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Intensity fluctuations in steady-state superradiance
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Alkaline-earth-metal-like atoms with ultranarrow optical transitions enable superradiance in steady state. The
emitted light promises to have an unprecedented stability with a linewidth as narrow as a few millihertz. In order
to evaluate the potential usefulness of this light source as an ultrastable oscillator in clock and precision metrology
applications, it is crucial to understand the noise properties of this device. In this paper, we present a detailed
analysis of the intensity fluctuations by means of Monte Carlo simulations and semiclassical approximations.
We find that the light exhibits bunching below threshold, is to a good approximation coherent in the superradiant
regime, and is chaotic above the second threshold.

DOI: 10.1103/PhysRevA.81.063827 PACS number(s): 42.50.Lc, 42.55.Ah, 42.50.Pq

I. INTRODUCTION

Dicke superradiance is a paradigmatic effect in cavity
quantum electrodynamics. At the fundamental level, su-
perradiance is a quantum-interference effect in which the
probability amplitudes for the emission of a photon from
several atoms conspire to yield a collective light-emission rate
that is larger than for uncorrelated atoms. Due to its great
conceptual simplicity and generality, superradiance has been
extensively studied both experimentally and theoretically. The
noise properties of the light emitted in superradiance have been
of particular interest. This is because the early stages of su-
perradiance are often initiated by quantum fluctuations, which
are subsequently amplified by the collective emission process
[1,2]. Superradiance can, thus, serve as a physical phenomenon
that allows us to study the microscopic quantum fluctuations
through their macroscopic consequences. Examples of this
macroscopic manifestation of the quantum fluctuations are the
first passage time statistics of the superradiant pulse [3–5] as
well as the second-order correlations of the field [6].

Nearly all realizations of Dicke superradiance have been in
the pulsed regime. In contrast to such experiments, we have
recently proposed a system based on earth-alkaline-like atoms
in which superradiance can be achieved in steady state [7,8].
The interest in that light source derives from the extremely
narrow linewidth of the generated light. For experimentally
realizable parameters, linewidths in the millihertz range could
potentially be realized. The light generated this way could,
thus, serve as an ultrastable local oscillator with a stability
that is about 2 orders of magnitude better than the current
state of the art. At the core of this device are atoms with an
ultranarrow optical transition coupled to a high-finesse cavity.
The atoms collectively emit photons into the cavity mode, and
they are concurrently repumped to the excited state, providing
a steady supply of energy. The collective decay of the atoms
via the cavity mode establishes a collective atomic dipole,
which radiates much more strongly than independent atoms
would. Depending on the repumping rate, the system could
also exhibit subradiance or produce thermal light akin to an
ensemble of random radiators. Qualitatively similar behavior
has been predicted for the overdamped many-atom micromaser
[9].

Just as for pulsed Dicke superradiance, the higher-order
correlations of the light are nontrivial, and a solid knowledge of

them is crucial for a full understanding of the collective light-
generation mechanism as well as for potential applications.
Correlations of the intensity can be used to quantitatively
study these fluctuations, and these are the subject of this paper.
Some aspects of the noise properties of continuously pumped
collectively emitting systems have also been discussed recently
in the context of collectively radiating low-dimensional solid-
state systems [10,11]. For instance, Temnov and Woggon
studied the photon statistics deep in the subradiant regime
in Ref. [12].

The goal of this paper is to fully characterize the intensity
correlations of the light generated by means of steady-state
superradiance. To this end, we introduce a simplified model
that captures all the essential aspects of the problem in
Sec. II, and we recall the basics of steady-state superra-
diance. Section III presents our results on the intensity-
intensity correlations of the generated light obtained for
small atom numbers using quantum Monte Carlo simulations
and semiclassical approximations in the limit of large atom
numbers.

II. MODEL

The calculation of higher-order correlations of quantum
fields is typically a difficult problem. Analytic closed-form
solutions are known in only a few special cases; and, thus, we
have to rely mostly on numerical simulations. Because of the
exponential scaling of the dimension of the Hilbert space of the
system with the number of atoms, we must restrict ourselves
to the simplest model that still captures the essential physics
that we are interested in.

