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Bound-state-induced persistent oscillations in the transient behavior of the probability density
for the attractive δ potential
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An exact analytical solution to the time-dependent Schrödinger equation for an attractive δ potential using
cutoff plane-wave initial conditions is derived to investigate the effect of a bound state on the transmission
transients. We find that at short distances from the potential the probability density behaves harmonically at
all times. This unexpected behavior, which corresponds to the trapping of a fraction of the transmitted wave,
decreases exponentially with distance, so that at large distances the solution goes into the stationary solution. We
find also that this behavior has no effect on the phase time.
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I. INTRODUCTION

Quantum transients are phenomena that vanish after a
quantum system has reached the stationary regime [1]. One
of the most representative examples is the diffraction in time
phenomenon discussed by Moshinsky [2], in which a cutoff
plane wave is confined initially to a semiplane in space by
a perfectly absorbing shutter and then allowed to evolve
freely. The quantum shutter setup can be generalized by
placing in front of the shutter a one-dimensional finite range
potential. An analytical solution for this problem was found
by Garcı́a-Calderón and Rubio [3] using the formalism of
resonant states. The solution involves an expansion over the
complex poles of the potential and the residues of the outgoing
Green function of the problem.

A particular example considered before in the literature
[4,5] comes from considering a repulsive δ potential. It is
known that the solution comprises a quasimonochromatic term
and a resonant term and this solution is known to hold for
δ barriers and wells [6]. This potential is amenable for an
analytical treatment and reflects the essential behavior of more
realistic potentials.

In this paper we present a derivation of the solution for
the attractive δ-potential case using the Laplace transform
technique to investigate its transmission transients. We also
study the effect of these transients on the phase time.

The simplicity of the solution that will be derived is related
to the fact that the δ potential has only one complex pole.
In more complex potentials there exist an infinite and discrete
number of poles that follow certain trajectories on the complex
p plane as a function of the potential parameters, but in the
present case there is only one pole placed along the imaginary
p axis; nevertheless, the difference in the pole location (above
or below the origin) creates a very important distinction
between positive and negative potentials in the behavior of
the transients at short distances from the potential.

The bound-state trapping phenomenon was found in the
context of a sudden change in a potential configuration of
a decay problem, in which a well is shifted downward in
energy [7]. Since its discovery, trapping has been associated
with a perpetual interference between states in a certain region;
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however, it was found as a rather weak phenomenon. In this
paper, trapping is the dominant phenomenon, and is free from
the effect of any other transients.

This paper is organized as follows. Section II presents the
derivation of the solution to the time-dependent Schrödinger
equation for an attractive δ potential. In Sec. III a discussion
of the transients found at short distances from the potential is
given. Section IV shows that in the attractive δ-potential case
there is a time advance with respect to the free-case solution
at large distances. Section V presents the conclusions.

II. TIME-DEPENDENT SOLUTION

We solve the time-dependent Schrödinger equation for the
attractive potential V (x) = −bδ(x), with b > 0,

ih̄
∂

∂t
�(x,t) =

(
− h̄2

2m

∂2

∂x2
− bδ(x)

)
�(x,t) (1)

with the initial condition

�(x,0) = eikx�(−x), (2)

where �(x) refers to the Heaviside step function. Equation (2)
corresponds to the quantum shutter initial condition, consid-
ered by Moshinsky for the free case [2]. The initial condition
(2) may be visualized as a quasimonochromatic beam of
particles of energy E = h̄2k2/2m, moving from the left, and
interrupted at x = 0− as previously mentioned. At t = 0 the
shutter is opened and we may investigate the probability
density along the transmitted region at a fixed distance x = x0

as a function of time.
Laplace transforming Eq. (1) gives, along the transmission

region, a solution that may be written as

�̃(x,p) = im

h̄

(
t(k)

eipx

p(p − k)
+ r(k)

eipx

p(p − iβ)

)
, (3)

where we have used the change of variable p = √
2ims/h̄),

β = mb/h̄2, and

t(k) = k

k − iβ
, r(k) = − iβ

k − iβ
(4)
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FIG. 1. Contour C for evaluating the solution in the δ-potential
attractive case.

are, respectively, the transmission and reflection amplitudes
of the time-independent problem. Using the theorem on the
inverse Laplace transform [8] we may write

