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Possibility of measuring the Abraham force using whispering gallery modes
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Critical experimental tests of the time-dependent Abraham force in phenomenological electrodynamics are
scarce. In this paper, we analyze the possibility of making use of intensity-modulated whispering gallery modes
in a microresonator for this purpose. Systems of this kind appear attractive, as the strong concentration of
electromagnetic fields near the rim of the resonator serves to enhance the Abraham torque exerted by the field.
We analyze mainly spherical resonators, although as an introductory step we consider also the cylinder geometry.
The orders of magnitude of the Abraham torques are estimated by inserting reasonable and common values for
the various input parameters. As expected, the predicted torques turn out to be very small, although probably not
beyond reach experimentally. Our main idea is essentially a generalization of the method used by G. B. Walker
et al. [Can. J. Phys. 53, 2577 (1975)] for low-frequency fields, to the optical case.
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I. INTRODUCTION

The 100-year-old Abraham-Minkowski energy-momentum
problem in phenomenological electrodynamics [1,2] has re-
cently attracted considerable interest. Assume henceforth for
simplicity that the medium is nonmagnetic and nondispersive,
with refractive index n. In our opinion—as expressed in the
review article some years ago by one of the present authors
[3]—the most physical expression for the electromagnetic
force density is the Abraham expression (International System
(SI) of units assumed)

fA = fAM + n2 − 1

c2

∂

∂t
(E × H). (1.1)

Here the first term fAM = −(ε0/2)E2∇n2 is different from
zero in regions where n varies with position, especially in
the surface regions of dielectrics. This term is common for
the Abraham and Minkowski tensors, and may appropriately
be called the Abraham-Minkowski term. The second, time-
dependent term in Eq. (1.1) is the Abraham term. It may be
noted that the expression (1.1) is in agreement with Ginzburg
[4], as well as with Landau and Lifshitz [5].

One may ask the question: Is it possible to detect the
Abraham term in an experiment? The answer is yes, but the
task has proven to be surprisingly difficult. The magnitude
of the electromagnetic frequency is a significant factor in
this context. Let us give a brief account of three important
experimental cases:

(1) The first case is the quasistationary torque experiment
of Walker et al. [6,7]. Strong, time-varying, orthogonal electric
and magnetic fields were applied across a dielectric shell of
high permittivity, making it possible to detect the oscillations
themselves. In this way the Abraham term was measured
quantitatively.

(2) When considering instead high-frequency fields such as
in optics, the Abraham term fluctuates out when averaged over
a period. One can thus no longer detect this force directly. The
physical effect of this force is, however, to produce an accom-
panying mechanical momentum propagating together with the
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Abraham momentum. The resulting total momentum is the
Minkowski momentum, corresponding to the divergence-
free Minkowski energy-momentum tensor. This tensor has
the particular property of being spacelike, corresponding to
the possibility of getting negative field energy in certain inertial
frames. An authoritative experiment measuring the Minkowski
momentum is that of Jones et al. [8,9], measuring the radiation
pressure on a mirror immersed in a dielectric liquid. Both cases
(1) and (2) are discussed in some detail in Ref. [3].

(3) The third example to be mentioned is the photon recoil
experiment of Campbell et al. [10], where the photon momen-
tum in a medium (in this case a Bose-Einstein condensate) was
found to be equal to the Minkowski value h̄k.

Most other experiments are measuring not the Abraham
term but rather the surface force fAM, although claims are
sometimes made to the contrary. In our opinion this is the case
also for the interesting new fiber optical experiment of She
et al. [11]; see the remarks in Refs. [12,13].