The core ingredients of a system that exhibits steady-state
superradiance are illustrated in Fig. 1. An ensemble of N

two-level atoms with excited state |e〉, ground state |g〉,
and transition frequency ωa are collectively coupled to a
high-finesse cavity with resonance frequency ωc. The atoms
are independently repumped from the ground state to the
excited state in order for the atoms to be able to radiate photons
continuously.

The noncollective nature of the repumping is essential for
two reasons. First, it is much easier to achieve experimentally
than collective repumping, for instance, by optical pumping
through an auxiliary excited state. Second, and somewhat
paradoxically, it can balance the effects of other incoherent
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FIG. 1. (Color online) Schematic of N two-level atoms (black
dots) in a single-mode cavity field. The atoms are being incoher-
ently repumped. The output of the cavity field is monitored by
two detectors D1 and D2 with a variable time delay τ between
them.

processes such as spontaneous emission and dephasing that
would normally drive the atoms into less collective states that
do not exhibit superradiance. A purely collective repumping
as considered previously (e.g., in Refs. [13,14]) cannot change
the length of the atomic Bloch vector. Therefore, if the length
decays due to dissipative processes, it cannot be restored, and
the superradiance stops. In contrast, the length of the atomic
Bloch vector can grow in the case of noncollective pumping so
that a collective atomic dipole can develop from an ensemble
of completely independent atoms.

A. Atom-field master equation

Mathematically, the coupled atom-cavity system can be
described by the Hamiltonian:

Ĥ = h̄ωaĴz + h̄ωcâ
†â + h̄g

2
(â†Ĵ− + Ĵ+â). (1)

Here, we have introduced an angular momentum represen-
tation for the atoms in the usual way by identifying the excited
state with the spin-up state of a fictitious spin-1/2 system and
the ground state with the spin-down state. The operators,

Ĵz = 1

2

N∑
j=1

σ̂ (j )
z , (2)

and

Ĵ− = Ĵ
†
+ =

N∑
j=1

σ̂
(j )
− (3)

are the z component and the ladder operators of the total
angular momentum. In these equations, σ̂ (j )

z = |e〉〈e| − |g〉〈g|
is a Pauli matrix pertaining to atom number j , and σ̂− =
σ̂
†
+ = |g〉〈e| is the spin-flip operator for atom j . The operators

â and â† are the annihilation and creation operators for a
photon in the cavity mode. For simplicity, we assume that the
coupling constant g of the atoms to the cavity is identical for
all atoms. This could, in principle, be achieved by trapping the
atoms at the antinodes of the cavity mode. Less ideal spatial
configurations of the atoms merely lead to a reduction of the
effective number of atoms by a factor of order 1 that clearly
has no impact on the basic conclusions of this paper.

In addition to the coherent interaction of the atoms with
the cavity field, there are also dissipative processes due to the
coupling of the atoms to field modes outside of the cavity and
due to decay of the cavity fields. The decay of the cavity and
the repumping of the atoms can be accounted for with the usual
Born-Markov master equation for the reduced density matrix
for atoms and cavity field,

dρ̂

dt
= 1

ih̄
[ρ̂,Ĥ ] + Lcav[ρ̂] + Lpump[ρ̂], (4)

where the Liouvillian for the cavity decay with intensity decay
rate κ is

Lcav[ρ̂] = −κ

2
(â†âρ̂ + ρ̂â†â − 2âρâ†). (5)

The repumping of the atoms with pump rate w is described by
the Liouvillian,

Lpump[ρ̂] = −w

2

N∑
j=1

(σ̂ (j )
− σ̂

(j )
+ ρ̂ + ρ̂σ̂

(j )
− σ̂

(j )
+ − 2σ̂

(j )
+ ρ̂σ̂

(j )
− ).

