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of the ground-state electron density
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The March-Suhai (MS) partial differential equation for the Dirac density matrix γs(
⇀
r ,

⇀
r

′
), proved for one-

and two-level occupancies, involves both the ground-state density n(
⇀
r ), with its low-order derivatives, and the

positive definite kinetic energy density ts(
⇀
r ). Here, we examine the relation between the equation of motion for

γs(
⇀
r ,

⇀
r

′
), with input now being the one-body potential of density-functional theory, and the MS equation. The

important link is the differential virial theorem, which can be used to remove ts(
⇀
r ) from the MS differential

equation. For multiple occupancy, the Pauli potential enters in an important manner. In one dimension, however,
the appearance of the Pauli potential can be avoided, obtaining a necessary condition for γs(x,x ′) to satisfy for
arbitrary level occupancy, in the form of a MS-type differential equation.
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I. BACKGROUND

March and Suhai (MS) [1] recently raised the question as
to whether the Dirac single-particle first-order density matrix

γs(
⇀

r,
⇀

r
′
) [2], within the framework of current formulations

of density-functional theory (DFT) [3], could be determined
with input of the ground-state density n(

⇀

r ) determined exper-
imentally from x-ray diffraction studies. They gave a partially
affirmative answer, by setting up a differential equation for

γs(
⇀

r,
⇀

r
′
) for one- and two-level occupancy (e.g., He and H2

for one level and Be and LiH for two levels), with n(
⇀

r ) and
the single-particle kinetic energy density ts(

⇀

r ) as input, where
the latter is an (unknown) functional of n(

⇀

r ). Here, we show
that a differential equation paralleling the MS equation can
be derived for He and Be. With the use of this equation, the
kinetic energy term can be completely eliminated from the MS
equation, obtaining an explicit equation for the Dirac density
matrix as a functional of the density. In one dimension, it
will further be shown that a MS-type equation for γs(x,x ′)
can be set up for arbitrary level occupancy. With insertion of
the known expression for ts[n](x) for noninteracting electrons
in harmonic confinement into this equation, an explicit
differential equation for γs[n](x,x ′) is obtained for this case.

From γs(
⇀

r,
⇀

r
′
), the single-particle kinetic energy density,

ts(
⇀

r ) = h̄2

2m
∇⇀

r
′∇⇀

r
γs(

⇀

r
′
,
⇀

r )
∣∣∣
⇀
r

′=⇀
r
, (1)

and the exchange energy density,

εx(
⇀

r ) = −e2

4

∫
γs(

⇀

r,
⇀

r
′
)γs(

⇀

r
′
,
⇀

r )

|⇀r − ⇀

r
′|

d
⇀

r
′
, (2)

can be calculated. The latter of course determines the cor-
responding Slater exchange potential [4], V Slater

x (
⇀

r ) = 2εx (
⇀
r )

n(
⇀
r )

,

too, which importantly contains correctly the self-interaction
correction. This requires that far from all nuclei, the correct

exchange potential Vx(
⇀

r ) → − e2

r
, and this condition is readily

shown to follow from the asymptotic form of εx(
⇀

r ) [5], namely,

εx(
⇀

r ) →
|⇀r |→∞

− e2

2r
n(

⇀

r ), (3)

obtained using the idempotency of the Dirac density matrix.

II. DIFFERENTIAL EQUATION FOR THE DIRAC
DENSITY MATRIX, GIVEN THE GROUND-STATE

ELECTRON DENSITY AS INPUT

For one- and two-level occupancy, March and Suhai [1]
showed that the Dirac single-particle first-order density matrix

γs(
⇀

r
′
,
⇀

r ) satisfies the differential equation

[∇⇀
r
γs(

⇀

r,
⇀

r
′
)]2 − γs(

⇀

r,
⇀

r
′
)∇⇀

r
γs(

⇀

r,
⇀

r
′
)
∇⇀

r
n(

⇀

r )

n(
⇀

r )
+ 2

ts(
⇀

r )

n(
⇀

r )

× [γs(
⇀

r,
⇀

r
′
)]2 − 2n(

⇀

r
′
)

{
ts(

⇀

r ) − 1

8

[∇⇀
r
n(

⇀

r )]2

n(
⇀

r )

}
= 0, (4)

in atomic units. From the fundamentals of DFT, it follows that
ts(

⇀

r ) is a functional of n(
⇀

r ); hence, Eq. (4) relates γs(
⇀

r
′
,
⇀

r )
solely to n(

⇀

r ), with no one-body potential V (
⇀

r ) involved. It is
worth noting that the expression in the curly braces in Eq. (4)
is just the Pauli kinetic energy density (i.e., the correction to
the Weizsäcker single-particle kinetic energy density due to
the exclusion principle for fermions).

