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Direct measurement of the Kirkwood-Rihaczek distribution for the spatial
properties of a coherent light beam
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We present a direct measurement of the Kirkwood-Rihaczek (KR) distribution for spatial properties of a
coherent light beam in terms of position and momentum (angle) coordinates. We employ a two-local oscillator
(LO) balanced heterodyne detection (BHD) to simultaneously extract the distribution of the transverse position
and momentum of a light beam. The two-LO BHD can measure the KR distribution for any complex wave
field (including quantum mechanical wave function) without applying tomography methods (inverse Radon
transformation). The transformation of the KR distribution to the Wigner, Glauber-Sudarshan P , and Husimi or
Q distributions in spatial coordinates are illustrated through experimental data. The KR distribution can provide
the local information of a wave field, which is suitable for studying particle properties of a quantum system.
Meanwhile, the Wigner function is suitable for studying wave properties such as interference, and hence provides
nonlocal information of the wave field. The method developed here can be used for exploring the spatial quantum
state for information processing and optical phase-space imaging for biomedical applications.
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I. INTRODUCTION

Optical phase-space tomography [1–8] is an imaging
optical method for characterizing spatial properties of the
light field or photon. The Kirkwood [K(x,p)] [9] and Wigner
[W(x,p)] [10] distribution functions were originally proposed
in the studies of quantum statistics and thermodynamics
for almost classical ensembles. The Kirkwood distribution
[ψ(x)ψ∗(p)e−ixp] has been rediscovered by Rihaczek [11]
for use in the theory of time-frequency analysis of classical
signals. The Wigner function is more popular than the
Kirkwood-Rihaczek (KR) function because it has some unique
properties such as negative values, real, and symmetry. It can
be obtained through tomograph methods and is applicable
to problems in the phase-space transport equation such as
the Liouville equation [12]. The Wigner function was first
introduced in the optical light field by Bastiaans [13,14] to
analyze spatial properties of an optical Gaussian beam. In
quantum optics, the quantum mechanical wave function cannot
be measured. The wave function or quantum state of a physical
system can be best represented by the Wigner function. Vogel
and Risken [15] had theoretically proposed how quadrature
amplitudes of nonclassical light fields can be represented
in the Wigner distribution by tomograph methods. Raymer
[16–20] has pioneered the tomography measurement of the
Wigner function for quadrature amplitudes of squeezed light,
spatial properties, and time-frequency properties of coherent
light (a coherent state with a large mean photon number).
The KR and Wigner distributions can be reconstructed from
the wave front of a wave field. A wave-front sensor such as
the Shack-Hartmann sensor [21] consisting of a diode array
can directly measure the wave front of a wave field. However,
the technique has a disadvantage compared to optical balanced
detection, which can be used to measure the spatial properties
of a nonclassical light field (i.e., below shot-noise level).
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The Glauber-Cahill s-parameterized class of quasidistri-
butions [22] that contain the Wigner function, the Glauber-
Sudarshan P representation [23], and the Husimi [24] or the Q

representation have been widely used as powerful phase-space
tools. However, most of the tomograph methods such as optical
balanced homodyne detection and wave-front sensing do not
involve direct measurement of these quasiquantum distribution
functions. These distributions are usually reconstructed from
the raw data, where numerical and mathematical transforma-
tion discrepancies may have made these distributions doubtful
for representing the true states. The direct measurement of
these distributions is desirable to represent the true quantum
state. It is well understood that tomograph methods developed
for these distributions can be used for any complex wave
field regardless of classical or quantum origin [17,25]. In
this perspective, we use wave field to represent the quantum
mechanical wave function and coherent light field.

The KR distribution for any quantum state in a generalized
form has been introduced [26]. It is worth noting that
the position and momentum distributions of the wave
field can be obtained through the KR distribution such
as

∫
K(x,p)dp = |ψ(x)|2 and

∫
K(x,p)dx = |ψ(p)|2,

respectively. These properties are similar to the Wigner
function. Moreover, the complex conjugated KR can be
directly measured through a two-local oscillator (LO)
technique [1], not like the Wigner function, which is
reconstructed from experimental data using quantum
tomographic methods. The phase-space distribution functions,
especially the Wigner function, can unravel unique quantum
properties such as entanglement of correlated systems [27,28],
negative parts of the phase-space plots [29], and the phase
space sub-Planck structures of quantum interference [30,31].
The KR function is relatively unexplored for quantum fields.