(6)

We are assuming that the spontaneous emission of the atoms
into free space with decay rate γ can be neglected. In
general, this assumption requires C � 1, where C = g2/(κγ )
is the single atom cooperativity parameter, see Eq. (8), which
follows. Note, however, that in the superradiant regime, where
the decay through the cavity is collectively enhanced, it is
found that the much less stringent condition NC � 1 is
sufficient for this approximation to be justified.

In order to calculate correlation functions of the generated
light field, we simulate the dynamics of the system subject to
the master equation, Eq. (4) by using the Monte Carlo wave-
function technique [15–17]. In that technique, the evolution of
the system is represented by an ensemble of stochastic wave-
function trajectories {|ψ(t)〉}, where each trajectory |ψ(t)〉 is
a representative evolution of the system.

B. Adiabatic elimination of the field in the bad-cavity limit

The Hamiltonian Eq. (1) is suitable for the Monte Carlo
simulations because it directly grants access to the field
correlations we are interested in. For analytical calculations, it
is desirable to further simplify the problem by exploiting the
fact that the cavity field decays so much faster than the atomic
coherence. Adiabatic elimination of the light fields yields the
effective superradiance master equation [6],

dρ̂

dt
= −�c

2
(Ĵ+Ĵ−ρ̂ + ρ̂Ĵ+Ĵ− − 2Ĵ−ρ̂Ĵ+)

− w

2

N∑
j=1

(σ̂ (j )
− σ̂

(j )
+ ρ̂ + ρ̂σ̂

(j )
− σ̂

(j )
+ − 2σ̂

(j )
+ ρ̂σ̂k−(j )).

(7)

Here, the collective decay rate of the atoms is given by

�c = Cγ = g2/κ. (8)

The condition for the validity of the adiabatic elimination of the
cavity field is that the cavity field relaxes much faster than the
atoms. By using the fact that the fastest atomic relaxation rates
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are obtained in the superradiant regime and that they are of
order NCγ , we find the quantitative condition,

κ � NCγ. (9)

In this bad-cavity limit, the role of the cavity mode reduces
to providing a collective decay channel for the atoms. The
simplification brought about by the elimination of the field is
twofold. It allows us to deal with the atomic degrees of freedom
only, and all parameters of the full coupled atom-cavity
system have collapsed into just one characteristic parameter
w/�c.

C. Hanbury Brown–Twiss signal

Fluctuations of the light intensity can be characterized
experimentally by a Hanbury Brown–Twiss-like setup as
illustrated in Fig. 1 [18,19]. The light passes through a 50/50
beam splitter, and the intensities in each output port of the beam
splitter is detected with a photodiode. The photocurrents of
each detector are then multiplied and are integrated. A variable
delay τ can be imparted on one of the outputs of the beam
splitter in order to measure correlations of the field at different
times. By using such a setup, it is possible to measure the joint
probability P2(t,t + τ )	t	τ to detect a photon both in a time
interval 	t at t and in a time interval 	τ at t + τ . According
to the theory of photodetection [19,20], this probability can be
calculated in terms of normally ordered expectation values of
the field amplitude,

g(2)(t,τ ) ≡ P2(t,t + τ )	t	τ

P1(t)	tP1(t + τ )	τ

= 〈â†(t)â†(t + τ )â(t + τ )â〉
〈â†(t)â(t)〉〈â†(t + τ )â(t + τ )〉 . (10)

We have normalized the joint probability to the single time
probabilities for photon detection P1(t)	t and P1(t + 	τ )	τ .
In steady state, which is the case of primary interest here,
g(2)(t,τ ) does not depend on t . For notational convenience, we
drop the variable t from g(2)(t,τ ) [i.e., we simply write
g(2)(τ )]. In writing Eq. (10), we have also made use of the
result from the input-output theory for cavities that normally
ordered correlation functions outside of a cavity are equal to
the normally ordered correlation functions of the intracavity
field, provided that the input ports of the cavity are in vacuum
states [21,22].