�(x,t) = − h̄

2πm

∫
C
�̃(x,p)e−ih̄p2/2mtpdp, (5)

where C is the path depicted in Fig. 1. By substituting Eq. (3)
into Eq. (5) and deforming the contour C as shown in Fig. 1,
one sees that as the radius R of the semicircle goes to infinity,
the factor exp(−ih̄p2t/2m) in the integrand decreases rapidly
and guarantees that the contribution from CR vanishes exactly.
Hence, one is left with the contribution coming from the
residue at the bound pole p = iβ plus integral contributions
along the real p axis. As a consequence, the solution �(x,t)
may be written as

�δ(x,t) = t(k)M(yk) + r(k)M(yiβ), (6)

where the Moshinsky function M(yk) is defined, for both real
k and Im k < 0, as [9]

M(yk) = i

2π

∫ ∞

−∞

eipxe−ih̄p2t/2m

p − k
dp

= 1

2
eimx2/2h̄tw(iyk), (7)

the function w(z) = exp(−z2)erfc(−iz) stands for the
Faddeyeva function [10], and we have defined the Moshinsky
function M(yiβ) for bound states (i.e., Im iβ > 0) as

M(yiβ) = 1
2eimx2/2h̄tw(iyiβ)

= e−βxeih̄β2/2mt − 1
2eimx2/2h̄tw(−iyiβ). (8)

The argument yq , with q = k,iβ in Eqs. (7) and (8) is given
by

yq = e−iπ/4

√
m

2h̄t

(
x − h̄qt

m

)
. (9)

Notice that the bound-state contribution in Eq. (6) results
because the initial state is quasimonochromatic and hence it is
not orthogonal to the bound state.

In the absence of the potential interaction (i.e., b = 0),
Eq. (6) reduces to the free-case solution derived by
Moshinsky [1,2]

�f (x,t) = M(yk), (10)

which at asymptotically long times goes into the stationary
solution, namely, �f → exp(ikx) exp(−ih̄k2t/2m) [2].

By using Eq. (6), we may write the probability density as

|�δ(x,t)|2 = |t(k)M(yk)|2 + |r(k)M(yiβ)|2
+ 2 Re[t(k)r∗(k)M(yk)M∗(yiβ)]. (11)

III. QUANTUM TRANSIENTS

Here we study the behavior of |�δ(x,t)|2 given by Eq. (11)
as a function of time for distinct values of x in the transmission
region. As an example we study the system with parameters
b = 0.427 eV nm, E = 0.08 eV, and m = 0.067me (me is
the electron mass), which are the attractive case counterparts
of the parameters considered in [4]. In Fig. 2 it is seen that
at x = 0+, |�δ(0+,t)|2 exhibits at long times an oscillating
behavior characterized by a definite amplitude A and period
P . In order to analytically understand this behavior we notice
that the condition of long times implies large values of the
argument (9), and hence one may use asymptotic expansions
for w(iyq) [10] to express the M functions in (6) for x = 0 as

M(yq) ≈ e−ih̄q2t/2m + 1

2
√

πyq

− 1

4
√

πy3
q

+ · · · , (12)

where q = k,iβ. It follows then by truncating the solution (6)
in the leading exponential terms

�δ(0,t) ≈ t(k)e−ih̄k2t/2m + r(k)eih̄β2t/2m. (13)

The corresponding probability density at long times turns out
to be

|�δ(0,t)|2 ≈ 1 + 2βk

k2 + β2
sin

(
h̄

2m
(k2 + β2)t

)
, (14)

which exhibits analytically a harmonic behavior of |�δ(0,t)|2
with time with an amplitude given by A = 2βk/(k2 + β2) and
a period by P = 4πm/h̄(k2 + β2) [11].

As is illustrated in Fig. 3, as x increases the oscillating
behavior disappears. This can be shown analytically by

FIG. 2. (Color online) Comparison of the |�δ|2 (solid line),
free-case solution |�f |2 (dashed line), and I (x,k,iβ,t) (dotted line)
contributions to the probability density for the δ potential plotted at
x = 0+ nm as a function of time with the parameters described in
Sec. III.
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FIG. 3. (Color online) Plots of |�δ|2 (solid line) and |�f |2
(dashed line) for the δ potential at x = 20 nm. It is seen that at
large distances the probability density of the δ solution presents the
transients observed in the diffraction in time phenomenon, but with a
time advance with respect to the free-case solution. The parameters
are the same as in Fig. 2. See text.