In the second quantization of quantum mechanics, the
electric field is written as an operator in terms of the harmonic
oscillator basis, that is, position and momentum operators.
The spatial property of the electric field perpendicular to the
propagation direction is described by mode functions. The
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mode function in an x or p coordinate is a description of the
probability amplitude to find a photon at transverse position
x or transverse momentum p, respectively. The field operator
â(x) corresponding to the mode function will provide mean
field 〈â(x)〉 and quantum noise �â(x) in an optical detection
scheme. The mean value measurement of the wave field 〈â(x)〉
at a configuration space will provide a classical-like feature
regardless of the origin (classical or quantum light) of the
measured field. A variance measurement of the wave field
�â(x) will provide a quantum feature of the light field. For a
coherent state with a low or large mean photon number, the
variance for the quantum noise of the wave field is constant
[32], that is, position or momentum independence. Therefore,
the measurement method we have developed for coherent light
is also applicable to the coherent state, making them a useful
testing ground for single-photon quantum imaging [7].

In most quantum information experiments, a single spatial
mode of the electromagnetic field is generally used and consid-
ered [33,34]. Quantum fluctuations of light at different spatial
points in the transverse plane of the light beam have to be taken
into account. Kolobov and Sokolov [35–39] have studied in
detail the possibility of local squeezing in a spatial mode of the
light beam. Multimode spatial modes will cause information
processing and computing errors. Spatial coherence of light
sources is necessary for achieving efficient coupling into fiber
systems for quantum communication and also for biomedical
imaging in image-guide intervention [40]. From a quantum-
mechanical perspective, the spatial degree of freedom of a
photon is another optical quantum realization for encoding in-
formation such as spatial qubits [33]. A full characterization of
arbitrary, continuous spatial states of photons is important for
understanding the concept of the photon wave function [25].
The Wigner function for an ensemble of identically prepared
photons in the transverse spatial modes can be completely used
to characterize the transverse spatial state of the ensemble. Re-
cently, the Einstein-Podolsky-Rosen (EPR) entanglement in a
spatial coordinate has been demonstrated by mixing an optical
coherent light beam with squeezed light [41]. However, their
measurements involved displacement and “tilt” (momentum or
angular) of a whole optical beam, not the transverse amplitude
and phase structure of the optical beam. The KR distributions
are relatively unexplored for spatial properties of wave fields.

Phase-space distributions are used to represent quantum-
mechanical operators in exploring phase-space quantum ef-
fects and quantum-classical correspondence. Quantum algo-
rithms for measuring the KR and Wigner distributions have
been developed [42,43]. Discrete phase-space distribution has
been suggested to show the potential advantages in quantum
computing, especially quantum mapping. A quantum algo-
rithm can be simply thought of as a quantum map acting in a
Hilbert space of finite dimensionality. Specifically, algorithms
become interesting in the large-N limit (i.e., when operating on
many qubits). For a quantum map, this is the semiclassical limit
where regularities may arise in connection with its classical be-
havior. These semiclassical properties may provide hints to de-
velop new algorithms and ideas for novel physics simulations.

In this paper, we demonstrate the direct measurement of the
KR distribution for a wave field with a Gaussian mode function
of TEM00. The linear transformation from the KR distribution
to the Wigner, P, and Q distributions are also plotted to show