The second-order correlation function at zero time delay
g(2)(0) is related to the fluctuations 	I 2 = 〈Î 2〉 − 〈Î 〉2 of the
out-coupled photon flux Î . These fluctuations 	I 2 can be used
to characterize the instability of the intensity of the out-coupled
beam because Î is proportional to the beam intensity. Typical
photodetectors have a detection bandwidth B that is extremely
large compared to the cavity bandwidth; and, in that case, the
fluctuations of the intensity are given by

	I 2 = I 2[g(2)(0) − 1] + BI, (11)

where I = 〈Î 〉. For coherent light, the arrival of photons at
the detectors is a Poisson process in which the arrival times
are completely random with a mean rate of arrival I . For such
light, 	I 2 = BI , and we have g(2)(0) = 1. Light with larger
intensity fluctuations is called super-Poissonian, and light
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FIG. 2. (Color online) Time evolution of the intracavity intensity
during a single Monte Carlo trajectory (a) for N = 10 atoms and
w = 5�c. The black tick marks indicate cavity-decay events. Panel
(b) shows the binning of the decay times subsequent to ti , which leads
to the histogram ni,j (	t) used in the calculation of g(2)(τ ) (see text
for explanation).

with smaller intensity fluctuations is called sub-Poissonian.
Super-Poissonian light has g(2)(0) > 1, and photons arrive in
bunches, while sub-Poissonian light has g(2) < 1, and photons
are antibunched (i.e., they arrive more regularly than predicted
by Poisson statistics).

Our numerical wave-function Monte Carlo simulations
grant us access to correlation functions in two ways. First,
we can calculate expectation values of system observables
Ô in the usual way by calculating 〈ψ |Ô|ψ〉 and by aver-
aging over the ensemble of trajectories. Alternatively, we
can extract the correlation functions by an analysis of the
decay times of the system that very closely mirrors an
actual experimental procedure. This latter method is easier to
implement for nonzero time delays. All results on the intensity
correlations presented here were calculated this way due to
the greater flexibility of having access to zero and nonzero
delays.

The procedure by which we calculate g(2)(τ ) from the
cavity-decay times is illustrated in Fig. 2. Part (a) of that
figure shows the evolution of the mean-photon number
inside the cavity for an example trajectory. Cavity-decay
events are indicated by the black tick marks at times
ti . For each photon-emission event, we calculate the his-
togram ni,j (	t) = number of photons in [ti + j	t,ti + (j +
1)	t]. By averaging these histograms over all i, we find
n̄j (	t) = n−1

phot

∑
i ni,j (	t), where nphot is the total number

of photons emitted. This histogram is closely related to
the conditional probability P (t + j	t |t) to find a second
photon at time t + j	t provided that a first photon has been
detected at time t [i.e., n̄j (	t) = 	tP (t + j	t |t)]. By using
the relation between that conditional probability and the joint
probability P2(t,t + j	t) = P (t + j	t |t)P1(t), we can then
find g(2)(j	t) on a grid with spacing 	t according to

g(2)(j	t) = n̄j (	t)

nphot/number of bins
, (12)

where nphot/number of bins = P1(t)	t is the mean number of
photons per bin. The choice of the bin width 	t is a trade-off
between resolution and statistical fluctuations, and it has to be
chosen differently for different simulation parameters. It must
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FIG. 3. (Color online) Second-order intensity correlation g(2)(0)
as a function of the repump rate. The green symbols (solid circles)
show the Monte Carlo results including the statistical errors for N =
10 atoms. The blue solid line shows the analytical result of Eq. (17)
for N = 10 atoms, the purple dashed line is for N = 100 atoms,
and the yellow dashed-dotted line is for N = 1000 atoms. The gray
dashed lines at g(2)(0) = 2 and g(2)(0) = 1 are for orientation.

be small enough to resolve the dynamics of the system. Once
that constraint is satisfied, it should be as long as possible in
order to yield the smallest fluctuations.

