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Binding energy and structure of e+Na
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We calculate the nonadiabatic binding energy and geometry of the weakly bound state of e+Na. We use the
Peach model potential, which includes both the dipole and an effective quadrupole term in the polarization, to
describe the interaction of the electron and positron with the ion core. The effective three-body Schrödinger
equation is solved with the finite element method. Because the model potential gives rise to three spurious states,
the true ground state of e+Na is embedded in a dense spectrum of spurious states. We develop a method for
extracting the correct ground state for e+Na, even when the energy is nearly degenerate with a spurious level.
The calculated value for the binding energy is consistent with other calculations.
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Introduction. Hydrogen cannot bind a positron. The total
energy of e+H is less than the energy of the hydrogen atom, but
not less than the energy of positronium. The system dissociates
into a proton and a positronium atom. Both lithium and sodium
can bind a positron because the static dipole polarizability
of these atoms is significantly larger than that of hydrogen.
For the positronic alkali-metal ion e+A, where EPs < EA, the
binding energy is computed with respect to the dissociation
channel: ε = EPs + EA+ − Ee+A. If one uses a model potential
to describe the interaction of the valence electron and positron
with the ionic core, neither EA nor Ee+A includes the energy of
the ionic core; in that case, the binding energy of the positronic
ion is given by ε = EPs − Ee+A.

Model potentials for atomic sodium attempt to replicate the
interaction between the valence electron and the ionic core
Na+. In addition to the static core interaction, the potentials
may also include terms for exchange effects and polarization
of the core (which includes some form of cutoff parameter to
ensure that the polarization term is finite at the origin). Any
model potential for sodium that gives rise to a ground state
with the correct nodal structure has three unphysical low-lying
states that correspond to the 1s, 2s, and 2p states.

When applying the model potentials for atomic sodium to
the effective three-body system e+Na, the model potential is
used to describe the interaction of both the electron and the
positron with the ion core (with the appropriate sign change).
The interaction between the electron and the positron is a
simple Coulomb interaction plus a correction to the two-
particle polarization potential. It is important to exclude the
contribution from the three low-lying states to the electronic
part of the three-body wave function.

Ryzhikh et al. [1] calculated the binding energy of e+Na
using a modified version of the stochastic variational method
(SVM) with a model potential. The wave function for the
residual ion core was obtained from a Hartree-Fock calculation
of the Na+ ground state. The Hamiltonian also included a local
exchange potential and a projection operator to ensure that
the wave function was orthogonal to the ion core. We refer
to this model potential as frozen core Hartree-Fock with local
exchange (FCHF-LX). The calculations were extended [2,3] to
include the effect of dipole polarization and the local exchange

term was replaced with the exact exchange interaction (FCHF-
EXpol).

There have been three calculations using the adiabatic
hyperspherical method (AHM), in which the Schrödinger
equation is solved at fixed hyper-radii. An important advantage
of this approach is that one can easily eliminate the lowest three
potential curves corresponding to the unphysical states. Yuan
et al. [4] used a model potential that included a static potential
obtained from a Hartee-Fock calculation for Na+, a localized
exchange potential, and a dipole polarization potential. Han
et al. [5] carried out an AHM calculation using a different
model potential with parameters given by Liu and Starace [6].
They implemented the slow variable discretization method
and optimized the distribution of B splines in order to improve
convergence. The most recent AHM calculation is that of Le
et al. [7]. They used the same model potential as in Ref. [1]
and explicitly coupled three adiabatic channels corresponding
to Ps(1s) + Na+, Na(3s) + e−, and Na(3p) + e−.

The only other nonadiabatic calculation is that of Kubota
and Kino [8], who carried out a coupled-channel calculation
using the Gaussian expansion method (GEM). The model
potential includes a standard Hartee potential, a local exchange
potential, and a dipole polarization potential; a projection
operator ensures orthogonality with the core. They explicitly
include e+ + Na(3s) and Ps(1s) + Na+ channels.

It is important to note that the accuracy of the binding energy
for e+Na depends on the method, the model potential, and
the number of basis functions used to approximate the wave
function. The value for αd has not been directly measured
and different values for αd (ranging from 0.92 to 1.4) have
been used in the binding-energy calculations. Since there
are no calculations using the exact 11-body Hamiltonian,
there exists no rigorous variational bound on the ground-state
energy.