their respective fundamental differences. Then a superposition
of two spatially separated coherent light beams is used for
discussing the phase-space interferences in these distributions.
We show that complex conjugated KR distributions for spatial
properties of wave fields can be determined by the use of a
novel two-LO balanced heterodyne detection scheme [1]. The
technique measures K∗(x,p) =< E∗(x)E(p) > eixp, which
can be written as SR + iSI . A lock-in amplifier is used to
measure the SR and SI with respect to the relative phase
setting of a reference signal at 0◦ and 90◦, respectively. By
changing the lock-in-amplifier reference phases such as 0◦ and
−90◦, the system will measure K(x,p). However, we keep the
lock-in amplifier with reference phases at 0◦ and 90◦ for all
measurements in this paper. There is no different in the physics
implied by the wave field in the KR or complex conjugated
KR representation. The two-LO heterodyne technique was
originally designed for biomedical imaging, that is, for optical
phase-space coherence tomography of the light transmitted
through or reflected from biological tissue. Now we use this
measurement to explore the properties of one-particle wave
mechanics or the wave field through the KR, Wigner, P, and
Q distributions. The technique can be used to measure any
complex spatial wave fronts such as divergence and conver-
gence and phase-conjugated properties of a wave field [3,4].
The K∗(x,p) can be easily transformed to the Wigner function
by using a linear transformation where the Radon transform is
not required. The advantage of the KR is that it contains local
information of the wave field. If there is no wave field present
at a configuration space (x,p), then there will be no distribution
at the (x,p). This serves us better for optical imaging in
biomedical applications such as for characterizing the cell
structure. We will illustrate this spatial property of the KR
distribution and compare it with the Wigner function, P, and
Q distributions. In the two-LO balanced heterodyne detection,
we use an LO field comprising a coherent superposition of
a tightly focused LO Gaussian beam of TEM00 and a highly
collimated LO Gaussian beam of TEM00. This scheme permits
independent control of the x and p resolutions, permitting
concurrent localization of x and p with a variance product
that surpasses the minimum uncertainty limit associated with
Fourier-transform pairs. Quantum mechanics does not allow
for the simultaneous measurement of x and p of a wave field.
However, simultaneous measurement in the distribution of x
and p for a wave field is allowed.

II. CHARACTERISTIC FUNCTION APPROACH

In this section, the characteristic function method [44,45]
will be used to transform the characteristic function of the
KR distribution to the Wigner, P, and Q distributions. The
characteristic functions in terms of the harmonic oscillator
basis will be used throughout this paper because they are more
revelent to the spatial properties of coherent wave fields. Since
we directly measure the complex conjugated KR distribution,
we will discuss how experimental data can be used to obtain the
Wigner, P, and Q distributions. We start with the characteristic
function for the complex conjugated KR distribution in terms
of a coherent state representation, as given by

MKR(β,β∗) = Tr (ρe−|β2−β∗2|/4eiβâ†+iβ∗â), (1)

063826-2



DIRECT MEASUREMENT OF THE KIRKWOOD-RIHACZEK . . . PHYSICAL REVIEW A 81, 063826 (2010)

where (β,β∗) are the Fourier conjugate pairs for (α, α∗) the
eigenvalues of â and â∗, respectively. The interesting feature
of this characteristic function in the Fourier plane MKR(β,β∗)
is the trace of the displacement operator ∧D(β) followed by the
squeezing operator S(1/2). The absolute of |β2 − β∗2|/4 is
used just to avoid the confusion of other forms of the definition
such that β → iβ and β∗ → −iβ∗. The complex conjugated
KR distribution in the (α,α∗) plane can be obtained through

K∗(α,α∗) = 1

π2

∫
d2βe−iβα∗−iβ∗αMKR(β,β∗). (2)

The K∗(α,α∗) can be transformed to the Wigner, P, and Q
distributions in terms of (α,α∗) through the relationships of
the characteristic functions, such that

MKR (β,β∗) = e−|β2−β∗2|/4MW (β,β∗), (3)

where

MW (β,β∗) = e−|β|2/2MP (β,β∗) = e|β|2/2MQ. (4)

The characteristic function for the Wigner function is given by

MW (β,β∗) = Tr (ρeiβâ†+iβ∗â). (5)

The P and Q representations are related to the characteristic
function of the Wigner function through normal ordering and
antinormal ordering of (â,â∗).

In our experiment, we measure the spatial properties of a
wave field in terms of the position and momentum coordinates
(x,p). Then, the transformation of K∗(α,α∗) → K∗(x,p) can
be obtained from Eqs. (1) and (2) using the variables

â = 1√
2

(x̂ + ip̂); â† = 1√
2

(x̂ − ip̂),

β = 1√
2

(σ + iτ ); β∗ = 1√
2

(σ − iτ ), (6)

σ = 1√
2

(x + ip); σ ∗ = 1√
2

(x − ip).