Our main purpose in the present paper is, however, not
to interpret already existing experiments, but instead to
propose the idea of using whispering gallery modes as a
convenient experimental tool to detect the Abraham term in
optics. Whispering gallery modes are commonly produced in
microspheres; they have a large circulating power, about 100 W
typically, and the field energy is concentrated along the rim
of the sphere. That means, if such a sphere is suspended in
the gravitational field and fed with an appropriate intensity
modulated field, the sphere becomes exposed to a vertical
torque according to Eq. (1.1). With the field energy essentially
concentrated along the rim, the arm in the torque calculation is
essentially the same as the radius, thus maximizing the torque.
In effect, this is the idea of the experiment of Walker et al. [6,7],
generalized to optical frequencies. We have actually suggested
this idea qualitatively before, in Refs. [12,13].

The next two sections give quantitative estimates for
performing such an experiment. The torque turns out to
be small, as expected, but not beyond any possibility for
experimental detection. Spherical geometry, as mentioned,
is most typical for the whispering gallery setup. In the next
section, however, we consider as an introductory step the
somewhat more simple geometry of a cylindrical shell.
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Before closing this section, let us give a few more references
to the Abraham-Minkowski problem, in addition to the
references given above. A nice introduction can be found in
Møller’s book [14]. A review, up to 2007, is given by Pfeifer
et al. [15]. Some more recent papers are Refs. [16–18].

II. CYLINDRICAL GEOMETRY

Consider first as the simplest case a compact cylinder of
length L and radius a. On the inside, r < a, the permittivity
is ε and the permeability µ. On the outside, r > a, a vacuum
is assumed. The dispersion relation for stationary modes is
known to be [19][

µ

u

J ′
m(u)

Jm(u)
− 1

v

H (1)
m

′
(v)

H
(1)
m (v)

] [
ε ω2

u

J ′
m(u)

Jm(u)
− ω2

v

H (1)
m

′
(v)

H
(1)
m (v)

]

= m2k2

(
1

v2
− 1

u2

)2

. (2.1)

We are working with SI units and let ε and µ be dimensional,
so that D = εE, B = µH. The transverse wave vectors on the
inside and the outside are

λ1 = nω/c, λ2 = ω/c, (2.2)

respectively, while their nondimensional counterparts are

u = λ1a, v = λ2a. (2.3)

An important property of this equation is that when the axial
wave vector k = 0—as is of interest here since we consider
azimuthal modes only—the right-hand side vanishes and the
problem becomes separable into TE and TM modes.

We write the mode expansions for the fields in the inner
region [19] as

Er = −µω

λ2
1r

∞∑
m=−∞

mJm(λ1r) bmFm, (2.4a)

Eθ = − iµω

λ1

∞∑
m=−∞

J ′
m(λ1r) bmFm, (2.4b)

Ez =
∞∑

m=−∞
Jm(λ1r) amFm, (2.4c)

and

Hr = εω

λ2
1r

∞∑
m=−∞

mJm(λ1r) amFm, (2.5a)

Hθ = iεω

λ1

∞∑
m=−∞

J ′
m(λ1r) amFm, (2.5b)

Hz =
∞∑

m=−∞
Jm(λ1r) bmFm, (2.5c)

where

Fm = eimθ−iωt . (2.6)

The coefficients am and bm, corresponding to the transverse
magnetic (TM) and the transverse electric (TE) modes, give
the weight of each mode.

In our considerations below, we will for simplicity extract
one single TE mode of high order m, such that there is an
azimuthally moving momentum concentrated in the vicinity
of the boundary r = a. (In reality, the incident power may be
distributed over a band of neighboring m modes, but this does
not influence the essence of our argument.) We first need to
determine the magnitude of the radial argument λ1r ≈ u. Let
us take

m = 100, n = 1.5, a = 100 µm. (2.7)

It is known that for a large value of the order m the first
maximum of the function Jm(x) occurs when x is very close to
m. This maximum is the one of interest here. Thus the lowest
resonance frequency ω is determined by the equation

naω/c = m. (2.8)

With the numbers given above,

ω = 2 × 1016 s−1. (2.9)

In this manner, we manage to make the beam strongly
concentrated near the rim, as desired. One has in this case
Ez = 0, Hr = 0, while the nonvanishing field components of
interest are