The Peach model potential. In our treatment of e+Na, we
choose to use the Peach model potential [9]. This potential,
which is l independent, is ideally suited for studying effective
three-body systems. We have previously used the Peach model
potential to calculate the binding energy of e+Li [10] and the
positronium formation cross sections for e+-Li collisions just
above threshold [11].
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The effective potential for the interaction of the electron
and the positron with the sodium ion core is given by

Ve−Na+(r−) = − 1

r−
− 10e−γ r−

r−
(1 + δr− + δ′r2

−)

− αd

2r4−
ω2(βr−) − α′

q

2r6−
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Ve+Na+(r+) = 1

r+
+ 10e−γ r+
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+)
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2r4+
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q

2r6+
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(Atomic units are used throughout, unless otherwise stated.)
The first two terms in Eq. (1) represent the static potential. The
third and fourth terms are the dipole and effective quadrupole
contributions to the polarization potential. This is the only
calculation for e+Na to include an effective quadrupole
interaction in the model potential. The cutoff function

ωn(x) =
[

1 − e−x

n∑
i=0

xi

i!

]2

(2)

has the property that ωn(x → 0) ∝ x2(n+1). The value for
the static dipole polarizability used in the Peach model
potential was calculated by Stewart [12] (αd = 0.923 89)
using an uncoupled Hartree-Fock approach and geometric
approximation; this value is in reasonable agreement with
a later random-phase-approximation calculation by Johnson
et al. [13] (αd = 0.9457). The values for the other parameters
were chosen to provide a fit to the observed spectrum of sodium
and to provide the correct nodal structure for the 3s state; they
are given in Ref. [14]. The interaction between the electron
and positron is given by

Ve+e− (r+,r−,r+−)

= − 1

r+−
+ αd

r2−r2+
P1(r̂+ · r̂−)

√
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+ α′
q
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√
ω3(β ′r+)ω3(β ′r−). (3)

The second and third term are corrections to the two-particle
polarization potential, and Pl(r̂+ · r̂−) is the Legendre polyno-
mial.

Method. To calculate the ground state of e+Na, we solve the
effective-three body Schrödinger equation for L = 0 with the
finite element method (FEM) [15,16]. In order to accurately
approximate the cusps in the wave function at the Coulomb
singularities and to enhance convergence, we choose our
coordinates to be the distances between particles of opposite
charge, r− and r+−, and cos θ = r̂− · r̂+−. Assuming an infinite
mass for Na+ and integrating the Schrödinger equation over
all space, we obtain
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where r+ =
√

r2
+− + r2

− − 2r+−r− cos θ and V = Ve−Na+ +
Ve+Na+ + Ve+e− . The radial coordinates are truncated at rmax

−
and rmax

+− , respectively. The finite three-dimensional coordinate
space is divided into rectangular volume elements and the
unknown wave function ψ(r−,r+−, cos θ ) is approximated in
each element by a locally defined polynomial basis set. By
systematically increasing the number of elements and the
values of rmax

− and rmax
+− , we can achieve the desired level of

convergence.
There are three spurious spectra in the solution of Eq. (4)

corresponding to states which can be assigned the approximate
quantum numbers ψNa

1s (r−)ψPs
nl (r+−),ψNa

2s (r−)ψPs
nl (r+−), and

ψNa
2p (r−)ψPs

nl (r+−). The true ground state ψNa
3s (r−)ψPs

1s (r+−) is
embedded in these spectra, and the ground-state energy can be
nearly degenerate with one or more of these spurious energy
levels.

We have developed a method that allows us to calculate
only the energy and wave function corresponding to the correct
physical ground state. We multiply Ve+Na+(r+) by the scaling
factor λ, which we slowly vary from 0 to 1. At λ = 0, we solve
Eq. (4) with Rayleigh quotient iteration using a starting shift
E = ENa

3s + EPs
1s and starting vector ψ = ψNa

3s (r−)ψPs
1s (r+−).

(For a discussion of Rayleigh quotient iteration, see Ref. [15].)
Although this is not the exact solution (due to three-body terms
in the kinetic energy operator), it is an excellent approximation
and the solution converges to a tolerance of 10−12 in a few
iterations. We then gradually increase the scaling factor λ

(�λ = 0.1), using the energy E(λ) and the wave function
ψ(λ; r−,r+−, cos θ ) from the previous run as a starting shift
and starting vector. Rayleigh quotient iteration guarantees
cubic convergence to the energy and wave function that is
closest to the starting eigenpair. Even if the ground-state
energy E(λ) is nearly degenerate with one of the spurious
solutions, the nodal structure of the spurious wave function is
dramatically different; by using both a starting shift and vector,
we avoid “jumping the track” at these crossings. At λ = 1, we
obtain the true ground-state energy and wave function.