Then the following terms,

eiβâ†+iβ∗â = eiσ x̂+iτ p̂,

e−|β2−β∗2|/4 = e−iσ τ/2, (7)

e−iβσ ∗−iβ∗σ = e−iσx−iτp,

are obtained. The K∗(x,p) can be written as

K∗(x,p) =
∫

dσdτe−iσx−iτpTr (ρeiσ x̂+iτ p̂eiστ ). (8)

By using the identity
∫

dx|x〉〈x| = 1̂ and ρ̂ = |ψ〉〈ψ |, we
obtain

K∗(x,p) = 2

π
ψ∗(x)

∫
e−iτpψ(x + τ )dτ. (9)

By changing the variable ξ = x + τ , dξ = dτ , we obtain

K∗(x,p) = 2

π
ψ∗(x)ψ(p)eixp, (10)

which is the complex conjugated KR distribution. To write the
characteristic functions of the Wigner, P, and Q distributions in
terms of the spatial properties of a coherent light beam such as

beam waist σ and position and momentum coordinates (x,p),
we use the variables

β = 1√
2

(p′σ − ix ′/σ ); β∗ = 1√
2

(p′σ + ix ′/σ ),

so that the characteristic functions for the KR, Wigner, P, and
Q distributions are related to each other as given by

MKR (x ′,p′) = e−ix ′p′/2MW (x ′,p′), (11)

and

MW (x ′,p′) = e− 1
4 (σ 2p′2+x ′2/σ 2)MP (x ′,p′)

= e
1
4 (σ 2p′2+x ′2/σ 2)MQ(x ′,p′). (12)

Since our experiment measures the K∗(x,p), its characteristic
function is obtained through the transformation as given by

MKR (x ′p′) =
∫

dxdpK∗(x,p)eixp′+ipx ′
. (13)

Then the Wigner function is obtained through

W (x,p) =
∫

dx ′dp′eix ′p′/2MKR(x ′,p′)e−ixp′−ipx ′
, (14)

or in the simplified form as in Ref. [1],

W (x,p) = 1

π

∫
dx ′dp′e−2i(x ′−x)(p′−p)K∗(x ′,p′). (15)

Similarly, the P and Q distributions can be obtained through

P (x,p) =
∫

eix ′p′/2MKR (x ′,p′)e
1
4 (σ 2p′2+x ′2/σ 2)

× e−ixp′−ipx ′
dx ′dp′, (16)

and

Q(x,p) =
∫

eix ′p′/2MKR (x ′,p′)e− 1
4 (σ 2p′2+x ′2/σ 2)

× e−ixp′−ipx ′
dx ′dp′, (17)

respectively.
The similarity of the KR and Wigner functions is that when

they are integrated over momentum or position, the two func-
tions will provide the same result for the probability in position
or momentum [i.e.,

∫
K∗(x,p)dx = ∫

W (x,p)dx = |ψ(p)|2
and

∫
K∗(x,p)dp = ∫

W (x,p)dp = |ψ(x)|2]. It should be
noted that because of the uncertainty principle, neither function
has a physical meaning until it is integrated over either
momentum space or configuration space.

III. EXPERIMENT DETAILS

Since tomography methods developed for spatial properties
of the photon wave function can be applied to the coherent
field (coherent state with large mean photon number), we use
electric field notation E(x) to represent the wave field ψ(x) in
the following sections.

We use a balanced heterodyne detection scheme as shown
in Fig. 1. The beat amplitude VB is determined by the spatial
overlap of the LO and signal (S) fields in the plane of the
detector at Z = ZD as

VB =
∫

dx ′E∗
LO(x ′,zD)ES(x ′,zD), (18)
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FIG. 1. A balanced heterodyne optical phase-space imaging
scheme.

where x ′ denotes the transverse position in the detector plane.
When the LO beam is moved by a distance dx , the VB becomes

VB(dx) =
∫

dx ′E∗
LO(x ′ − dx,zD)ES(x ′,zD). (19)

The fields in the detector plane are related to the fields in the
source planes (z = 0) of lenses L1 and L2, which have equal
focal lengths of f = 6 cm. The LO and signal fields at z = 0
after the lenses, L1 and L2, are given by [46]

E ′
LO(x1 − dx,z = 0) = exp

[
−i

k

2f
x2

1

]
ELO(x1 − dx,z = 0),

(20)

E ′
S(x2,z = 0) = exp

[
−i

k

2f
x2

2

]
ES(x2,z = 0).