following a similar procedure as before with x �= 0. In this
case the solution to the leading exponential order is given by

�δ(x,t) ≈ t(k)eikxe−ih̄k2t/2m + r(k)e−βxeih̄β2t/2m. (15)

The corresponding probability density may be written as
|�(x,t)|2 = T (k) + R(k)e−2βx + I (x,k,iβ,t), where T (k) =
|t(k)|2 and R(k) = |r(k)|2 stand, respectively, for the trans-
mission and reflection coefficients and the interference term
I (x,k,iβ,t) reads

I (x,k,iβ,t) = 2βk

k2 + β2
e−βx sin

(
h̄

2m
(k2 + β2)t − kx

)
.

(16)

Notice that as x becomes very large, the oscillating con-
tribution of Eq. (16) vanishes exponentially and we obtain
|�(x,t)|2 → T (k).

IV. PHASE TIME

We find it interesting to explore the possible effect of the
bound-state transient behavior on the the phase delay time. In
our case, however, the attractive potential produces an advance
or negative delay time of the solution with respect to the free
case [12,13]. Here, we shall refer to this quantity as phase
advance time. We study, in analogy to a similar investigation
for the repulsive δ-potential case, an analysis of this time [4].

In a dynamical analysis, the phase time is obtained as
the time difference between the maxima of the peaks of the
transmitted and free evolving probability densities [4,14],

�t = tmδ − tmf , (17)

where tmδ and tmf denote the times at which |�δ(x,t)|2 and
|�f (x,t)|2 attain, respectively, their first maximum value,
as shown in Fig. 3. On the other hand, the phase time τθ ,
is defined as [15] τθ = h̄dθ/dE = h̄ Im[(dk/dE)(dt/dk)/t],
where θ is the phase of the transmission amplitude

FIG. 4. (Color online) Plot of the dynamical delay time (full
squares) and the phase delay time (solid line) as a function of the
distance x from the potential for the attractive δ potential. The
parameters are the same as in Fig. 2, for which τθ = −2.05 fs.

[i.e., t = |t | exp(iθ )]. Inserting (4) into the above definition
yields the exact analytical expression

τθ = − bm2

h̄3k(k2 + β2)
, (18)

where the minus sign follows because the δ potential is
attractive and hence yields a time advance.

Figure 4 exhibits a plot of �t as a function of x for
distances where the persistent oscillation is already negligible.
For comparison, τθ is also plotted. One sees that at very large
distances �t tends to τθ .

As discussed in detail in Ref. [4] for the repulsive
case, at large distances and times, the interference of
t(k) exp(ikx) exp(−iEt/h̄) with the inverse power terms in
the expansion of M(−yk) and M(−y−iβ) is responsible for
the phase delay time. Notice that in our case, asymptotically
r(k) exp(−βx) exp(ih̄β2t/2m) is negligible, and hence the
same analysis as in Ref. [4] holds by changing the sign of
β in the corresponding M function.

V. CONCLUSIONS

The δ potential possesses the advantage that it has only
one simple pole, which in the attractive case considered here
represents a bound state. It has been found that the bound-state
pole of an attractive potential in the quantum-shutter setup
induces, at short distances from the potential, a periodic
oscillation in the probability density in the transmission region,
an effect which is not damped in time but in distance.
The source of this phenomenon is the interference between
the quasimonochromatic and resonant pole contributions
of the solution; this phenomenon is interpreted as a trapping
of the initially confined wave.

Although the difference between attractive and repulsive δ

potentials lies in the sign of its strength and hence in the char-
acter of the complex pole (bound or antibound), δ-potential
transients for a repulsive potential behave very differently
than those of their attractive counterparts. The transients
for the repulsive potential exhibit damped oscillations in the
transmission coefficient [4]; it is at long enough distances that
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both types of transients become similar, the only difference
between them being an advance or delay time with respect to
the free-case solution.

There is no reason to expect that the phenomenon of
persistent oscillations discussed here is not present in other
attractive potentials. For example, it occurs for square-well
potentials, as will be discussed elsewhere. In spite of the fact
that the quantum shutter setup refers to an idealized situation,
it was able to predict the transient phenomenon of diffraction
in time [2], which has been verified experimentally in recent

years [1]. We hope that our finding of persistent oscillations in
the probability density owing to the interference of bound-
continuum states may also be the subject of experimental
verification.
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