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Intense nonclassical light: Controllable two-photon Talbot effect
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We study the spatial interference pattern of two-photon correlation function for a coherently phased linear
array of N emitters with a double-Raman scheme, each producing nonclassically correlated photon pairs. The
N 2 dependence in the two-photon correlation serves as a coherent amplification method for producing intense
nonclassical light. The spatial distribution of the correlation can be controlled by lasers, and depends on the
detection configuration. For two coincident detectors, the nonclassical correlation displays the spatial Talbot
pattern, but modulated by quantum interference effect. The image revival distance is found to be twice the usual
Talbot length. For symmetrically located detectors (X1 = −X2), the correlation displays a distorted Talbot pattern
with intricate features and lack of symmetry.
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I. INTRODUCTION

Nonclassical light source is generated artificially and does
not exist in nature. Recently, it was found that correlated pho-
ton pairs can provide optical resolution beyond the diffraction
limit through coincident photon detection [1] and have been
proposed for quantum imaging [2]. The photon pairs can also
enhance the spectral resolution of atoms and molecules [3].
Particles with the double-Raman scheme can produce photon
pairs with nonclassical properties, such as photon antibunching
[4] in the correlation function G(2). The nonclassicality of
photon pairs is also found in the two-atoms case [5]. In the
many-atoms case or extended medium [6] the correlation
function violates the Cauchy-Schwarz inequality. The results
for extended medium are based on full quantum theory and
agree with the experiment [7]. However, its applicability is
limited to photon pairs at moderate intensity. Nonclassical
light at high intensity has not been thoroughly studied both
experimentally and theoretically. A sufficiently bright source
of nonclassically correlated photons could become a new tool
in optics. Several research groups claimed to have successfully
produced nonclassical light sources with high brightness.
Photonic crystal fiber [8] can generate up to 107 photon
pairs per second, 100 times higher compared to laser-cooled
atoms. The corresponding quantum theory was developed by
Agrawal [9], valid for moderately high intensity. Recently,
Harris proposed a scheme to generate single-cycle photon
pairs [10] from periodic structure with nonlinear optics.

The quest toward intense nonclassical light source moti-
vates our present work to study photon correlation for an
array of quantum emitters. Coherently phased emissions can
produce intensity that scales quadratically with the number
of emitters in linear as well as circular configuration [11].
An interesting question follows: Would such scaling apply
for correlated or joint coincident detection of nonclassically
correlated photons? It is interesting to investigate how the
interference pattern repeats regularly with the distance from
the emitters, the Talbot effect [12]. Recently, the effect was
found in waveguide modes [13], in terms of Wigner function
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[14], and in atomic systems [15]. The effect has been used
in laser phase locking and incorporated into high-field laser
systems [16]. More exotic applications of the effect include
factorization of large numbers and evaluation of the Gauss sum
[17]. Here, we will study how the nonclassicality of correlated
photons affects the Talbot pattern for arrayed emitters. We
analyze the spatial structure of the two-photon correlation from
the array of emitters (see Fig. 1).

In Sec. II, two-photon amplitude for multiple double-
Raman emitters is obtained from the amplitude for a single
emitter. In Sec. III, we consider a particular case of a one-
dimensional (1D) array within the paraxial approximation.
Two possible detection schemes are considered in Sec. IV,
each producing entirely different spatial structures. In the final
Sec. V, we discuss the features and the implications of the
obtained results.

II. NONCLASSICAL CORRELATION FOR
MULTIPLE EMITTERS

We now consider an array of N quantum emitters (atoms or
quantum dots), each located in periodic sites, with the distance
between two emitters larger than an optical wavelength such
that they are noninteracting, as shown in Fig. 1. Otherwise,
dipole-dipole interaction due to proximity may contribute
to the coherent effects [18]. Each emitter has three levels
driven coherently by two lasers forming the double-Raman
scheme [Fig. 1(a)]. The pump laser (with Rabi frequency
�p) creates the Stokes photon with wave vector k via an
off-resonant Raman transition from level c to level b which is
resonantly coupled by the control laser �c to level a, creating
the anti-Stokes photon with wave vector q [19]. For atoms,
Rb-87 can be used, with the levels a,b,c corresponding to
|52P1/2,F = 1〉,|52S1/2,F = 2〉,|52S1/2,F = 1〉, respectively
(D1 transition). For quantum dots, the upper level corresponds
to the biexciton XX which is coupled to two (intermediate)
exciton levels X1 and X2, split by the exchange interaction due
to anisotropy of the exciton wave function [see Fig 1(a)].