When the lens L2 is scanned by a distance dp, the signal field
(20) is altered as

E ′
S(x2,z = 0) = exp

[
−i

k

2f
(x2 − dp)2

]
ES(x2,z = 0).

The fields propagating a distance d = f to the planes of
the detectors can be obtained by using Fresnel’s diffraction
integrals as

ELO(x ′ − dx,zD) =
√

k

i2πf

∫
dx1 exp

[
i

k

2f
(x1 − x ′)2

]

× exp

[
−i

k

2f
x2

1

]
ELO(x1 − dx,z = 0),

(21)

ES(x ′,zD) =
√

k

i2πf

∫
dx2 exp

[
i

k

2f
(x2 − x ′)2

]

× exp

[
−i

k

2f
(x2 − dp)2

]
ES(x2,z = 0).

By substituting the above equations into Eq. (19), the
quadratic phases in x ′ cancel and the quadratic phases that

depend on x2
1,2 cancel in these expressions because the detector

plane is in the focal plane of the lenses, L1 and L2. One obtains

VB(dx,dp) = k

f
exp

[
i

k

2f
d2

p

]

×
∫

dx2 exp

[
−i

k

f
x2dp

]
ES(x2,z = 0)

×
∫

dx1E∗
LO(x1 − dx,z = 0)δ(x1 − x2). (22)

Integrating over x1 and by replacing x2 by x and dropping the
term z = 0, the mean square beat amplitude is then given by

|VB(dx,dp)|2 ∝
∣∣∣∣
∫

dxE∗
LO(x − dx)ES(x) exp

(
−ik

dp

f
x

)∣∣∣∣
2

,

or

|VB(dx,dp)|2 ∝
∫

dxE∗
LO(x − dx)ES(x) exp

(
−ik

dp

f
x

)

×
∫

dx ′ELO(x ′ − dx)E∗
S (x ′) exp

(
ik

dp

f
x ′

)
.

(23)

This can be rewritten using the variable transformations
x = xo + η/2; x ′ = xo − η/2 where the Jacobian of this
transformation is 1. Then, by using the definition of the
Wigner distribution,

W (x,p) =
∫

dε

2π
exp(iεp)〈E∗(x + ε/2)E(x − ε/2)〉, (24)

and its inverse transform is given by

E∗(x0 + ε/2)E(x0 − ε/2) =
∫

dp exp(−iεp)W (x0,p), (25)

the beat signal in Eq. (23) becomes

|VB(dx,dp)|2 ∝
∫

dx0

∫
dηE∗

LO(x0 + η/2 − dx)

× ELO(x0 − η/2 − dx)
∫

dp exp

(
−ik

dp

f
η

)
× exp(−iηp)WS(x0,p). (26)

Since the Wigner distribution of the LO field is

WLO

(
x0 − dx,p + k

dp

f

)

=
∫

dη

2π
exp

[
−iη

(
p + k

dp

f

)]
E∗

LO(x0 + η/2 − dx)

× ELO(x0 − η/2 − dx), (27)

then the LO fields in Eq. (26) can be replaced by the Wigner
function in Eq. (27). Finally, the mean square heterodyne beat
signal |VB |2 can now be written as

|VB(dx,dp)|2 ∝
∫

dxdpWLO

(
x − dx,p + k

dp

f

)
WS(x,p),

(28)

where we have applied x0 → x. The WS(x,p) is the Wigner
distribution of the signal field in the plane of L2 (z = 0) and
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Signal Beam
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LO beam
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L4 L5

Spectrum 
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Lock-in
AmplifierX 2
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FIG. 2. Experimental setup for measuring the KR distribution
using two-LO balanced heterodyne detection. X2; squarer, D;
photodiode detector, BS; beam splitter.