We refer to the implementation of these two techniques—
the use of a scaling parameter in the Hamiltonian and the
Rayleigh quotient iteration method—as the iterative tracking
method (ITM). This method, which avoids the need for a
projection operator in the Hamiltonian, is straightforward to
implement and could be applied to any problem where one
wishes to calculate a particular eigenpair that is embedded in
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TABLE I. The binding energy and geometry of e+Na obtained by various methods, including the present results obtained with FEM-ITM.
For each calculation, we identify the model potential (including the value for αd ) and the ground-state energy of Na obtained with that potential.

Method Potential ENa ε 〈r+〉 〈r−〉 〈r+−〉
Experiment [17] −0.188 858
SVM [1] FCHF-LX −0.181 809 0.000 177 24.00 23.73 3.09
SVM [2] FCHF-EX −0.181 801 0.000 161 24.761 24.502 3.086
SVM [2] FCHF-EXpol −0.188 401 0.000 471 17.253 16.840 3.161

αd = 0.99
SVM [3] FCHF-EXpol −0.188 391 0.000 473 17.231 16.818 3.162

αd = 0.990
AHM [4] FCHF-LXpol −0.188 905 0.000 255

αd = 0.9448
AHM [5] Liu Starace [6] −0.188 855 0.000 447 17.53 17.12 3.159

αd = 0.9457
AHM [7] FCHF-LXpol 0.000 453

αd = 0.998
GEM [8] FCHF-LXpol −0.188 859 0.000 401 18.25 17.87 3.152

αd = 1.369
FEM-ITM Peach [9] −0.188 735 0.000 357 18.62 18.24 3.146

αd = 0.923 89

a spectrum of states. The only requirement is that one knows
the solution at λ = 0 and that �λ is sufficiently small that the
energy and wave function can be tracked with the Rayleigh
quotient interation method.

Results. We calculate the ground-state energy and wave
function for e+Na by solving Eq. (4) with the FEM; we employ
the ITM described previously to isolate the state with the
correct 3s electronic structure. The number of elements and
the cutoff values for the radial coordinates are systematically
increased to obtain the desired convergence. For the results
reported in Table I, we use 800 elements with radial cutoff
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FIG. 1. (a) The probability density ρ(r−,r+−,θ = 0); r− and r+−
are given in units of a0. (b) The probability density ρ(r−,r+−,θ =
π ); r− and r+− are given in units of a0.

values rmax
+− = 30a0 and rmax

− =100a0; the wave function is
approximated by 52 496 local basis functions. We estimate that
our energy Ee+Na is accurate to a few parts in 106. In Table I we
also include the value of the binding energy ε = EPs − Ee+Na

and the geometry of e+Na obtained by other methods. One can-
not make a direct comparison with other calculations because
the model potentials employed are different. For each case, we
specify the form of the model potential, the value of αd , and the
value of the ground-state energy of the Na obtained with the
potential. All methods verify that the system is bound and that
the geometry is consistent with a Ps atom weakly bound to
the ion core. One would expect that the binding energy of this
weakly bound system would be sensitive to the long-range
polarization potential, so the variation in the binding energy
obtained with different potentials is not surprising.

In Fig. 1, we show the probability density for the ground
state of e+Na at θ = 0 and θ = π . The wave function is only
weakly dependent on θ . In Fig. 2, we show a slice through
the probability density at θ = π , which clearly illustrates the
3s nodal structure of the electronic part of the wave function.
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FIG. 2. The probability density ρ(r−,r+−,θ = π ) near the origin,
where r− and r+− are given in units of a0. The nodal structure is
consistent with a 3s electronic state for sodium.
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The nodal lines at r− ≈ 0.1 and r− ≈ 1.0 are consistent with
the location of the nodal points for the 3s state of the Na atom.
There are no nodal lines in the positronic part of the wave
function as expected.

Conclusions. We have calculated the energy and geometry
of e+Na by a direct numerical solution (FEM-ITM) of
the effective three-body Schrödinger equation. We use the
exact, nonadiabatic representation for the three-body kinetic
energy operator. The Peach model potential includes both a
dipole and an effective quadrupole interaction. The results
are consistent with other calculations which have employed
different methods and model potentials.

In order to extract the correct physical ground state from a
dense spectrum of spurious states, we developed an iterative
method that enables us to calculate only the eigenpair of
interest. ITM exploits the fact that the energy and the wave
function of the desired state are known if the repulsive

interparticle interaction is neglected. By slowly “ramping
up” the e+-Na+ interaction with a scaling factor, we can
track the desired state using the Rayleigh quotient iteration
method. ITM can be used to calculate the ground state of any
system involving a model potential where there are low-lying
spurious solutions. One could also use the method to calculate a
particular excited state (including a doubly excited state [18])
of a three-body system. ITM can be used independently of
FEM, although there are particular advantages in combining
ITM with FEM.
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