Er = − µω

λ2
1 r

mJm(λ1r) bmFm, (2.10)

Hz = Jm(λ1r)bmFm. (2.11)

The azimuthal component of the Poynting vector S(r) in the
interior is

Sθ (r) = −1

2
Re[ErH

∗
z ] = µωm

2λ2
1r

J 2
m(λ1r)|bm|2, (2.12)

corresponding to the azimuthal power

P = L

∫ a

0
Sθ dr = µωmL

2λ2
1

|bm|2
∫ u

0

dx

x
J 2

m(x). (2.13)

In our case the factor 1/x can be extracted outside the integral,
so that

P = µωmL

2λ2
1u

|bm|2
∫ u

0
dxJ 2

m(x). (2.14)

Assume now that the beam is intensity modulated with a
frequency ω0 (ω0 is low compared with optical frequencies),

P = P0 cos ω0t, Sθ = S0 cos ω0t. (2.15)

Then the azimuthal Abraham force density f A
φ is

f A
φ = n2 − 1

c2

∂Sθ

∂t
= −n2 − 1

c2
ω0S0 sin ω0t, (2.16)

giving rise to the following Abraham torque NA
z around the

vertical symmetry axis:

NA
z = 2πL

∫ a

0
r2f A

φ dr ≈ 2πLa2
∫ a

0
f A

φ dr. (2.17)

Defining the quantity K as

K = −n2 − 1

c2
2πa2P0, (2.18)
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we thus see that the torque can be written as

NA
z = Kω0 sin ω0t. (2.19)

As expected, the torque becomes very small. As order of
magnitude we get

K ∼ 2πa2

c2
P0 ∼ (0.7 × 10−24 s2)P0, (2.20)

and the Abraham torque is estimated as

NA
z ∼ (0.7 × 10−24 s2)ω0P0. (2.21)

Insert first the very low value of ω0 ∼ 1 s−1, and take P0 ∼
100 W. We get Nz ∼ 0.7 × 10−22 N m, which is much less than
the value 10−16 N m obtained in the classic Beth experiment
[20], for example, in which the angular momentum of light was
measured. It is, however, possible to improve the situation by
exploiting the fact that the buildup and ringdown times for this
kind of resonator are known to be very small, in the order of
tens to hundreds of ns (see discussion below). It is thus realistic
to insert a much higher value for ω0. Inserting tentatively ω0 =
1000 s−1, we get Nz ∼ 0.7 × 10−19 N m, which is perhaps not
so unrealistic after all.

It is physically instructive to look at the system in another
way, by considering the angular deflection φ of the cylinder
instead of the magnitude of the torque. Let the cylinder be
hanging vertically in the gravitational field, suspended by a thin
wire of known torsion constant κ . Denoting the eigenfrequency
of the cylinder in the absence of any torque by 	, and denoting
the damping coefficient by γ , we have as the equation of
motion

φ̈ + γ φ̇ + 	2φ = K

I
ω0 sin ω0t. (2.22)

Here I = 1
2Ma2 is the moment of inertia about the z axis, M =

ρa2L being the cylinder mass with ρ the material density. In
our notation, κ = I	2. With a = 100 µm as above we obtain,
when choosing L = 1 mm and assuming ρ ∼ 103 kg/m3,

	 =
√

κ/I ∼ 108√κ. (2.23)

For the magnitude of κ we may choose a typical value
characteristic of torsion experiments testing the equivalence
principle, κ ∼ 10−9 N m/rad [21,22]. Then,

	 ∼ 103 rad s−1. (2.24)

The magnitude of 	 is large because a is assumed small.
The largest oscillations occur at resonance, when ω0 is

chosen equal to 	. Then,

φ = − K

Iγ
cos 	t. (2.25)

The maximum value, when P0 ∼ 100 W, is

φmax = n2 − 1

c2

4

M

P0

γ
∼ 10−7

γ
rad s−1. (2.26)

It would be of interest to make an estimate of the damping
constant γ here, but we postpone that until the next section.

