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Arbitrarily high super-resolving phase measurements at telecommunication wavelengths
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We present two experiments that achieve phase super-resolution at telecommunication wavelengths. One of
the experiments is realized in the space domain and the other is realized in the time domain. Both experiments
show high visibility and are performed with standard lasers and single-photon detectors. The first experiment uses
six-photon coincidences, whereas the latter experiment needs no coincidence measurements, is easy to perform,
and achieves, in principle, arbitrarily high phase super-resolution. Here, we demonstrate a 30-fold increase of
the resolution. We stress that neither entanglement nor joint detection is needed in these experiments, which
demonstrates that neither is necessary to achieve phase super-resolution.
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I. INTRODUCTION

Interference plays a crucial role in many physical mea-
surements, such as the detection of gravitational waves [1–3],
metrology [4,5], interferometry and atomic spectroscopy
[6–8], imaging [9], and lithography [10]. Improvements of
these schemes can be achieved with the help of phase
super-resolution, where n oscillations (fringes) appear in
the interference pattern over a range, which usually would
have given only one oscillation [11,12]. In a similar vein,
phase supersensitivity decreases the phase uncertainty in such
experiments so that the measurement sensitivity would surpass
the classical limit (i.e., by beating the standard quantum limit
[13,14]).

It was believed that entangled states were needed to achieve
phase super-resolution [15]. One such state is a path-entangled
number state, the so-called NOON state [16],

|�(0)〉 = 1√
2

(|N〉|0〉 + |0〉|N〉), (1)

where N denotes the number of particles (most often photons).
This state is a superposition of N particles in one path and no
particles in the other path, and vice versa. The production of
such states at satisfying rates already gets extremely difficult
for small N . So far, only experiments with N up to 4
have been reported [11,17]. Recently, however, schemes were
proposed and were shown, where phase super-resolution could
be achieved by unentangled coherent light [13]. In that paper,
an experiment was reported, where n = N = 6 oscillations
occur over the period of one classical oscillation. For their
experiment, Resch et al. used a six-photon coincidence,
but received rather limited counting rates (�27 counts/10 s)
and moderate visibility (50%–90%). Other experiments with
unentangled states and phase super-resolution with n > 4
have been reported [18]. All those experiments used light at
wavelengths around 800 nm.

In this paper, we report on two super-resolution experi-
ments. One is in the space domain like all the experiments
hitherto reported, but uses an innovative approach, which
results in higher counting rates and very high visibility.
The other experiment is performed in the time domain and
shows very promising counting rates and visibility. Both
experiments could, in principle, be scaled to high numbers

of n > 100. Whereas the first experiment requires more
components for higher numbers of n, the second experiment
only requires a longer measurement time. Our space- and
time-domain experiments were performed up to n = 6 and
n = 30, respectively. Furthermore, these experiments are
performed at telecommunication wavelengths, which allow
efficient transmission of the photons over a long distance
via an optical fiber and thereby allow more opportunities for
applications of phase super-resolution.

II. PHASE SUPER-RESOLUTION—DEQUANTIFIED

We briefly introduce the theory of phase super-resolution.
Consider the state given in Eq. (1). If a relative phase shift φ

is imposed between the two modes the state transforms into

|�(φ)〉 = 1
2 (|N〉|0〉 + eiNφ|0〉|N〉), (2)

since energy (difference) is the generator of (relative) phase.
The phase Nφ will, therefore, grow linearly with the number
of particles N . If the two modes are treated as, for example,
spatial modes and are combined via a 50:50 beam splitter
(BS), then the detection probability P ∝ 1 ± cos(Nφ) in the
two outputs of the BS when measuring N -fold coincidence. P
exhibits phase super-resolution, since it oscillates n = N times
when φ varies from 0 to 2π . The same effect, however, can also
be reached without entanglement by a so-called time-reversal
measurement [13]. In the cited paper, the effect is explained
by using the inherent time-reversal symmetry of quantum
mechanics and measurement post-selected entanglement. A
different view of the experiment is the following, based on
the mathematical relation sin(2φ) = 2 sin(φ) cos(φ), or, more
generally:

sin(nφ)