WLO(x,p) is the LO Wigner distribution in the plane of L1
(z = 0). We include a detailed description of the two-window
heterodyne measurement of the KR distribution as shown in
Fig. 2. The variables dx and dp, respectively, indicate the
positions of a mirror M1 and a lens L2, respectively, as shown
in Fig. 2. Equation (28) shows that the mean-square beat signal
yields a phase-space contour plot of WS(x,p) with the phase-
space resolution determined by WLO(x,p). By using a two-LO
heterodyne detection scheme as discussed in the following, the
|VB(dx,dp)|2 is found to be proportional to K∗(x,p).

To obtain independent control of the x and p resolutions
in the heterodyne measurement, we employ a slowly varying
LO field containing a focused and a collimated field with a
well-defined relative phase θ

ELO(x) = E0

[
exp

(
− x2

2a2

)
+ α exp

(
− x2

2A2

)
exp(iθ )

]
.

(29)

Here a is chosen to be small compared with the distance
scales of interest and 1/A is chosen to be small compared
with the momentum scales of interest in the signal field. The
schematic picture of the overlapping of the LO beam with the
spatial width a and another LO beam with the spatial width
A is shown in Fig. 3. One can see that the overlapping area is
determined by the position and momentum resolutions for the
LO fields in Eq. (29). The focused LO Gaussian beam extracts
the position information of the signal field and the collimated
LO Gaussian beam extracts the momentum information of the
signal field. The Wigner function for the LO field is obtained
by substituting Eq. (29) into Eq. (24). We take A2 
 a2. In

x

p

 a

1
A

FIG. 3. The overlapping area is the position and momentum res-
olutions of the combined LO beams. The uncertainty is proportional
to a

A
less than 1.

this case the phase-dependent (θ ) part of the Wigner function
for the LO takes the form

WLO(x,p) ∝ exp

(
−2x2

A2
− 2a2p2

)
cos(2xp + θ )

� cos(2xp + θ ), (30)

where the last form assumes that the range of the momentum
and position integration in relation (28) is limited by the
signal field.

The measurement of the phase-space distributions is ac-
complished by the translation of optical elements. These
elements are all mounted on translation stages driven by
computer-controlled linear actuators. The system scans the
LO position over a distance dx = ±1 cm by translating mirror
M1 in the LO path. The LO momentum is scanned over ±0.3k,
where k = 2π/λ is an optical wave vector, by translation of
the signal-beam input lens L2 (focal length f = 6 cm) by a
distance dp.

In the experiments, as illustrated in Fig. 2, the LO beam is
obtained by combination of two fields that differ in frequency
by 5 kHz, so that θ = (2π × 5 kHz)t . Lens L3 focuses beam
LO1 to a waist of width a, and lenses L4 and L5 expand
beam LO2 to width A. We combine these two components at
beam splitter BS3 to obtain an LO field of the form given
in Eq. (29). We monitor one output of the beam splitter
with detector D3 to phase lock the 5 kHz beat signal to the
reference channel of the lock-in amplifier. Each component
of the LO beam is shaped so that it is at a beam waist at the
input plane of the heterodyne imaging system (lens L1). The
focused Gaussian LO beam is frequency shifted at 110 MHz
and the collimated Gaussian LO beam is frequency shifted
at 110 MHz plus 5 kHz. These two LO beams are overlapped
with each other and phase locked at 5 kHz. The signal beam is
frequency shifted at 120 MHz. Two imaging lenses L1 and L2
are used to overlap the dual LO beam with the signal beam at
two detectors. The interference beat signal between the signal
beam and the dual LO beam is obtained at detectors 1 and 2
and consists of 10 MHz and 10 MHz plus 5 kHz components.
These signals are sent to a spectrum analyzer. The spectrum
analyzer bandwidth, 100 kHz, is chosen to be large compared
with the 5 kHz difference frequency. The output of the analyzer
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is then squared by using an analog multiplier. The mean square
signal has components at 5 kHz. A lock-in amplifier is used
to measure the in-phase and out-of phase components of the
multiplier output at 5 kHz. The lock-in outputs for in-phase
and out-of-phase quadratures then directly determine the real
and the imaginary parts of the K∗(x,p) function

|VB(dx,dp)|2 = K∗(x0,p0)

