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Photodetachment of hydrogen negative ions with screened Coulomb interaction
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The effects of Coulomb interaction screening on photodetachment cross sections of hydrogen negative ions
below the n = 2 excitation threshold is investigated by using the R-matrix method with pseudostates. The
contributions of Feshbach and shape resonances to H− photodetachment cross section are presented when
screening length (D) varies from D = ∞ to D = 4.6 a.u. It is found that the interaction screening has dramatic
effects on the photodetachment cross sections of hydrogen negative ions in the photoelectron energy region
around the n = 2 excitation threshold by strongly affecting the evolution of near-threshold resonances.
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In many physical systems (dense plasmas, electrolytes,
solid-state matter) the Coulomb interaction between the
constituent charged particles is screened due to the correlation
of many-particle interactions [1–3]. To the lowest particle
correlation order (pairwise correlations), the Coulomb inter-
action screening reduces to the Debye-Hückel (Yukawa-type)
potential. For the interaction of an ion of charge Z with an
electron it has the form [1–3]:
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where D is the screening length. In a plasma, D =
(kBTe/4πe2ne)1/2, with Te and ne being the plasma electron
temperature and density, respectively, and kB is the Boltzmann
constant.

In the context of hot, dense plasmas studies, a number
of theoretical investigations of electron-hydrogen collision
processes [4–11] have been carried out by using the interaction
(1), while the only study of photodetachment process in such
plasmas was done by Kar and Ho [12] for the negative
hydrogen ion. Hydrogen negative ions are known to be the
principal source of continuous opacity in solar photosphere,
and the study of H− photodetachment in plasmas is of interest
due to its presence in the interstellar media [13–15].

In the work of Kar and Ho [12], the H− photodetachment
with screened Coulomb interaction between all three charged
particles was described by using the “loosely bound electron”
approximation [15,16] for the bound state wave function and a
plane wave for the continuum electron wave function. The
energy parameter and the normalization constant of initial
state (one-electron) wave function were determined with full
account of two-electron correlations for each value of consid-
ered screening length D. Cross-section results were presented

for a large number of screening lengths covering the range
from D = 1 a.u. to infinity. In the present work we shall treat
the H− photodetachment with screened Coulomb interactions
between the charged particles in the form (1) by employing
the R-matrix method with pseudostates (RMPS) which allows
us to describe the important resonant effects in the process in
photoelectron energy regions near the thresholds of excitation
channels, and we concentrate on the photoelectron energy
region around the n = 2 excitation threshold.

The R-matrix method for photon-atom and electron-atom
interactions has been discussed in detail by Burke et al. [17,18],
and we refrain from repeating its description here. The physical
orbitals of hydrogen atom with the screened Coulomb potential
(1) are calculated by piecewise exact power series expansions
of the radial function [19], while the pseudo-orbitals are
optimized by the CIV3 computer code [20]. The R-matrix
code used in the present work is a modified version based
on the Belfast [21,22] atomic R-matrix packages in which the
Coulomb interactions in the (N+1)-electron nonrelativistic
Hamiltonian are replaced by Yukawa-type screened Coulomb
interactions (in atomic units):
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where rn is the electron radius vector (with respect to the
nucleus Z), rmn = |rm − rn| is the interelectron distance and D
is the screening length. The electron-electron interaction term
is expanded as [23]
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where r> = max(rm,rn),r< = min(rm,rn), Pl,jl , and h
(1)
l are

the Legendre polynomials, the spherical Bessel functions and
the spherical Hankel functions of the first kind with complex
argument, respectively.

In order to determine the basis set for our RMPS calcula-
tions in the screened case that ensures convergent results, we
first consider the nonscreened case with a basis containing 14
physical states (1s-5s,2p-5p,3d-5d,4f,5f) and four pseudostates
(6s,6p,6d,6f ) in the expansion of the total wave function
of the (N+1) electron system. The ground-state energy of
H− was computed to be 0.52645 a.u., about 35 meV higher
than the exact one [24], but better than that of the extensive
eigenchannel R-matrix calculations of Sadeghpour et al. [25].
The test calculations show that a larger basis can provide
little improvement in the energy value since the configuration
interaction (CI) approach used in the R-matrix method for
the total wave-function expansion cannot efficiently describe
the strong two-electron correlation in H−. The ground-state
absolute energy of H−, excited threshold energies of the H(2s)
and H(2p) states, and variation of resonance positions as a
function of the inverse screening length are shown in Fig. 1.
The calculated RMPS photodetachment cross sections around
the n = 2 excitation threshold calculated with the above basis
are shown in Fig. 2. The results obtained with the length and
velocity gauge for the dipole matrix element differ within 1%
and agree very well with the complex-rotation method results
of Kuan et al. [26] and Lindroth [27]. This test serves as a
guide in determining the size of the basis in the calculations
with interaction screening.

It should be noted that by checking the convergence of
the results for each value of D, we obtained the same basis
sets given in [10,11] for different groups of D values, and
the inner boundary was set by the program automatically,
where all the wave functions decrease to less than 3×10−3.