Notice that the very existence of a oscillatory movement
would be enough to make the experiment critical with respect
to the Abraham force. The Minkowski tensor does not predict
an azimuthal movement at all.

III. SPHERICAL GEOMETRY

As mentioned above, whispering gallery modes are usually
associated with microspheres. Let the radius of the sphere be
denoted by a. As above, we look for the eigenmodes, and we
will for simplicity focus on the TE modes only. (The meaning
of the symbol TE is here that the electric field is transverse to
the radius vector r.) We introduce quantities α and r̃ defined
by

α = ωa/c, r̃ = r/a. (3.1)

Thus α is the magnitude of the nondimensional wave vector in
the exterior region (vacuum), whereas r̃ = 1 at the boundary.
Making use of the Riccati-Bessel function

ψl(x) = xjl(x), (3.2)

the basic TE modes in the interior can conveniently be written
as

Er = 0, (3.3a)

Eθ = − imAlm

nαr̃

P m
l (cos θ )

sin θ
ψl(nαr̃) Fm, (3.3b)

Eφ = Alm

nαr̃

dP m
l (cos θ )

dθ
ψl(nαr̃) Fm, (3.3c)

and

Hr = − l(l + 1)

iωµ

Alm

nαr̃2

1

a
P m

l (cos θ )ψl(nαr̃) Fm, (3.4a)

Hθ = − 1

iωµ

Alm

r̃

1

a

dP m
l (cos θ )

dθ
ψ ′

l (nαr̃)Fm, (3.4b)

Hφ = − m

ωµ sin θ

Alm

r̃

1

a
P m

l (cos θ ) ψ ′
l (nαr̃)Fm, (3.4c)

where Alm are constants, and

Fm = eimφ−iωt . (3.5)

The mode expansions above essentially follow Stratton [19].
The components of Poynting’s vector are, when averaged

over an optical period,

Sr = 1
2 Re[EθH

∗
φ − EφH ∗

θ ], (3.6a)

Sθ = 1
2 Re[EφH ∗

r ], (3.6b)

Sφ = − 1
2 Re[EθH

∗
r ]. (3.6c)

Assume that the sphere is fed by an incident flux from the
outside such that only the component Sφ of S in the interior is
different from zero. With an intensity modulated energy flux
such as above, Sφ = S0 cos ω0t , we thus get for the azimuthally
directed Abraham force density in the interior

f A
φ = −n2 − 1

c2
ω0S0 sin ω0t. (3.7)

From the above expressions,

S0 = m

2(nα)2 r̃3

l(l + 1)

ωµ

|Alm|2
a

[
P m

l (cos θ )
]2

sin θ
ψ2

l . (3.8)
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The Abraham torque, directed along the z axis, then becomes

NA
z =

∫
(r × fA)zdV =

∫
rf A

φ sin θ dV, (3.9)

where the integration is over the sphere, with dV =
r2 sin θ dr dθ dφ. Making use of Eqs. (3.7) and (3.8), we
obtain

NA
z = −n2 − 1

c2

πma3

(nα)2

l(l + 1)

ωµ
|Alm|2ω0 KIKII sin ω0t,

(3.10)

where KI and KII are the integrals

KI =
∫ 1

0
ψ2

l (nαr̃)dr̃

= 1

2

[
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
]
, (3.11a)

KII =
∫ π

0

[
P m

l (cos θ )
]2

sin θ dθ

= 2

2l + 1

(l + m)!

(l − m)!
. (3.11b)

We want to relate this to the total power P flowing in
the azimuthal direction in the sphere. We calculate P by
integrating Sφ over the area of a semicircle with radius a,

P =
∫ π

0
dθ

∫ a

0
r drSφ

= ma

2(nα)2

l(l + 1)

ωµ
|Alm|2KIIIKIV cos ω0t, (3.12)

where

KIII =
∫ 1

0

dr̃

r̃2
ψ2

l (nαr̃), (3.13a)

KIV =
∫ π

0

[
P m

l (cos θ )
]2

sin θ
dθ. (3.13b)

As before, it is assumed that the supplied power is intensity
modulated, P = P0 cos ω0t .