2n−1
= sin(φ) sin

(
φ + π

n

)
sin

(
φ + 2π

n

)
· · ·

sin

[
φ + (n − 1)π

n

]
. (3)

A phase super-resolving measurement can, hence, be imple-
mented as a multiplication (e.g., coincidence detection) of n

ordinary phase measurements, each shifted by kπ/n, where
k = 0,1, . . . ,n − 1.
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FIG. 1. A coherent state split spatially into two by a mirror.

A coherent state can be split into several modes, where
each of these will be a coherent state [19]. Since the ensuing
multimode state is separable, there are no quantum correlations
between the states.

For example, a coherent state in an optical beam can be split
in two halves by a mirror, as in Fig. 1. If the two half beams
come from the same or from different identical sources makes
no difference. It also does not matter if the beam is split after the
interaction by a totally reflecting mirror inserted halfway into
the beam or by a semitransparent BS, insofar as the measured
object characteristic does not vary over the width of the beam.
Hence, we already may as well split the beam before the object,
as in Fig. 2. Also, it does not matter if the coherent-state mode
is split spatially, temporally, or in frequency, insofar as the
object does not vary over the corresponding space, time, or
frequency range. In previous experiments, the state has been
split spatially, by BSs, after the interaction. We find it simpler
to split the state before the interaction, or in time, and this and
the observation delineated in Eq. (3) are the basic ingredients
of our experiments and the interpretation thereof.

III. EXPERIMENT—SPACE DOMAIN

In our experiment, to measure phase super-resolution in
the space domain, we built the setup illustrated in Fig. 2.
Except for the fact that we split the coherent state before the
half-wave plate (HWP), the setup is essentially identical to that
in Ref. [13]. The coherent state is generated by a λ = 1550-nm
laser, which is pulsed at a rate of 2.5 MHz. Every pulse has
a duration of around 500 ps, and the average power of the
laser is 1 mW, which, directly after the laser, is attenuated by
50–55 dB (not shown in the figure) to avoid overexposure of
our single-photon detectors (SPDs). A polarizing beam splitter

FIG. 2. Setup to measure sixfold phase super-resolution in the
space domain. See the text for further details.

(PBS) in front of the laser assures that the light is horizontally
(H) polarized. Two 50:50 BSs divide the beam into three paths,
which are superimposed on an HWP. The HWP can be rotated
to any angle ϕ by a motor. One has to assure that the angle
α between the beams is small so that the path lengths of the
beams in the HWP (the object) are essentially the same. In our
case, we use an angle of α = 2.9◦. Since ϕ = 45◦ turns the
polarization from H to vertical (V), one can see one oscillation
by turning the HWP by 90◦ (which corresponds to a relative-
phase shift of 360◦ in our figures) and detect, for example, only
H-polarized photons. Two of the beams pass another HWP
rotated by the angles 15◦ and 30◦, respectively, to rotate the
polarization further in such a way that they fulfill the relation
in Eq. (3) after detection. Each beam then passes another PBS,
carefully oriented so that the H-polarized light goes into one
arm and the V-polarized light goes into the other arm. These
six beams are then coupled into single-mode fibers, which lead
to SPDs. The SPDs are gated and open only for 1 ns when a
coherent-state pulse is coming, and the outputs of the SPDs
are led to a six-channel coincidence counter, and subsequently,
to a computer, where the coincidences are registered and are
stored.