=
∫

dx ′dp′

π
exp[2i(x ′ − x0)(p′ − p0)]WS(x ′,p′)

=〈E∗(x0)E(p0)〉 exp(ix0p0) = SR + iSI , (31)

where the WLO(x,p) in Eq. (30) is replaced by ei(2xp+θ) in
Eq. (28) yielding the in-phase and out-of-phase contributions
from θ . Here x0 = dx is the center position of the LO
fields and p0 = −kdp/f is the center momentum. The
SR and SI components are related to the heterodyne beat

signal of E∗
LO1ES and E∗

LO2ES or intensity correlation of
E∗

LO1ESE
∗
LO2ES . In the balanced heterodyne detection, the

output voltage VB(t) =V1(t) − V2(t) before being fed into the
spectrum analyzer is given by

VB (t)= 2E∗
SELO1e

−i(�LO1−�S )t+ 2E∗
SELO2e

−i(�LO2−�S )t+ c.c.

(32)

In the spectrum analyzer, the power spectrum of the VB is
measured as

|VB(�)|2 =
∫ ∞

−∞

dτ

2π
ei�τ 〈VB(t)VB(t + τ )〉. (33)

As mentioned previously, it is squared by using a squarer to
recover the beat signal |VB(�)|2. From Eq. (33), the power
spectrum can be calculated by keeping the slowly varying
term (�LO1 − �LO2) in time t and other terms that depend on
τ , that is,

〈VB(t)VB(t + τ )〉 = 1

T

∫ T/2

−T/2
dtVB(t)VB(t + τ )

∝ E∗
SELO1ESE

∗
LO1e

−i(�S−�LO1)τ + E∗
SELO2ESE

∗
LO2e

−i(�S−�LO2)τ

+E∗
SELO1ESE

∗
LO2e

−i(�LO1−�LO2)t e−i(�S−�LO2)τ + E∗
SELO2ESE

∗
LO1e

i(�LO1−�LO2)t e−i(�S−�LO1)τ

+ (the negative frequency contributions from the above terms). (34)

Here �S = 120 MHz, �LO1 = 110 MHz + 5 kHz, and �LO2 =
110 MHz. Now, by substituting Eq. (34) into Eq. (33) to obtain
the power spectrum for the beat VB and setting the analyzer at
10 MHz with the bandwidth of 100 kHz, the |V◦(t)|2 at 5 kHz
after the recovery by the squarer is

|V◦(t)|2 ∝ E∗
SELO1ESE

∗
LO2e

−i(�LO1−�LO2)t + c.c. (35)

Here �LO1 − �LO2 = 5 kHz. The in-phase and out-of-phase
components of the |V◦(t)|2 at 5 kHz correspond to SR and SI

in Eq. (31). Note that E∗
SELO1 is integrated over the transverse

plane as is ESE
∗
LO2. It is worth noting that the component

E∗
SELO1 of Eq. (35) corresponds to the measurement of

the position distribution in K∗(x0,p0) of Eq. (31) by the
tightly focused LO1 beam. Similarly, the component ESE

∗
LO2

of Eq. (35) indicates the measurement of the momentum
distribution in K∗(x0,p0) of Eq. (31) by the collimated LO2
beam.

As the position of mirror M1 is scanned a distance dx ,
the optical path lengths of the LO fields change. For the
current experiments, the HeNe laser is a source, the change in
path lengths is small compared with the Rayleigh length and
the coherence length of the beams, so translating M1 simply
changes the center position of the LO fields.

IV. RESULTS

A. Measurement of an optical Gaussian beam

1. Gaussian beam

As an initial demonstration of the capability of this system,
we measure the K∗(x,p) function for an ordinary Gaussian

beam. A one-dimensional wave field for a Gaussian beam of
TEM00 and radii of curvature R is given by

E(x) ∝ exp

(
− x2

2σ 2
+ i

kx2

2R

)
∝ A + iB, (36)

where the x is the transverse position and σ is the waist of the
signal beam. The Fourier transform of E(x) is

E(p) ∝ exp

[
− p2

8σ 2
(

1
2σ 2

)2 + (
k

2R

)2 − i
kp2

8R
(

1
2σ 2

)2 + (
k

2R

)2

]

∝ C + iD. (37)

The complex conjugated KR distribution for this wave field
can be written as

K∗(x,p) = (AC + BD) cos(xp) + (BC − AD) sin(xp)

+ i[(AD − BC) cos(xp) + (AC − BD) sin(xp)].