The two last integrals can be processed further, at least
approximatively. First, we can rewrite KIII as

KIII = 1

2
πnα

∫ nα

0

dx

x
J 2

ν (x), (3.14)

with ν = l + 1/2. For actual physical values, nα � 1. We can
thus replace the upper limit with infinity, and make use of
formula 6.574.2 in Ref. [23] to get

KIII ≈ πnα

2(2l + 1)
. (3.15)

Finally, the integral KIV is simply (cf. formula 8.14.14 in
Ref. [24])

KIV = (l + m)!

m(l − m)!
. (3.16)

We are now able to relate the torque NA
z to the power P . The

result becomes quite simple:

NA
z = −n2 − 1

c2

4ma2ω0

nα
P0 sin ω0t

× [
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
]
. (3.17)

The radius of the sphere is seen to appear in the prefactor a2,
as well as in the nondimensional parameter α = ωa/c. The
parameter l occurs only as an order parameter in the function
ψl . We see that the torque is proportional to m. This is as
we would expect, because the whispering gallery modes are
associated with m = l, i.e., the maximum value of m. It should
correspond to a maximum angular momentum and accordingly
a maximum torque.

To proceed quantitatively, the value of α has to be deter-
mined. For the TE modes it is determined by the dispersion
relation [19]

nµ0

µ

ψ ′
l (nα)

ψl(nα)
= ξ

(1)
l

′
(α)

ξ
(1)
l (α)

, (3.18)

where ξ
(1)
l (x) = xh

(1)
l (x) is another member of the Riccati-

Bessel functions. The equation (3.18) is complex and does not
in general have real solutions, but approximate solutions with
only a small imaginary inequality are found close to α ≈ l for
l � 1.

As at the end of the previous section, we focus attention
now on the magnitude of the angular deflection φ, as this is
most likely the quantity of main experimental interest. Without
changing the notation, we write the Abraham torque in the form
NA

z = Kω0 sin ω0t as before, where now

K = −n2 − 1

c2

4ma2

nα

× [
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
]
P0. (3.19)

The equation of motion for φ takes the same form (2.22) as
before, where now the moment of inertia is

I = 2

5
Ma2 = 8π

15
ρa5, (3.20)

M being the mass of the sphere. For definiteness let us take
a = 100 µm. Then, with ρ ∼ 103 kg/m3, we get M ≈ 4 µg
and so, with κ ∼ 10−9 N m/rad as before,

	 ∼ 108√κ ∼ 103 rad s−1. (3.21)

With these numerical choices, the value of 	 becomes of the
same order as in the cylinder case. The magnitude φmax of the
maximum deflection at resonance ω0 = 	 is now

φmax = 10m

Mnα

n2 − 1

c2

× [
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
] P0

γ
. (3.22)

As we have assumed l � 1 and nα � 1 but otherwise left the
ratio of these quantities unspecified, the ψl functions ought to
be calculated numerically.

Let us finally make an estimate of the magnitude of the
damping coefficient γ , assuming for definiteness that the
damping is due to the viscosity of air only. We then need
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to know the viscous torque on a sphere executing rotary
oscillations about its symmetry axis. The solution of this
problem is shown in Ref. [25]. An important parameter in
this context is the penetration depth δ = √

2ν/	, where ν

is the kinematic viscosity of the surrounding medium. For
air, ν = 1.5 × 10−5 m2 s−1. Thus with 	 ∼ 103 rad s−1 we get
δ ∼ 170 µm, which is of the same order as a. Strictly speaking
we should therefore have to use the complete expression for
the viscous torque, which is somewhat complicated. For our
order-of-magnitude considerations, however, it is sufficient to
use the simple expression