The results can be seen in Fig. 3. Every SPD detected one
oscillation while turning the HWP by 90◦ (which corresponds
to a phase shift of 360◦ in the figure), but from one SPD
to the next, the peak of the oscillation was shifted by 60◦
Multiplication of the stored individual counts from all six SPDs
in the computer gives the black dots in the figure, where the
scale is in arbitrary units. In the case of the sixfold coincidences
(gray dots), the scale to the left applies. One can clearly
distinguish six peaks as expected, so a sixfold increase of the
phase resolution is achieved. At every angle, we measured for
10 s and got counting rates of more than 1500 counts/s for the
sixfold coincidences and about 106 counts/s for the individual
SPDs. The visibility is high, between 98.6% and 96.7% in the
case of the multiplication of the single detections and between
98.6% and 97.0% in the case of the coincidence detection. For
calculating the visibility, we took the lowest of the two minima
around a peak. The reason that two of the minima are higher
than the other ones is due to imperfections in one of the PBSs,
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FIG. 3. Phase super-resolution in the space domain by measuring
sixfold coincidence (gray dots) and by multiplying single-photon
detections (black dots). The statistical errors are smaller than the dot
size.
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FIG. 4. Experimental setup to measure phase super-resolution in
the time domain. See the text for further details.

which does not perfectly split the beam into H- and V-polarized
components. To have better PBSs would probably result in a
more uniform visibility >98%. Another improvement would
be to replace the first 50:50 BS with a 33% reflecting BS so
that all the beams have the same intensity. This would neither
change the visibility nor change the resolution, but would
increase the coincidence rate. In principle, the setup can be
extended to detect phase super-resolution with a factor n > 6
by adding more arms. The drawbacks are that this requires
more components and that the coincidence counting rate gets
exponentially lower so that one would have to increase the
measurement time correspondingly.

IV. EXPERIMENT—TIME DOMAIN

To obtain phase super-resolution with n > 6, it, therefore, is
more practical to perform the measurement in the time domain.
To this end, we built the setup in Fig. 4. The parameters of
the laser are the same as in the setup in the space domain,
except at a slightly higher attenuation. Instead of having several
physical arms in the setup, we used a computer to store the
data sequentially to have, so to speak, n arms after each other
in time. In this setup, we counted and stored the clicks in each
SPD as a function of ϕ1, turned the second HWP by an angle
�ϕ2 = 90◦/n, repeated the process n times, and numerically
multiplied the results according to Eq. (3). For n = 6, we set
the second HWP at the angles ϕ2 = 0◦,15◦, and 30◦ by using
both SPDs, or at ϕ2 = 0◦,15◦,30◦, . . . ,75◦ when using only
one SPD.

The results of our measurements can be seen in Fig. 5.
We were rotating the first HWP by small increments over
the range 0 � ϕ1 � 90◦ to introduce a differential phase shift.
Then, we change the angle of the second HWP after each scan
of ϕ1 by �ϕ2 = 9◦ to get phase super-resolution by a factor
of n = 10. At each combination of angles, we measured for
1 s. The upper panel of Fig. 5 shows the results when we used
both SPDs followed by a coincidence counter, and the lower
panel shows the results when we used only one SPD, which
required twice as many settings of the angle ϕ2. As one can
see, the first method gives higher visibility 99.6% and takes
only half the time, and, therefore, is more efficient. On the other
hand, the second method needs neither the second SPD nor the
coincidence detector in Fig. 4. This clearly shows that phase
super-resolution can be achieved with neither entanglement
nor joint detection.

Further results can be seen in Fig. 6, where we achieved
phase super-resolution by a factor of n = 30. (Note that the
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FIG. 5. Phase super-resolution with n = 10 in the time domain.
The data were taken with the help of two SPDs and a coincidence
unit (upper panel) and with the help of only one SPD (lower panel).