In order to study the interference effects of the two
sequential detection of the Stokes and anti-Stokes photons
[at (r1,t1) and at (r2,t2), respectively], we compute
the two-photon correlation function G(2) = 〈�|Ê(−)(r1,t1)
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FIG. 1. (Color online) An array of quantum emitters, each producing correlated photons from the double-Raman scheme (inside orange
frame). (a) Double-Raman scheme, applied to a typical scheme in quantum dots, (b) array with central emitters (N = 31) and the g(2)

distribution, and (c) array with side emitters (N = 30) and the g(2). Note that the peaks in the images occur at D = 2zT = 4d2/λ (nonclassical
Talbot length) which is twice the classical length zT = 2d2

λ
. We use X2 = X1, �c = 2000�, D2 = 1.001D1, and d = 3N 2λ with � = 108 s−1

and λ = 0.3 µm. Thus, the peaks emerge around D/λ = 36N4 = 2.9 × 107. All subsequent figures below are for case (a).

Ê(−)(r2,t2)Ê(+)(r2,t2)Ê(+)(r1,t1)|�〉. The Schrödinger equa-
tion approach for the single m-th atom with the
double-Raman scheme located at rm gives the analytical
expression for the two-photon amplitude in the far field [20],

ψ (2)
m (1,2) = 〈0|Ê(+)(r2,t2)Ê(+)(r1,t1)|�〉m

= Zm

rm1rm2
ei(kc+kp)·rm (1)

Zm = iC12e
−iντm1e−iωτm2e−(�/2)τm1

× e−(γ /4)(τm2−τm1) sin �̃(τm2 − τm1), (2)

where (kc + kp) · rm is the coherent phase factor (CPF),
� = γ (�p/
)2 is the Raman pumping rate, �̃ =√

�2
c − (γ /4)2 is the effective Rabi frequency, |�〉m =∑

kq Cmkq(∞)|cm,1k,1q〉 is the two-photon state with Cmkq
being the coefficient of the ground state c with one Stokes
and one anti-Stokes photon, τmj = tj − rmj/c are emis-
sion times, rmj = |rm − rj | with τm2 − τm1 > 0 and C12 =
−�p�c

�̃

℘ba℘ca( ων

4πεoc2 )2 with ℘αβ the dipole transition matrix

elements, and Ê(+)(rj ,tj ) = ∑
k(ε̂j · ε̂k)

√
h̄νk

2εoV
âke

i(k·rj −νktj ) is

the collective electric field operator at detector j (=1,2) due
to the contributions of N arrayed emitters.

Since the emitters are identical, independent, and non-
interacting, there is no correlation between the fields from
different emitters. The collective state of all the particles

is the sum over all the emitters, |�〉 = 1√
N

∑
m |�〉m =

1√
N

∑
mkq Cmkq(∞)|cm,1k,1q〉. Thus, the two-photon ampli-

tude for the many-atoms state becomes

ψ (2) = 〈0|Ê(+)(r2,t2)Ê(+)(r1,t1)|�〉 =
∑
m

ψ (2)
m (1,2)

=
∑
m

ei(kc+kp)·rmZmK1mQ2m, (3)

where

K1m = k
[
f (x1m) − g(x1m) 1

2 sin2 α1m

]
, (4)

Q2m = q
[
f (y2m) − g(y2m) 1

2 sin2 α2m

]
, (5)

are exact expressions valid for the near field, with f (x1m) =
1

x1m
+ i 1

x2
1m

− 1
x3

1m

, g(x1m) = 1
x1m

+ i 3
x2

1m

− 3
x3

1m

, x1m = kr1m, and

sin αjm = (xm − Xj )/rjm(j = 1,2). Similar expressions for
f (y2m) and g(y2m), with y2m = qr2m.

The two-photon correlation can then be obtained from
G(2) = |ψ (2)|2 and Eq. (3), which is valid for arbitrary distances
rjm. In the far field, Kjm → 1

rjm
.