(Nz)viscous ≈ 8πηa3	 (3.23)

(corresponding mathematically to the a/δ 	 1 limit), where
η = 1.8 × 10−5 Pa s is the dynamic viscosity for air. Identify-
ing (Nz)viscous with Iγ 	 in accordance with Eq. (2.22), we get
for the damping coefficient

γ = 8πη

I
a3 ∼ 30 s−1, (3.24)

and the expression (3.22) for the maximum deflection can
finally be written as

φmax = m

2πnαηa

n2 − 1

c2

× [
ψ2

l (nα) − ψl−1(nα)ψl+1(nα)
]
P0. (3.25)

As expected, the deflection is very small. Whereas numerical
evaluation of the ψl functions in general is called for, as
mentioned, we may note that in cases where l 	 nα the
approximation ψl(nα) ≈ sin(nα − lπ

2 ) is useful. Moreover,
one can obtain a simple estimate of the magnitude in the
cylinder case by inserting γ from Eq. (3.24) into Eq. (2.26),
whereby one finds φmax ∼ 10−8 rad. Careful adjustments of
input parameters are obviously needed if the effect is to be
verified experimentally.

IV. MAGNITUDE OF TORQUES IN EXISTING
EXPERIMENTS

We close this investigation by making some estimates of
radiation torques on spheres, as well as on ring resonators (a
closely related geometry), for already existing experiments.
As a first example, we take the setup reported in Ref. [26],
where an infrared laser of wavelength λ = 1500 nm was used.
Two different sphere radii were investigated, a = 40 µm and
a = 70 µm, corresponding to values of α ≈ l = m equal to
162 and 283, respectively. Although the feeding laser had a
power on the order of tens of microwatts to milliwatts, the

extremely high Q factor of the silica sphere meant the buildup
of circulating modes in the sphere grew enormous. Circulating
powers in excess of 100 W are routinely reported in such
systems (e.g., [27]) (although this quantity was not explicitly
given in Ref. [26]). The refractive index of materials used for
ultrahigh-Q spherical resonators, such as fused silica [26,28]
and quartz [29], are about n = 1.5. With these values as input
for P0 we obtain the torques [NA

z = N0 sin ω0t]

N0 ≈
{

(4 × 10−24 N m s) ω0,

(1 × 10−23 N m s) ω0,
for a =

{
40 µm,

70 µm.
(4.1)

Note in general that for a sphere, NA
z ∝ a according to

Eq. (3.17), whereas φmax ∝ a−2 according to Eq. (3.25) when
the viscous damping is accounted for.

The geometry of Ref. [27], which reports circulating powers
in excess of 100 W, employs the toroidal ring resonator. This
geometry has the benefit of having smaller mass and therefore
smaller moment of inertia than a sphere of the same radius,
allowing for larger angular deflections. For a thin ring, the
moment of inertia is

Itoroid ≈ 2πρAa3, (4.2)

where A is the area of cross section. The torque on such a
toroid would be roughly similar to that on a sphere, so it is
reasonable to assume the angular deflection to be larger and
scale as a−1. This could allow larger radii, which could be
beneficial for detection. See also the review article [30].

We wish finally to reemphasize the possibility of using quite
high frequencies ω0 in order to produce measurable values
for the Abraham torque. We assumed above the strong field
inside the microcavity to react instantaneously to the sinusoidal
variations of the input signal, an approximation which is good
provided the buildup and ringdown time (τ ) of the resonator
is small compared to 2π/ω0. For the 45 µm radius toroidal
resonator in Ref. [31], for example, a ringdown time of about
43 ns was measured. For cavities of even higher Q factor,
ringdown times are somewhat longer, yet this implies that
we may choose tuning frequencies ω0 as high as 106 without
invalidating the theory. Due to the proportionality of the torque
with ω0, going close to the megahertz regime could increase
the torque to perhaps 10−17 N m for a sphere with radius of
some tens of micrometers.
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