x axis, in this case, only spans the range 0◦–45◦.) In this case
too, every combination of angles ϕ1,ϕ2 was measured for 1 s.
The reason that the visibility is degraded is most certainly due
to the insufficient stability of our laser’s intensity over long
time periods. In our experiments, since higher values of n

require smaller measurement increments of ϕ1 to resolve one
oscillation period, we had to measure for a long time to get a
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FIG. 6. Phase super-resolution in the time domain with a resolu-
tion enhancement by a factor of n = 30.
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phase super-resolution with n = 30 over the whole range of ϕ1

between 0◦ and 360◦. (1800 settings of ϕ1, 30 settings of ϕ2,
and a 1-s measurement time per setting plus time for rotation
gives around 20 h.) Under practical conditions, however, this
should not pose any substantial problem, since one usually is
not interested in scanning the whole range between 0◦ and 360◦
with phase super-resolution, but rather in making some rough
scans to start with, and then to limit oneself to a narrow range of
angles ϕ1 or phases. Furthermore, in most cases, measurement
times of less than 1 s per setting should give sufficient
visibility.

An advantage of the time-domain method is that one can
get phase super-resolution with high factors n. A technical
limitation of our setup is the step-size resolution �ϕ1 and
�ϕ2 in turning the HWPs. Step sizes of �ϕ = 0.1◦ posed no
problem in our setup, theoretically the rotator specification
allows a resolution of around 1 min of arc. If m denotes the
number of points in each fringe, this gives the possibility to
achieve n = 90/(m�ϕ), for example, m = 3, and 1 min of arc
as the step size of the rotator would allow n = 1800. A more
fundamental problem is the measurement time. The object
under investigation should not undergo any changes in phase
during the measurement time. Additionally, the intensity of
the laser should be stable during the whole measurement time
because the SPDs have no way to tell whether a change in the
counting rate is due to a phase change or due to an intensity
variation of the laser. Since our laser was not sufficiently stable
over long periods of time, we could not take full advantage of
the small step sizes achievable by our rotators, but we only
achieved n = 30.

V. INTERPRETATION

Phase super-resolution turns out to be quite a simple and
mostly classical phenomenon. We have shown that neither
entanglement nor joint detection was needed to achieve it
(note that the coincidence unit and the second detector were
not necessary in Fig. 4, as explained in Sec. IV). There is
neither a need for time-reversal symmetry as introduced in
Ref. [13] nor, for example, measurement-induced postselec-
tion entanglement. Basically, all one has to do is to shift sine
functions as in Eq. (3) and to multiply them. This task can
be done with quite ordinary standard optical components and
multiplication, either by coincidence detection or by numerical
multiplication of the acquired data in a computer.

In principle, these findings were known since Glauber’s
pioneering work on quantum optics [19]. The correlation
functions |g(n)(x1 · · · x2n)| of any order n, where x denotes
the time and space coordinates are symmetric in time and
space. This, together with Glauber’s finding that n-fold delayed
coincidences, which are detected by ideal photon counters
reduce to a product of the detection rates of the individual
counter leads to the fact that our experiments in time and space
domains give the same kind of physics as all the other hitherto
reported experiments, yet with much better results. We have
capitalized on this knowledge for the design and explanation
of our setup, which outperforms the experiments shown so far,
and we hope that it will clarify the requirements for achieving
super-resolving phase measurements.

A. Phase supersensitivity

To get phase supersensitivity, one has to achieve an uncer-
tainty in-phase estimation, which is smaller than the standard
quantum limit allows. Whereas phase super-resolution is
easily seen from the interference-fringe pattern, the resulting
phase-estimation uncertainty is not that obvious. To determine
the phase-estimation uncertainty close to a given phase in our
experiments, we use the relation [14]

�φn = �Pn

/∣∣∣∣∂Pn

∂φ

∣∣∣∣ , (4)

where Pn denotes the probability of detecting n photons in
coincidence. The variance of Pn can be written as �P 2

n =
Pn(1 − Pn), since any event either gives a coincidence detec-
tion or does not give a coincidence detection.