Alternatively, with V (
⇀

r ) as the input, we have the equation
of motion [6],

∇2
⇀
r
γs(

⇀

r,
⇀

r
′
) − ∇2

⇀
r

′γs(
⇀

r,
⇀

r
′
) = 2m

h̄2 [V (
⇀

r ) − V (
⇀

r
′
)]γs(

⇀

r,
⇀

r
′
), (5)

for γs(
⇀

r,
⇀

r
′
), which is valid for arbitrary level occupancy. To

connect Eqs. (4) and (5), we now appeal to the differential
virial theorem of Holas and March [7]. This reads, in
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spherical symmetry (which we will focus on exclusively in
the following), but for general level occupancy,

−∂V (r)

∂r
= zs(r)

n(r)
− h̄2

4m

1

n(r)

∂

∂r
∇2n(r). (6)

The quantity zs(r) is the radial component of the single-particle
limit of the many-electron vector field

⇀

z(
⇀

r ) defined in [7] from
the kinetic energy density tensor tαβ(

⇀

r ),

tαβ(
⇀

r ) = h̄2

4m

[
∂2

∂rα∂r ′
β

γ (
⇀

r,
⇀

r
′
) + ∂2

∂rβ∂r ′
α

γ (
⇀

r,
⇀

r
′
)

]
⇀
r

′=⇀
r

, (7)

as

zα(
⇀

r ) = 2
3∑

β=1

∂tαβ(
⇀

r )

∂rβ

. (8)

Dividing Eq. (5) by γs(
⇀

r,
⇀

r
′
), and then applying the gradient

operator, with
⇀

r∇ = r ∂
∂ r

, we readily obtain

∂V (r)

∂r
= h̄2

2m

⇀

r

r
∇⇀

r

⎡
⎣∇2

⇀
r
γs(

⇀

r,
⇀

r
′
) − ∇2

⇀
r

′γs(
⇀

r,
⇀

r
′
)

γs(
⇀

r,
⇀

r
′
)

⎤
⎦ , (9)

from which ∂V/∂r can be eliminated with the use of Eq. (6).
For He, it is known from the work of Akbari et al. [8] that

the first term on the right of Eq. (6) can be written exactly in
terms of the Weizsäcker kinetic energy density tW (

⇀

r ), defined
by

tW (
⇀

r ) = h̄2

8m

[∇n(
⇀

r )]
2

n(
⇀

r )
. (10)

Equation (6) becomes, for He,

−∂V (r)

∂r
= 4

n(r)

[
tW (r)

r
+ 1

2

∂tW (r)

∂r

]
− h̄2

4m

1

n(r)

∂

∂r
∇2n(r),

(11)

which must be equivalent to the first derivative of the well-
known von Weizsäcker equation [9]. By eliminating ∂V/∂r

by adding Eqs. (9) and (11), we get a differential equation for

γs(
⇀

r,
⇀

r
′
), with the density n(r) and the kinetic energy density

tW (r) [with the known density dependence, Eq. (10)] as input,
paralelling the March-Suhai equation, Eq. (4), in spherical
symmetry, for one-level occupancy (such as in He-like atomic
ions). Since for one-level occupancy, the Dirac density matrix
is a known functional of the density,

γs(
⇀

r,
⇀

r
′
) =

√
n(

⇀

r )

√
n(

⇀

r
′
), (12)

the differential equation obtained can be explicitly tested,
giving an identity when Eq. (12) is inserted.