For rectangular geometry the CPF can be expressed as
exp[iθm,x + iθm,y] where θm,x = (kcx + kpx)xm and θm,y =
(kcy + kpy)ym. For a two-dimensional (2D) arrayed system
we can replace xm → ma and ym → nb.
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The correlation for the case of two atoms can be written
analytically as

G(2) = C12

(r1r2)2
2e−�τ1e−γ τ21 sin2 �̃τ21

×{1 + cos[ν
τ1 + ω
τ2 − (kc + kp) · 
r]}, (6)

with 
τj = τj − τ ′
j , τj = tj − rj /c, τ ′

j = t ′j − r ′
j /c,


r = r − r′ is the vector joining the two emitters, and
rj and r ′

j are the distances between the two emitters to
detector j (=1,2). Analysis of Eq. (6) without the CPF can be
found in Refs. [19,21] in the context of quantum microscopy.

III. 1D ARRAY OF EMITTERS

We focus on a 1D phased array of quantum emitters [see
Figs. 1(b) and 1(c)]. This structure can be realized by using
a holographic optical lattice for atoms [22] or a microtrap
array for ions [23] as regular trapping sites, as well as an
array of quantum dots [24]. Correlated photon pairs have
been produced by using quantum dot driven by two-photon
absorption in cascade configuration [25]. For the optical
trapping system it might be a challenge to create a large
number of sites, with each site containing only one atom,
although this has been demonstrated with seven atoms [26].
Certain sites may contain two or more atoms. In the case of
quantum dots, the decoherence rate γ (∼41012 s−1) is typically
1000 times higher than in atoms, significantly reducing the
correlation time. Thus, cooling down to a few Kelvins is
required. Quantum dots are usually grown at random locations.
Recently, a large array of regularly spaced quantum dots has
been produced by ion-beam irradiation [27].

Using rm = mdx̂, the amplitude goes as (since ti � t ′i )

ψ (2) � iC12e
−iνt1e−iωt2

∑
m

e−(�/2−γ /4)τm1e−(γ /4)τm2

× eimKd

r1mr2m

exp[i(νr1m + ωr2m)/c]

× sin �̃

(
τ + r1m − r2m

c

)
, (7)

where −(N − 1)/2 < m < (N − 1)/2, K = kcx + kpx is the
coherent wave vector, τ = t2 − t1 is the effective delay, and

rjm =
√

D2
j + x2

jm (with xjm = Xj − md and j = 1,2 for the

detectors).
In the following figures we have plotted normalized

correlation g(2) = |ψ (2)/C12|2r1m,r2m=1 by neglecting the decay
factors, the overall phase factors, and the overall constant. We
also set r1m,r2m → 1 since it does not yield important physics.
Figures 1(b) and 1(c) show two possible configurations of
the array of particles with the corresponding plots of the
g(2) for X1,2 = X, computed from Eq. (7). The correlation
patterns show that the Talbot images are revived at D =
2zT = 2d2/(λ/2) which is twice the usual Talbot length zT , in
contrast to that reported in Ref. [28]. Our result implies that the
effective wavelength is λ/2, as expected, due to the coincident
detection. In the subsequent analysis and results we focus on
the configuration with the central emitter only, as in Fig. 1(b),
where N is odd.

A. Paraxial approximation

In the paraxial regime, Dj 	 |md − Xj | leads to the
constraint,

D1,2 	 |Xmax + Nd|, constraint Ia. (8)

Substituting
√

D2 + x2 by D + x2

2D
− x4

8D3 in Eq. (7) and
neglecting the quartic and higher order terms, we have

ψ (2) ∝
∑
m

eimKd

r1mr2m

sin �̃

(
τ + 1

c

(

D + x2

1m

2D1
− x2

2m

2D2

))

× exp

{
i

[
ν

c

(
D1 + x2

1m

2D1

)
+ ω

c

(
D2 + x2

2m

2D2

)]}
,

(9)

where 
D = D1 − D2.
At the center Xj = 0, the negligible term x4

8D3 in paraxial

approximation implies max{ (ν+ω)
c

(md)4

8D3 � π
λ

(md)4

2D3 }�2π .
Taking m → N (	1) we have the condition,

k
(Nd)4

8πD3
= (Nd)4

4λD3
� 1, constraint Ib. (10)

When D = d2

λ
(in the order of the Talbot length) is substituted

into Eq. (10), we have the constraint,

d >
λ

2
N2 constraint II. (11)

B. Central amplitude

At the center Xj = 0 the amplitude Eq. (7) gives

ψ (2)(0) ∝
∑
m

sin �̃

(
τ + r0

1m − r0
2m

c

)

× eimKd

r1mr2m

exp
[
i
(
νr0

1m + ωr0
2m

)/
c
]
, (12)

where r0
jm = √

D2
j + (md)2. The paraxial approximation re-

duces Eq. (12) to

ψ (2)(0) ∝ ei(νD1+ωD2)/c sin �̃

(
τ + 
D

c

)

×
∑
m

eimKd

r1mr2m

exp[iSm2d2], (13)

where S = ν/D1+ω/D2

2c
. The quadratic dependence in eiSm2d2

is the consequence of the Fresnel (near-field) diffraction.
The series summation gives the usual Talbot effect. For
convenience, we give a short review and tutorial on the Talbot
effect in the Appendix.