III. RESULTS

Generally, as explained in detail in Ref. [8], three regimes
of light emission can be distinguished for different repump
strengths. If the repump rate is smaller than the effective
atomic-decay rate w � �c, the atoms evolve into a dark
state in which the emission of photons is strongly suppressed
despite nearly half the atoms being in the excited state. In
the intermediate regime �c < w < N�c, the atoms emit light
in a superradiant fashion, and, in the strong pumping limit
w � N�c, nearly all atoms are in the excited state and they
emit chaotic light in a way similar to an ensemble of thermally
excited atoms.

A. Monte Carlo results for g(2)(0)

First, we consider g(2)(0) shown in Fig. 3 for N = 10 atoms.
The error bars in that figure are estimates of the statistical
uncertainty obtained by treating the histograms ni,j (	t) for
different i as independent of each other.

In the weak pumping limit, the light exhibits strongly
super-Poissonian fluctuations indicating photon bunching.
This bunching effect can easily be understood in the extreme
limit w/�c → 0 [8,12]. In that limit, the atoms are optically
pumped into collective dark states [23,24] |J = 1,M = −1〉
and |J = 0,M = 0〉.1 From |J = 0,M = 0〉, the atoms can
only be pumped to |J = 1,M = 1〉 from which they relax to
|J = 1,M = −1〉 by rapidly emitting a pair of photons in a
cascade within a time of order �−1

c .

1For simplicity, we only consider the case of an even total number
of atoms here. The argument also applies with trivial modifications
to the case of an odd number of atoms.

In the superradiant regime for intermediate pumping, g(2)(0)
is reduced to a value about halfway between 1 and 2. It
reaches a minimum at the superradiant emission maximum
w = N�c/2. The minimum value depends on N ; g(2)(0)
decreases with increasing N .

In the limit of very strong repumping, the atoms behave like
a thermal ensemble of atoms. Therefore, we have g(2)(0) =
2(1 − 1/N ) in that limit in very good agreement with the
Monte Carlo simulation results.

B. Semiclassical results for g(2)(0)

In applications, the number of atoms will typically be much
larger than 1. That makes it easier to achieve the collective
strong coupling regime where NC � 1. Furthermore, the
collective nature of the light emission is more apparent in
that limit.

Unfortunately, the Monte Carlo simulations on which the
previous results were based cannot be easily implemented for
the study of large atomic numbers. The reason for this is that the
size of the system Hilbert space d = 2N scales exponentially
with the number of atoms. In this section, in order to bypass
these difficulties, we exploit the possibility for a semiclassical
approximation that precisely derives from the largeness of N .
The key idea is that, in a macroscopic ensemble of atoms,
the correlations between n atoms can be expressed in terms
of the correlations between n − 1 atoms plus an error term.
Ordinarily, the error terms become smaller as the cluster size
n is increased. The approximate treatment that we employ here
assumes that correlations between more than two atoms can
be completely expressed in terms of pair correlations and
single-atom quantities.

The semiclassical calculation involves two nontrivial steps.
First, we have to find the correlations between the spins of
different atoms. Second, we have to find an expression for
g(2)(0) in terms of the atomic correlations.

1. Steady-state solutions for pair correlations

The symmetry of the expectation values with respect
to particle exchange greatly reduces the number of ex-
pectation values that have to be considered. We have, for
instance, 〈σ̂ (i)

+ σ̂
(j )
− 〉 = 〈σ̂ (1)

+ σ̂
(2)
− 〉 for all i �= j . Up to the level

of pair correlations, all observables that we are interested
in can be expressed in terms of 〈σ̂ (1)

z 〉, 〈σ̂ (1)
+ σ̂

(2)
− 〉, and

〈σ̂ (1)
z σ̂ (2)

z 〉.
The equations of motion for these expectation values can

be found from the master equation Eq. (7),

d
〈
σ̂ (1)

z

〉

dt
= −(w + �c)

(〈
σ̂ (1)

z

〉− d0
) − 2�c(N − 1)〈σ̂ (1)

+ σ̂
(2)
− 〉,

(13)

where d0 = (w − �c)/(w + �c),

d〈σ̂ (1)
+ σ̂

(2)
− 〉

dt
= −(w + �c)〈σ̂ (1)