In a recent study, March and Nagy [10] have generalized this
result of Akbari et al. for arbitrary level filling in spherically
symmetric atoms as

zs(r) = 4

[
tW (r)

r
+ 1

2

∂tW (r)

∂r

]
+ n(r)

∂VP (r)

∂r
, (13)

where VP (r) is the Pauli potential [11,12] (for the case of
spherical symmetry), defined by

VP (
⇀

r ) = δTs[n]

δn(
⇀

r )
− δTW [n]

δn(
⇀

r )
. (14)

We note here that Eq. (13) is not an expression obtained from
Eq. (8). Equation (6) with Eq. (13) inserted is simply the
derivative, with respect to r , of the Euler equation of DFT,
with Eqs. (10) and (14) utilized. That is, VP (r) enters Eq. (6)
purely formally.

For the two-level case, one can use the Dawson-March form
of the Dirac density matrix [13], namely,

γs(
⇀

r,
⇀

r
′
) =

√
n(r)

√
n(r ′) cos[θ (r) − θ (r ′)], (15)

in terms of the density amplitude n
1
2 (r) and the phase factor

θ (r). The phase factor θ (r) can be determined as a functional of
the density from a nonlinear pendulum equation into which the

density is the sole input; with θ [n], Eq. (15) then gives γs(
⇀

r,
⇀

r
′
)

as a density functional. The equation determining θ [n] has the
form

∇2θ (r) + ∇n(r)

n(r)
∇θ (r) = λ sin[2θ (r)], (16)

with λ determined by the normalization constraint∫
n(r) cos2[θ (r)] d

⇀

r = 1. (17)

By using Eqs. (15) and (16), it can be shown [10] that, for
spherically symmetric, two-level systems (such as the Be
atom), Eq. (13) reduces to

zs(r) = 4

[
ts(r)

r
+ 1

2

∂ts(r)

∂r

]
. (18)

As can be seen, a similar formula as for the one-level case has
emerged; this is immediately explained by the fact that Eq. (15)
gives back the one-level density matrix–density relationship
with θ (r) ≡ 0. It must not be assumed, however, that for
arbitrary level occupancy (with spherical symmetry), Eq. (18)
is general. The Pauli potential will enter explicitly for three-
and higher-level occupancy, via Eq. (13). In Eq. (18), ts(r) is
determined as a functional of the density through

ts(r) = tW (r) + 1
2n(r) [∇θ (r)]2 , (19)

which is obtained by the insertion of Eq. (15) into Eq. (1) [13].
From Eqs. (6) and (18), we have the result

−∂V (r)

∂r
= 4

n(r)

[
ts(r)

r
+ 1

2

∂ts(r)

∂r

]
− h̄2

4m

1

n(r)

∂

∂r
∇2n(r),

(20)

valid for one- and two-level occupancies, in spherical symme-
try. Adding Eqs. (9) and (20), then, yields

h̄2

2m

⇀

r

r
∇⇀

r

⎡
⎣∇2

⇀
r
γs(

⇀

r,
⇀

r
′
) − ∇2

⇀
r

′γs(
⇀

r,
⇀

r
′
)

γs(
⇀

r,
⇀

r
′
)

⎤
⎦ + 4

n(r)

×
[
ts(r)

r
+ 1

2

∂ts(r)

∂r

]
− h̄2

4m

1

n(r)

∂

∂r
∇2n(r) = 0. (21)

Equation (21) formally is an alternative to the March-Suhai
equation (4), in the sense that Eq. (21), too, is a differential
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equation for γs(
⇀

r,
⇀

r
′
) in terms of n(

⇀

r ) and ts(
⇀

r ). Through ts[n],
it gives a differential equation for the Dirac density matrix in
terms of the ground-state density.

Equation (21) can be used to set up a differential equation
that contains only an explicit dependence on the density, by
eliminating the kinetic energy density from Eq. (4) with the
help of Eq. (21). This can be achieved by expressing ts(r)
from Eq. (4), and differentiating the resultant equation with
respect to r. Then ∂ts (r)

∂r
so obtained, and ts(r) expressed from

Eq. (4), can be substituted into Eq. (21) to get the desired
equation. The result is an important necessary condition for

γs[n](
⇀

r,
⇀

r
′
) – an explicit differential equation for γs(

⇀

r,
⇀

r
′
) in

terms of n(
⇀

r ) for one- or two-level occupancy, in the case of
spherical symmetry.