Letting ν/D1 � ω/D2 (S � 2π
Dλ

) the central amplitude
becomes ψ (2)(0) ∝ ∑

m exp[i 2π
Dλ

m2d2] = ∑
m exp[iπm2 zT

D
].

When D = zT = 2d2

λ
, the series is a sum of equal numbers

of terms with even and odd multiples of π for the case with
central emitter [Fig. 1(b)], that is,

∑(N−1)/2
m=−(N−1)/2 exp[iπm2] =

1 + 2(eiπ + ei4π + ei9π + ei16π ...) = 1 (N odd), giving
ψ (2)(0) � 1 (�N ) with almost no signal due to destructive
interference of photons from all emitters except the
central one. However, for the case with side emitters
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[Fig. 1(c)],
∑(N−1)/2

m=−(N−1)/2 exp[iπm2] = 2(eiπ/4 + ei9π/4 +
ei25π/4 + ei49π/4 + ei81π/4 + · · ·) (N even) would give a finite
value.

IV. TWO-PHOTON DETECTION SCHEMES

The use of two detectors for obtaining the two-photon corre-
lation provides a new method for acquiring information or sig-
nals, utilizing the novel properties of coherently phased non-
classical photon pairs with interference and diffraction effects.

A. Coincident detection

For detectors that coincide, X1,2 = X, Eq. (9) becomes
(neglect the damping terms)

ψ (2) ∝ ei(νD1+ωD2)/c
∑
m

eimKd

r1mr2m

eiS(X−md)2

× sin �̃

[
τ + 
D

c

(
1 − (X − md)2

2D1D2

)]
, (14)

where S = ν/D1+ω/D2

2c
, 
D = D1 − D2.

The Talbot effect is applicable for the region of X satisfying
the constraint Eq. (8). Since (X−md)2

D1D2
� 1, the final (quadratic)

term in the sine function is much smaller than the second term
and may be neglected, Eq. (14) becomes

ψ (2) ∝ sin �̃

(
τ + 
D

c

) ∑
m

eimKd

r1mr2m

eiS(X−md)2
, (15)

where we have discarded the overall phase factor ei(νD1+ωD2)/c

which gives no important effect. Thus, the nonclassical sine
term does not depend on X within the Talbot region. For large
X (i.e., beyond the paraxial region), however, the nonclassical
effect would have X dependence. Assuming ν = ω and
taking D2 = αD1 with D1 = D we have 
D = (1 − α)D,
S = π(1+α−1)

Dλ
, and

ψ (2) ∝ sin �̃

(
τ + (1 − α)D

c

)

×
∑
m

eimKd

r1mr2m

exp

[
i
π (1 + α−1)

Dλ
(X − md)2

]
. (16)

The term with quadratic m is important for small D while
the sine term is due to quantum interference. The CPF eimKd

gives the usual diffraction grating effect. It also has an effect
of shifting the entire carpet along X.

Based on the constraint, Eq. (11), the analytical formula
Eq. (16) in the paraxial regime gives results (shown in Fig. 2)
that agree with the exact formula Eq. (7).

B. Symmetric detection

For detectors situated on symmetrically opposite locations
X1 = −X and X2 = X, Eq. (9) reduces to

ψ (2) ∝
∑
m

eimKd

r1mr2m

exp

[
i

2c

(
ν

D1
X(+)2

m + ω

D2
X(−)

m
2

)]

× sin �̃

[
τ + 
D

c
+ 1

2c

(
X(+)2

m

D1
− X(−)

m
2

D2

)]
, (17)

