
300 K for the initial states 32s (dotted line), 43s (dashed line), and
54s (solid line) of 87Rb.

In Fig. 2(b) we show the total decay rates of the Rydberg
states ns (n = 32,43,54) of 87Rb as a function of atom-surface
distance. The body-induced decay rates for electric dipole and
quadrupole transitions are calculated from Ref. [16] as [�nk =
�

dip
nk + �

quad
nk ]

�
dip
nk (rA) = ω2

nk

h̄ε0c2
(dnk ⊗ dkn) • Im G(rA,rA,|ωnk|)

×{�(ωnk)[n(ωnk) + 1] + �(ωkn)n(ωkn)}, (18)

�
quad
nk (rA) = ω2

nk

h̄ε0c2
(Qnk ⊗ Qkn)

• [∇ ⊗ Im G(rA,rA,|ωnk|) ⊗ ←−∇ ]

×{�(ωnk)[n(ωnk) + 1] + �(ωkn)n(ωkn)}. (19)

Note that, unlike the CP potential, the decay rates are always
temperature dependent. One observes a strong increase of the
decay rates near the surface (z � 10 µm) which becomes more
pronounced for states with higher principal quantum number
n. This translates into a relative line broadening of more than
three orders of magnitude that potentially limits trapping and
manipulation times of high-lying states near surfaces. For
larger distances (z � 15 µm) the rates quickly approach their
free-space values and show the expected suppression with
increasing n.

Finally, we will briefly consider how the CP potential and
transition rates scale with atom-surface distance z and the
principal quantum number n. For metal surfaces, the reflection
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coefficients are nearly independent of ω at infrared frequencies
and below. In the low-temperature limit, when the thermal
photon number is negligible, there is no ω dependence for
either the CP potential or the transition rates. The dipole and
quadrupole moments for the dominant ns → (n − 1)p and
ns → (n − 1)d transitions scale as n2 and n4, respectively, for
large n. In the nonretarded limit (valid for surface distances
beyond even 100 µm), the body-induced rates and the CP
potential scale as z−3 and z−5 for the dipole and quadrupole
contributions, respectively [16]. Combining these results leads
to a scaling behavior of

∣∣U dip
CP

∣∣, �
dip
nk ∝ n4

z3
,

∣∣U quad
CP

∣∣, �
quad
nk ∝ n8

z5
, (20)

for the dipole and quadrupole components of the CP potential
UCP and the decay rate �nk .

In the high-temperature limit, the scaling of the CP
shifts remains the same due to the temperature independence
demonstrated in Ref. [8], whereas the transition rates become
proportional to the mean photon number n(ω) ≈ kBT /(h̄ω).
For the dominant dipole and quadrupole transitions (Fig. 1),

one finds ω ∝ n−3, and the transition rates scale as �
dip
nk ∝

n7/z3 and �
quad
nk ∝ n11/z5, respectively.

We have shown in this Rapid Communication that the
interaction between highly excited atoms and macroscopic
surfaces leads to energy level shifts that can be as large as
several GHz. This implies that any scheme that relies on
the manipulation of (trapped) Rydberg atoms near surfaces
has to account for this major adjustment. Moreover, some
of the advantages of using highly excited Rydberg atoms, in
particular their rapidly decreasing Einstein coefficients with
increasing principal quantum number n, are counteracted by
the atom-surface interactions.
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