+ σ
(2)
− 〉 + �c

2

(〈
σ̂ (1)

z σ̂ (2)
z

〉 + 〈σ̂ (1)
z 〉)

+�c(N − 2)
〈
σ̂ (1)

z σ̂
(2)
+ σ̂

(3)
−

〉
, (14)
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FIG. 4. (Color online) (a) Inversion 〈σ̂ (1)
z 〉, (b) spin-spin correla-

tion 〈σ̂ (1)
+ σ̂

(2)
− 〉, and (c) spin-spin correlation 〈σ̂ (1)

z σ̂ (2)
z 〉 − 〈σ̂ (1)

z 〉2 as a
function of pump strength for N = 10 (blue solid line), N = 100 (pur-
ple dashed line), and N = 1000 atoms (yellow dashed-dotted line).

and

d
〈
σ̂ (1)

z σ̂ (2)
z

〉

dt
= −2(w + �c)

(〈
σ̂ (1)

z σ̂ (2)
z

〉 − d0
〈
σ̂ (1)

z

〉)

+ 4�c

(〈σ̂ (1)
+ σ̂

(2)
− 〉 − (N − 2)

〈
σ̂ (1)

z σ̂
(2)
+ σ̂

(3)
−

〉)
.

(15)

We have checked that the third-order expectation values
〈σ̂ (1)

z σ̂
(2)
+ σ̂

(3)
− 〉 can be factorized according to

〈
σ̂ (1)

z σ̂
(2)
+ σ̂

(3)
−

〉 ≈ 〈
σ̂ (1)

z

〉〈σ̂ (1)
+ σ̂

(2)
− 〉,

to a very good approximation by evaluating them in our Monte
Carlo simulations and by approximating them in terms of
lower-order cumulants in the adiabatic approximation. By
factorizing this way, we obtain a closed set of equations.
The steady-state expectation values are obtained by setting
the time derivatives equal to zero. The resulting algebraic
equations can be solved analytically for 〈σ̂ (1)

z 〉, 〈σ̂ (1)
+ σ̂

(2)
− 〉,

and 〈σ̂ (1)
z σ̂ (2)

z 〉, leading to relatively complicated expressions
that we reproduce in the Appendix for completeness. Plots
of the steady-state expectation values are given in Fig. 4 for
different numbers of atoms. For large numbers of atoms, the
inversion 〈σ̂z〉 is essentially zero below threshold for collective
emission, increases linearly with w in the superradiant regime,
and saturates with all atoms in the excited state in the strong
pumping regime. In the superradiant regime, the spin-spin cor-
relation 〈σ̂ (1)

+ σ
(2)
− 〉 is approximately described by an inverted

parabola with zeros at the thresholds w = �c and w = N�c

and a peak value of 1/8 at w = N�c/2. In the strong pumping
regime, these correlations are destroyed by the repumping.
The spin-spin correlations 〈σ̂ (1)

z σ̂ (2)
z 〉 approximately factorize

as 〈σ̂ (1)
z σ̂ (2)

z 〉 ≈ 〈σ̂ (1)
z 〉2 in the limit of large numbers of atoms.

Note that the equations for 〈σ̂ (1)
z 〉 and 〈σ̂ (1)

+ σ̂
(2)
− 〉 close if

that factorization is made; and, consequently, much simpler
approximate expressions can be obtained for w > �c in the
limit N → ∞ as pointed out in Ref. [8]. However, since
we would like to compare the semiclassical theory with the
Monte Carlo results that were obtained for only relatively
small numbers of atoms, we have to use the more complicated
expressions discussed here.