III. GENERALIZATION FOR ARBITRARY LEVEL
OCCUPANCY IN ONE DIMENSION

In one dimension, the appearance of the Pauli potential in
the differential virial theorem can be avoided, which leads to
a MS-type equation for γs[n](x,x ′) that is valid generally, not
just for one- and two-level occupancies. The starting point
again is the equation of motion for the Dirac density matrix,
in its one-dimensional form,

∂2γs(x,x ′)
∂x2

− ∂2γs(x,x ′)
∂x ′2 = 2m

h̄2 [V (x) − V (x ′)]γs(x,x ′).

(22)

However, in one dimension, the differential virial theorem
takes a much simpler form than Eq. (6) of the three-
dimensional case [6], the gradient of the single-particle kinetic
energy density appearing in the place of the derivatives of the
single-particle kinetic energy density tensor with respect to the
various position coordinates; that is,

−∂V (x)

∂x
= 2

n(x)

∂ts(x)

∂x
− h̄2

4m

n′′′(x)

n(x)
. (23)

Dividing both sides of Eq. (22) by γs(x,x ′) and then
differentiating with respect to x, we find

∂

∂x

{
1

γs(x,x ′)

[
∂2γs(x,x ′)

∂x2
− ∂2γs(x,x ′)

∂x ′2

]}
= 2m

h̄2

∂V (x)

∂x
.

(24)

Now we can utilize the differential virial theorem in Eq. (23)
to remove ∂V/∂x from Eq. (24), obtaining

∂3γs

∂x3
− ∂3γs

∂x∂x ′2 − γ −1
s

∂γs

∂x

(
∂2γs

∂x2
− ∂2γs

∂x ′2

)

+ 4m

h̄2

1

n(x)

∂ts[n](x)

∂x
γs − 1

2

n′′′(x)

n(x)
γs = 0, (25)

a nonlinear third-order partial differential equation for the
Dirac density matrix as a functional of the ground-state density.

As an elementary check of Eq. (25), the one-level
form

γs(x,x ′) =
√

n(x)
√

n(x ′) (26)

for γs(x,x ′) can be substituted into it, giving

∂3

∂x3

√
n(x) − 1√

n(x)

∂

∂x

√
n(x)

∂2

∂x2

√
n(x)

+ 4m

h̄2

1

n(x)

∂ts(x)

∂x

√
n(x) − 1

2

n′′′(x)

n(x)

√
n(x) = 0. (27)

In this specific case, ts(x), as a functional of n(x), has the
well-known Weizsäcker form [Eq. (10)], and substituting it
into Eq. (27), one verifies that it becomes an identity.

We return to general level occupancy, but now with the
important example of harmonic confinement V (x) = x2/2;
magnetic trapping of ultracold fermion vapors, achieved
experimentally by DeMarco and Jin [14], has made low
dimensionality experimentally accessible. In the case of
harmonic confinement, ts(x)[n] is explicitly known [15] (even
in D dimensions [16]) and can be written

tharm
s (x) = n3(x)

[
c0 + 1

12

∫ x

0

1

n3(x ′)
d3n(x ′)
dx ′3 dx ′

]
, (28)

with c0 = N/(3n2(0)). With this ts(x)[n], Eq. (25) then
achieves the aim of March and Suhai [1] for arbitrary
level occupancy for one-dimensional harmonic confinement.
Finally, we note that an explicit form for γs(x,x ′) has already
been written by Husimi [17] for this case. As Lawes and March
[18,19] summarized, γs(x,x ′) for N + 1 occupied lowest states
is given by

γs(x,x ′) = 1

2
φN (x)φN (x ′) + 1

2(x − x ′)

×
[
φN (x)

∂φN (x ′)
∂x ′ − φN (x ′)

∂φN (x)

∂x

]
. (29)

When Eq. (29) is substituted into Eq. (25), and the known
form for ts(x)[n] is inserted, one obtains an explicit differential
equation for the highest occupied orbital φN (x) as a functional
of the density.