FIG. 1. (Color online) The ground-state absolute energy of H−,
excited threshold energies of the H(2s) and H(2p) states, and variation
of resonance positions as a function of the inverse screening length
(0 � D−1 � 1/4.6 a.u.−1). Red (dotted) line, H− ground-state
absolute energy; down-triangle line, H(2s) excited threshold energy;
up-triangle line, H(2p) excited threshold energy; cross line, 1P◦(S)
resonance position; black line, 1P◦(F1) resonance position.

FIG. 2. (Color online) Photodetachment cross sections for the
unscreened case around the n = 2 excitation threshold. Red line,
present RMPS length gauge result; blue (dashed) line, present RMPS
velocity gauge result; open circles, length gauge results of Kuan [26];
open stars, velocity gauge results of Kuan [26]; crosses, results of
Lindroth [27].

We should also note that when D approaches the critical
value of D2p = 4.541 a.u., the energy of corresponding
states becomes increasingly small, the wave functions of the
states extend to increasingly large distances, and the backward
integration from the asymptotic region toward the inner region
becomes increasingly unstable. This results in a practical limit
for the lowest value of D = 4.6 a.u. in the present calculations.

The dynamical evolution of the photodetachment cross
sections for a selected number of screening lengths ranging
from D = ∞ to D = 4.6 a.u. is shown in Fig. 3. The
dominant resonances are also marked in the figure [where
1P◦(Tn) denotes the dominant resonance, T stands for the type
of the resonance—Feshbach (F) or shape (S) resonance—and
n for the number of the resonance]. As shown in Fig. 3,
the 1P◦(S) shape resonance gives very large contribution to
the photodetachment cross section around n = 2 excitation
threshold in the entire range of screening lengths considered
here. With the decreasing of the screening length D, this
contribution also decreases. The 1P◦(F1) Feshbach resonance
also plays the important role until D decreases to about
20 a.u. Also shown in the figure, the shape of the contribution
peak of this resonance changes from an “asymmetric” to a
“symmetric” one when D passes 30 a.u. This is a consequence
of the crossover of 1P◦(F1) Feshbach resonance to a shape-type
resonance in the region around D ≈ 29–30 a.u., as observed
in [10,11]. In contrast to this, the 1P◦(F2) Feshbach resonance
converges to the 2s state already at about D = 120 a.u. [see
Fig. 3(a)]. This is a consequence of the fact that the gradient of
the decrease of binding energy of the 2s state when D decreases
is much larger than the one of the 1P◦(F2) resonance energy
position, causing the mixing of the 2p state with higher l

states to be insufficiently strong for transforming a Feshbach
resonance into a shape-type resonance [10,11].

The significant changes in the photodetachment cross
sections of H− with the screened Coulomb potential (1) can
be appreciated by comparing Fig. 3(a) with Fig. 2(b), covering
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FIG. 3. (Color online) Dynamic evolution of photodetachment cross sections around the n = 2 excitation threshold when screening length
D decreases from D = ∞ to D = 4.6 a.u. 1P◦(Tn) denotes the dominant resonance (T = F, S). (Screening length increases from left to right.)

the same photoelectron energy range. With the decreasing
of D, the energy positions of resonances move to a smaller
energy region, the widths of Feshbach resonances decrease,
and those of shape resonances increase. The transformation
of some Feshbach resonances into shape resonances [we have
mentioned only that for 1P◦(F1)] is perhaps one of the most
dramatic effects in the interaction screening affecting the
photodetachment cross section.

When the photoelectron energy is below 0.62 Ry, far from
the 2s and 2p thresholds, the resonance effects in the photode-
tachment cross section disappear [as shown in Fig. 3(d)]; the
photodetachment cross section normally exhibits a smooth
energy dependence behavior for the different value of D.
Figure 3(d) shows that with respect to the unscreened case, the
photodetachment cross section in the screened case increases
with decreasing D for photoelectron energy below about
0.125 Ry, but above this energy it slightly decreases. These
properties of the photodetachment cross section are related
solely to the behavior of the bound-state electron wave function
when D changes. With decreasing D, the maximum of the
s-state wave function decreases, while its asymptotic tail
increases (see, e.g., [28]). At low energies it is the asymptotic

region of the wave function that dominantly determines the
value of the dipole matrix element, whereas at high energies
the coupling of initial and final state is determined by the
bound-state wave function at small distances. In this context
we mention that the maxima of the photodetachment cross
sections in the work of Kar and Ho [12] for D = 8 and 5 a.u.
are 4.101 × 10−17 cm2 and 4.244 × 10−17 cm2, respectively,
while in the present calculations these values are 4.244 ×
10−17 cm2 and 4.509 × 10−17 cm2, correspondingly. These
small differences could be both due to the inapplicability of
“loosely bound electron” approximation (employed in [12]) for
smaller values of D and the insufficient accuracy of binding
energy and bound-state wave function calculated in the present
work.

In conclusion, the present study has demonstrated that the
screened Coulomb interaction has dramatic effects on the
photodetachment cross section of hydrogen negative ions in
the photoelectron energy region around the n = 2 excitation
threshold by strongly affecting the evolution of near-threshold
resonances. These effects remain significant even far below
the n = 2 threshold where the near-threshold resonances do
not manifest themselves.
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