2. Expression of g(2)(0) in terms of atomic operators
in the bad-cavity limit

In the bad-cavity limit discussed in Sec. II B, the cavity field
is slaved to the atomic dipoles,

â ∼= g

iκ
Ĵ−. (16)

This means that we can calculate correlation functions of the
field if we know atomic correlation functions, for instance,

g(2)(0) = 〈Ĵ+Ĵ+Ĵ−Ĵ−〉
〈Ĵ+Ĵ−〉2

=
∑N

i,j,k,l=1〈σ̂ (i)
+ σ̂

(j )
+ σ̂

(k)
− σ̂

(l)
− 〉

( ∑N
i,j=1〈σ̂ (i)

+ σ̂
(j )
− 〉)2 . (17)

The atomic expectation values can be expressed in terms of
the preceding expectation values,

N∑
i,j=1

〈σ̂ (i)
+ σ̂

(j )
− 〉 = N

(〈
σ̂ (1)

z

〉 + 1
)/

2 + N (N − 1)〈σ̂ (1)
+ σ̂

(2)
− 〉,

(18)

and

〈Ĵ+Ĵ+Ĵ−Ĵ−〉 = N (N − 1)
[
2(N − 2)

(〈
σ̂ (1)

z

〉 + 1
)〈σ̂ (1)

+ σ̂
(2)
− 〉

+ (
1 + 〈

σ̂ (1)
z σ̂ (2)

z

〉 + 2
〈
σ̂ (1)

z

〉2)/
2

+ (N − 2)(N − 3)〈σ̂ (1)
+ σ̂

(2)
− 〉2]. (19)

In order to arrive at this last result, we have factorized
expectation values for four different atoms according to
〈σ̂ (1)

+ σ̂
(2)
+ σ̂

(3)
− σ̂

(4)
− 〉 ≈ 〈σ̂ (1)

+ σ̂
(2)
− 〉2. Expectation values in which

at least two indices are identical involve at most three different
atoms and, with the factorization discussed earlier, they reduce
to the known pair correlations and single atomic expectation
values.

3. Comparison with Monte Carlo results

The semiclassical results for g(2)(0) are also shown in Fig. 3.
The semiclassical curve agrees very well with the Monte Carlo
results for w > �c. Below that threshold, the semiclassical
expression yields unphysical values. The disagreement below
threshold is not surprising because the atoms are in a very
highly correlated state in that regime, and these correlations
cannot be captured by taking only pairwise correlations into
account.

The good agreement between semiclassical and Monte
Carlo results for w > �c allows us to use the semiclassical
expression to extrapolate to very large atomic numbers.
We find that for large atomic numbers, the field exhibits
nearly coherent counting statistics [i.e., g(2)(0) ≈ 1] in the
superradiant regime �c � w < N�c, and it has the counting
statistics of chaotic light in the strong pumping regime.
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C. Monte Carlo results for g(2)(τ )

The correlations between photons arriving at a photodetec-
tor characterized by g(2)(0) only persist for a certain amount
of time. To study the decay of these intensity correlations, we
show the second-order correlation for nonzero delay τ �= 0 for
10 atoms in Fig. 5. The strong bunching peak in the subradiant
regime decays on a time scale of order �−1

c [12]. After that,
an anticorrelation dip develops for a period of order ∼w−1
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FIG. 5. (Color online) Second-order correlation g(2)(τ ) for N =
10 atoms (a) for the subradiant regime for weak pumping w = 0.25�c,
(b) for the superradiant regime with w = 5.0�c, and (c) for the strong
pumping regime with w = 100�c. Note the different scales on the
time axis for each figure. The purple (solid) line in (c) is the thermal
light result.

because the repumping has to take the system out of the dark
states before another photon can be emitted.

In the superradiant regime, the bunching is much weaker.
The bunching peak also disappears on a much shorter time
scale of order ∼1/(N�c). The subsequent anticorrelation is a
much weaker effect that disappears as 1/N in the limit of large
atomic numbers. For times τ � w−1,(N�c)−1 light intensities
are uncorrelated. This is remarkable because the amplitude
of the field is coherent for much longer times of order
�−1

c . Intensity correlations decay on a time scale set by the
collective decay of the system, while the decay of the amplitude
correlations occurs on the time scale set by the single-particle
decay. From the perspective of potential applications of this
light source as an ultrastable local oscillator, this means
that the field can be considered as coherent to a very good
approximation.