Finally, since in this study, equations stemming from
common origins are combined to obtain new ones, the
question of independence should be carefully examined. Here,
independence of equations should be algebraic independence.
An equation determining a functional dependence f (x)[g(x ′)]
can be freely combined linearly with its derivative (with respect
to x), for example. To illustrate this, consider the one-particle
Schrödinger equation with spherically symmetric Coulombic
external potentials, v(

⇀

r ) = −Z/r; this is an equation to

determine ψ(
⇀

r )[v(
⇀

r
′
)] for this special class of potentials. One

can differentiate this equation twice, e.g., and can eliminate Z
and the energy eigenvalue E by combining the three equations.
The result is an equation to be satisfied by ψ(

⇀

r )[−Z/r ′].
(Substituting ψ(

⇀

r )[−Z/r ′] into that equation will give an
identity.) Of course, the new equation does not fully determine
ψ(

⇀

r )[−Z/r ′]; it should rather be considered as an important
necessary condition for it. As other examples, it can be
mentioned that the virial theorem of DFT [20], the differential
virial theorem [6,21], and the von Weizsäcker functional [22]
can all be obtained (alternatively) via combinations of the
Kohn-Sham equations and their derivatives.

In the present study, there are three occasions where the
issue of independence may arise: when combining Eq. (9)
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with Eq. (20), Eq. (4) with Eq. (21), and finally, Eq. (23)
with Eq. (24). In the first case, independence is ensured by
the simple fact that Eq. (9), emerging from the equation

of motion for γs(
⇀

r,
⇀

r
′
), is a generally valid equation, while

Eq. (20) is a special form of the differential virial theorem
that is valid for one- and two-level spherically symmetric
systems only. The fact that Eq. (21) is a third-order differential

equation for γs(
⇀

r,
⇀

r
′
), while Eq. (4) is only a first-order

(though highly nonlinear) one, means that the two equations
are independent algebraically. The case of Eqs. (23) and
(24), however, is different. Not only do they have a common
origin [Eq. (22)], but Eq. (23) is a direct consequence of
Eq. (24)—the diagonal part of it. Therefore, their combination
does not give too much formally. However, ts(x) in Eq. (25)
is to be considered as a functional of n(x), ts[n](x), which
means that, provided one has an expression for ts[n](x),
Eq. (25) gives a necessary condition to be fulfilled by
γs[n](x,x ′). That such a situation is real is shown well by the
harmonic confinement case mentioned here, where an explicit
expression is available for ts[n](x) [Eq. (28)], but γs[n](x,x ′) is
unknown.

IV. SUMMARY

The main achievement of this study is to exhibit in Eq. (21)
a differential equation for the Dirac single-particle first-order
density matrix in terms of the ground-state electron density
and the single-particle kinetic energy density for spherically
symmetric electron systems with one- or two-level occupancy,
such as the He or the Be atom. With the use of Eq. (21), the
kinetic energy density can be eliminated from the March-Suhai
equation [1], to which Eq. (21) represents an alternative. The
result is a explicit differential equation (a necessary condition)

for the Dirac density matrix as a functional of the density. For
general level occupancy for three levels and higher, the Pauli
potential enters, via Eq. (13). In future work, the Ne atom
is well worth exploring, as the next closed-shell, spherically
symmetric atom after Be.

In addition to Eq. (21), in Sec. III, the corresponding
equation in one dimension, Eq. (25), has been obtained, but
this time for arbitrary level occupancy, utilizing the differential
virial theorem of one-dimensional systems. As the single-
particle kinetic energy density is already known explicitly as a
functional of the density in the case of harmonic confinement,
the aim of March and Suhai [1] is achieved for arbitrary level
occupancy for this specific one-dimensional case.

The significance of obtaining the Dirac density matrix in
terms of the density, on one hand, lies in the fact that from

γs[n](
⇀

r,
⇀

r
′
), the single-particle kinetic energy and exchange

energy density functionals, two essential constituents of
density functional theory, can be determined. On the other
hand, with the density-matrix functional theory of electron
systems gaining stronger and stronger presence in atomic
and solid-state physical investigations, it is important to
establish connections between the two theories, density-matrix
functional theory and traditional DFT.
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