To calculate the standard quantum limit, one can look at a
coherent state |α〉. By sending this state through an interfer-
ometer, we can generate the output state |α cos(φ/2)〉 in one of
the arms [and |α sin(φ/2)〉 at the other arm]. A measurement of
the photon number at one of the interferometer outputs results
in the probability P1 = 1 − exp[−|α|2 cos2(φ/2)] of detecting
at least one photon. When this expression is inserted into
Eq. (4) one obtains the smallest phase-estimation uncertainty
�φSQL = 1/

√
N̄ , which is the standard quantum limit, where

N̄ = |α|2 is the expectation value of the photon number in the
coherent state.

A phase-resolution doubling, that is, n = 2, can be obtained
by measuring the photon number in both output arms and either
by multiplying the results or by recording the coincidences.
The probability of coincidentally recording at least one photon
in each output arm is given by

P2 = {1 − exp[−|α|2 cos2(φ/2)]}{1 − exp[−|α|2 sin2(φ/2)]}.
(5)

By using Eq. (4), one can subsequently calculate the minimum
phase-estimation uncertainty of this n = 2 interference pat-
tern. The result is �φ2 = 1/

√
N̄ . That is, the phase-estimation

uncertainty is unchanged from the n = 1 case.
A coherent state |α〉 can be split into m identical states

|α/
√

m〉 (up to an overall phase) by linear components (e.g., a
series of BSs). Each of the states can give rise to interferometer
outputs |αm−1/2 cos(φ/2 + θ )〉 and |αm−1/2 sin(φ/2 + θ )〉,
where θ is an adjustable offset phase. By setting the offset
phases in the different interferometers to 0,2π/m, . . . ,2(m −
1)π/m, we get the joint (coincidence) detection probability
for all the 2m = n interferometer outputs,

Pn =
n/2∏
k=1

(
1 − exp

{
−2|α|2 cos2

[
φ/2 + 4(k−1)π

n

]
n

})

×
n/2∏
k=1

(
1 − exp

{
−2|α|2 sin2

[
φ/2 + 4(k−1)π

n

]
n

})
,

(6)

where n, quite obviously, is even. By defining the phase
sensitivity S(n) as the ratio between the standard quantum
limit and the phase error as

S(n) = 1√
N̄�φn

,
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TABLE I. Phase sensitivity (depending on n) maximized over all values of φ.

n 2 4 6 8

S(n)
√

1 − e−N̄ (1−e−N̄/2)
√

1−e−N̄/4√
2

(1−e−N̄/4)(1−e−N̄/12)
√

1−e−N̄/3√
3

(1−e−N̄/8)[1+e−N̄/4−exp( −2+√
2

16 N̄ )−exp( −2−√
2

16 N̄)]
√

1−e−N̄/4

2

lim
N̄→∞

S(n) 1 1√
2

1√
3

1√
4

a value of S > 1 would indicate phase supersensitivity. We
have calculated some values of S in Table I.

All the values in the table were optimized with respect to
φ, and one finds that φ = 0,2π/n, . . . ,2(n − 1)π/n gives the
maximum sensitivity. For higher values of n, the analytical
expressions for the sensitivity get rather messy, but from the
calculated values in the table, we conjecture thatS(n) = √

2/n

for even n in the limit N̄ → ∞. For N̄ → 0, the sensitivity
goes to zero. As can be seen,S � 1; and, therefore, the scheme
we have investigated does not give phase supersensitivity for
any n, rather, it gives the opposite. Our result supports the view
that entanglement is required for phase supersensitivity [17].

VI. CONCLUSION

To summarize, we showed that super-resolving phase
measurements with simultaneously high n (which denotes the
relative increase in the number of fringes) and high visibility
can be achieved. Although there are clear limitations to the

increase of n in the space domain, it is less demanding to
reach high values of n in the time domain. We showed the
principle up to n = 30 and explained how one could reach
higher values without requiring any extra components by just
using a stabilized laser and high-quality optics. Furthermore,
we performed the experiment at telecommunications wave-
lengths, which enabled possible remote applications, since the
phase shifting (which includes the polarization analyzers), the
detectors, the coincidence unit, and the control computer can
be stationed at different remote locations.
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