As pointed out earlier, the atoms behave like a thermal
ensemble in the strong pumping regime. The two-time cor-
relation function agrees well with the result for thermal light
emitted by a large number of atoms [25],

g(2)(t) ≈ 1 + |g(1)(τ )|2 ≈ 1 + e−[2t/(2π/w)]. (20)

The slight discrepancy between this formula and the numerical
results is likely due to the relatively small number of atoms
considered, while Eq. (20) is derived in the limit N → ∞.

IV. CONCLUSION

The key result of this paper is that the light emitted in
steady-state superradiance is second-order coherent in the limit
of large numbers of atoms. This result is significant because
it establishes that the coherence properties of the emitted light
are closer to those of a laser than those of light generated in
ordinary pulsed superradiance. In contrast, light generated in
pulsed superradiance would have super-Poissonian intensity
fluctuations. Such excess fluctuations could adversely affect
the utility of light sources based on steady-state superradiance
as a stable frequency reference, one of the main motivations for
studying this system in the first place. For such applications,
it is crucial that the long coherence time and the collectively
enhanced brightness demonstrated previously [7] are paired
with small intensity fluctuations.

In the subradiant regime, the emitted light exhibits strong
bunching and super-Poissonian intensity fluctuations. As
previously pointed out by Temnov and Woggon [12], this effect
could be useful for identifying and analyzing the subradiant
regime in experiments. The well-understood thermal character
of the atomic ensemble in the strong pumping regime serves
as a valuable benchmark for the validity of our theoretical
treatment.

In future research, we plan to systematically investigate the
crossover from steady-state superradiance to a laser. In the
extreme limits of this crossover, the system is dominated by
purely atomic collective enhancement, on one hand, and by
purely photonic collective enhancement through stimulated
emission, on the other hand. The intermediate regime between
the two where both a collective enhancement due to stimulated
emission and an atomic collective state are equally important
is very intriguing from a fundamental point of view.
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APPENDIX: STEADY-STATE ATOMIC PAIR
CORRELATIONS

In this appendix, we summarize the analytical solution of
the semiclassical equations Eqs. (13)–(15).

In steady state, the atomic inversion is

〈
σ̂ (1)

z

〉 = d0 − 2�c(N − 1)

w + �c

〈σ̂ (1)
+ σ̂

(2)
− 〉. (A1)

By inserting that into Eq. (15), we end up with a linear equation
for 〈σ̂ (1)

z σ̂ (2)
z 〉. By solving that equation for 〈σ̂ (1)

z σ̂ (2)
z 〉 we

obtain

〈
σ̂ (1)

z σ̂ (2)
z

〉 = d2
0 + 2�c

(w + �c)2
{(w + �c)[1 − d0(2N − 3)]

+ 2(N − 1)(N − 2)�c〈σ̂ (1)
+ σ̂

(2)
− 〉}. (A2)

Inserting Eqs. (A1) and (A2) into the remaining equation
for 〈σ̂ (1)

+ σ̂
(2)
− 〉 leads to a quadratic equation. One of the solutions

must be discarded because it violates |〈σ̂ (1)
+ σ̂

(2)
− 〉c| � 1 for

certain repump rates and, hence, is unphysical. The physically
acceptable solution is

〈σ̂ (1)
+ σ̂

(2)
− 〉 = − w + �c

4(N − 1)(N − 2)w�2
c

(
w2 + [2 − (N − 2)d0]w�c + (N − 1)(1 + d0)�2

c

−
√

4d0(1 + d0)(N − 1)(N − 2)w�3
c + {

w2 + [2 − (N − 2)d0]w�c + (N − 1)(1 + d0)�2
c

}2)
. (A3)

This solution can then be inserted in Eqs. (A1) and (A2) to find 〈σ̂ (1)
z 〉c and 〈σ̂ (1)

z σ̂ (2)
z 〉c.
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