FIG. 2. (Color online) Two-photon correlation g(2) (normalized)
plotted using Eq. (16) (for paraxial region) against X = X1 = X2

and D = D1 at around D = zT . Note that the images at D = zT

[thick (red) arrow] are shifted half-period compared to the images at
D = 2zT in Figs. 1(b) and 1(c). (a) Without the sine term showing
peak intensity g(2)

max = N 2 � 900 (N � 30) and (b) with the sine term,
corresponds to nonclassical Talbot carpet. The heights of the peaks
at Talbot length zT = 2d2/λ are below N 2 due to modulation by the
sine term, due to quantum interference. The zero intensity channel
[thin (blue) arrow] in (b) is independent of X. It occurs at the location
D0 = πc/|1 − α|�̃ (α = 1.001) (i.e., inversely proportional to the
effective Rabi frequency �̃). We use N = 31, �c = 2000�, D2 =
1.001D1, and d = 3N2λ.

where X(±)
m = X ± md. Simpler expression is obtained by

letting D1 = D2 and ν = ω,

ψ (2) ∝
∑
m

eimKd

r1mr2m

ei 2πm2d2

λD sin �̃

(
τ + 2Xmd

Dc

)
. (18)

At D = zT /2 = d2

λ
the amplitude takes the form

∑N
m=−N

sin �̃(τ + mλX
cd

), which vanishes at X = 0 when τ = 0.
The dependency on X is governed by the nonclassical sine

(interference) function. Both the argument in the sine function
and the coherent phase factor depend linearly on m. We see
that the X dependence is important when 2πNd

λ
∼ �̃X

c
or Nd

is not too large. The relative magnitudes of the terms are,
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(b) ii(b(a) ) i

twin peaks
)2(g

FIG. 3. (Color online) Two-photon correlation g(2) (top view) beyond paraxial approximation for opposite detectors (X2 = −X1 = X)
[plotted using the exact expression and not the paraxial Eq. (18)] for: (a) without the sine term and (b) with the sine term, where (ii) is the
magnified view of the circled area in (i). Note that the peaks and regions of destructive interference now depend on X. The scale along X

is substantially larger than the X2 = X1 case (i.e., Xmax = 5500d . Here, N = 61 with other parameters �c = 2000�, D2 = 1.001D1, and
d = 3N 2λ, the same as in Fig. 2.

mKd : 2πm2d2

λD
: �̃md 2X

Dc
= 1 : Nd

D
: �̃

ν
X
D

. Taking into account

d ∼ λN2 and D ∼ d2/λ ∼ λN4 we have 1 : 1
N

: �̃
νN

X
Nd

.
In Fig. 3 we plot Eq. (7), the exact expression for G(2)

(beyond paraxial region). Here, the scale along X has to be
larger than the scale in Fig. 2 by a factor of Nν/�̃ in order
to see the nonclassical pattern. Figure 3(a) shows how the two
detectors at the opposite sides of the y axis can produce such
a distorted Talbot pattern. The main feature here is the arc
structure, which is mainly due to the departure from the
paraxial region. The peaks of the structure vary with both
D and X, even without the sine term. The presence of the
nonclassical sine term makes the pattern less regular with
more complicated features [see Fig. 3(bi)]. A closer look
reveals a prominent twin-peaks feature, as shown in Fig. 3(bii).
Further studies and analysis of this structure are required to
gain insights for new applications.

V. DISCUSSIONS

We elaborate on several important aspects of the results,
particularly for generating nonclassical light sources with high
intensity and the significance of the nonclassical interference
“sine” term on the spatial structure of the nonclassical Talbot
pattern.

A. Toward intense nonclassical light

Figure 2(a) shows the coherence effect of the two-photon
correlation (i.e., the peak intensity of G(2) scales with N2,
regardless of whether the coherent phase factor exp[imKd]
is present). The result shows that the coherent method can
produce high-intensity photon pairs without using the nonlin-
ear amplification process. If we let d = 10λ, large enough for
the neglect of dipole-dipole interaction, with λ = 300 nm, an
array size of 3 cm would contain 104 emitters which provide
N = 108 photons in one collective emission corresponding to
an energy of U = Nh̄ν ∼ 7 × 10−11 J. The cyclic pumping
duration corresponds to the spontaneous emission lifetime
1/� ∼ 10−8 s. Thus, the power is P = U� = 7 mW. The

width of the peaks is about 50λ, thus the intensity is I =
P/σ ∼ 107 Wm−2, which is close to the intensity of a typical
diode laser with 100-mW power, diameter of 5 mm. This
result shows that it is possible to engineer a coherent source of
nonclassical light with high intensity by constructing arrayed
emitters that are coherently phased, providing the prospect for
generation of intense nonclassical light, providing a coherent
amplification method for two-photon lithography compared
to existing parametric amplification schemes using an optical
parametric amplifier (OPA) [29], an optical parametric oscilla-
tor (OPO) [30], and an image-forming projection system using
the optical transfer function [31].

B. Laser-controlled Talbot effect

The nonclassical sine term modulates the entire Talbot
pattern in Fig. 2(b), lowering the peak intensity below N2 level.
It gives the no-signal (NS) channel as the result of destructive
interference at all values of X. This happens (for τ = 0) at
D1 satisfying �̃

|1−α|D1

c
= mπ , m is integer. The spatial period

between two NS lines is

D0 = cπ/(�̃|1 − α|), (19)

which correctly gives the location of the destructive interfer-
ence in Fig. 2(b).

This feature gives a useful laser-controlled Talbot effect.
The Talbot image at a specific location of Dimage can be
erased by tuning the control field (through �̃) such that
Dimage = mD0. We also find the coherent phase factor (CPF)
has an effect of shifting the entire pattern horizontally, across
X. This provides another coherent control mechanism in
another dimension.

Since the resulting (modulated) two-photon Talbot pattern
contains essentially the same old features as the classical case,
it should be applicable for mode locking and factorization of
numbers using two-photon light sources. Moreover, the laser-
controlled Talbot effect can be developed into an innovative
system of dynamically controlled phase locking.
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C. Other features

In addition to the main features discussed above, there are
a few side points to note. On closer inspection of the Talbot
patterns in Figs. 2 and 3, we find seemingly chaotic and irreg-
ular background oscillations which look like sea waves around
regularly revived peaks (images of the source). This peculiar
feature may provide insight in connection with the formation
of rogue waves [32]. Also, in the near field (kr1m,qr2m ∼ 1),
the N2 dependence does not apply and we find no Talbot effect.
Finally, the coherent phase factor (due to lasers) introduces an
overall shift that has little effect on the general features.

VI. CONCLUSIONS

The present work shows that a coherently phased array
of quantum emitters can produce large number of correlated
photon pairs that scales with N2 at localized spots, with
promising intensity close to a diode laser. This is a significant
step forward to realizing new kinds of light sources with high
intensity and nonclassical properties which could lead to new
possibilities, particularly in quantum nonlinear optics with
intense nonclassical light.

We have also studied the spatial structures of the two-photon
correlation function G(2) for the 1D array of nonclassical
emitters with two detectors. When the detectors coincide,
X1 = X2, the G(2) distribution across the screen position X

and distance D displays patterns reminiscent of the classical
Talbot carpet, but with effective Talbot length twice the
classical Talbot length. The nonclassical interference “sine
term” provides a possibility to tune the intensity of the
Talbot image by using the control laser. However, when
the detectors are on the opposite sides of the y axis, such
that X1 = −X2, we find unique structure in the G(2) as the

result of the two-detector scheme, which is not present in
the single-photon detection case. The structure varies over
a larger scale, beyond the paraxial region and displays a
distorted Talbot pattern. The most interesting result is the
effect of the interference “sine term,” which makes the pattern
more intricate and complex. Our results on the nonclassical
version of the two-photon Talbot effect could be useful for
the development of nonclassical optics and diffractive optical
elements based on nonclassical light sources.
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APPENDIX: TALBOT EFFECT

The self-images of the original periodic structure would
appear at multiples of a distance zT = 2d2

λ
, called the Talbot

length. The same pattern would also recur at D = (2n +
1)zT /2, but shifted in space by half the spatial period. Higher
order fractional revivals occur at rational multiples of zT .

At D = (p/2)zT /q (particularly zT /4, 3zT /4, . . . , zT /6,
3zT /6, 5zT /6, . . . zT /8, 3zT /8, 5zT /8, 7zT /8, . . .) with q =
1,2,3, . . . ; p = 1,3,5 . . . , the images would recur but they are
inverted or shifted in space by half-period, each consists of q

copies of the original grating, separated by d/q.
At D = rzT /s (particularly zT /3, 2zT /3, . . . , zT /5, 2zT /5,

3zT /5, 4zT /5, . . .) with s = 3, 5, 7 . . . ; r = 1, 2, 3 . . . , the
images are not shifted, but each consists of s copies of the
original grating, separated by d/s.
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