(38)

The characteristic function MKR(x,p) is obtained from
Eq. (11), where the characteristic function for the Wigner
function for this wave field is given by

MW (x ′,p′) =
∫

E∗
(

η − x ′

2

)
E

(
η + x ′

2

)
eip′ηdη

=
∫

E∗
(

η + p′

2

)
E

(
η − p′

2

)
eix ′ηdη

= exp

[
− x ′

4σ 2
− σ 2

4

(
kx ′

R
+ p′

)2
]

. (39)
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FIG. 4. The KR distribution for a Gaussian beam. Top row are
the experimental results and bottom row is the theoretical prediction
for a Gaussian beam. (a) and (c) In-phase component of K∗(x0,p0).
(b) and (d) Out-of-phase component of K∗(x0,p0).

Then the Wigner, P, and Q distributions are obtained from
Eqs. (14), (16), and (17), respectively. The Wigner function
for the wave field is given by

W (x,p) = 1

π
exp

[
− x2

σ 2
− σ 2

(
kx

R
+ p

)2
]

. (40)

The P and Q distributions for the wave field are given in the
integral form as

P (x,p) =
∫

exp

(
−σ 2k2x ′2

4R2
− σ 2kx ′p′

2R

)
× exp(−ixp′ − ipx ′)dx ′dp′

(41)

Q(x,p) =
∫

exp

(
− x ′2

2σ 2
− σ 2p′2

2
− σ 2k2x ′2

4R2
− σ 2kx ′p′

2R

)
× exp(−ixp′ − ipx ′)dx ′dp′.

For simplicity, the signal Gaussian beam is shaped by a
telescope so that its waist coincides with input plane L2 of
the heterodyne imaging system. For a Gaussian beam at its
waist, R = ∞, Eq. (38) gives the complex conjugated KR
distribution as

K∗(x,p) = AC cos(xp) + iAC sin(xp), (42)

where A = exp(− x2

2σ 2 ), C = exp(−p2σ 2

2 ), and σ = 0.85 mm
is the 1/e-intensity width. The K∗(x,p) function for the signal
field is measured by use of the dual LO beam of the form given
by Eq. (29) with a = 81 µm, A = 2.6 mm, and α = 1. The
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FIG. 5. (Color online) (a) Real part and (b) imaginary part of the
position distribution of a Gaussian field. Imaginary part is around
zero.
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measurement result for a Gaussian beam is shown in Fig. 4.
The top row are our experimental results and the bottom row
is a theoretical prediction obtained by using Eq. (42). The real
and the imaginary parts of the detected signal, Eq. (31), are
shown in Fig. 4. Our observation is similar to the theoretical
prediction by Wodkiewicz [26] for a coherent state.

Position (momentum) distributions of this field can be
obtained through the summation of the momentum (position)
coordinate of the real and the imaginary parts of the measured
K∗(x,p). The position and momentum distributions are shown
in Figs. 5 and 6, respectively. The imaginary part of the position
and momentum distributions are around zero as theoretically
predicted by

∫
K∗(x,p)dp = |E(x)|2 and

∫
K∗(x,p)dx =

|E(p)|2, respectively, which are the real physical quantities
(no complex values). From here, the position and momentum
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FIG. 7. (Color online) The reconstructed Wigner distribution
(a) 2D plot (d) 3D plot, the Husimi or Q distribution (b) 2D plot
(e) 3D plot, and the Glauber Sudarshan P distribution (c) 2D plot (f)
3D plot for an optical Gaussian beam.
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FIG. 8. The wave field ES(x) of a Gaussian beam obscured by a
wire.

distributions are fitted with a Gaussian function. We obtain the
beam waist of σ = 0.86 mm from the position distribution and
σ = 0.87 mm from the momentum distribution. Both results
are in excellent agreement with the measured width σ = 0.85
mm obtained by use of a diode array, demonstrating that high
position and momentum resolutions can be jointly obtained.

The Wigner distribution is obtained by using a simple
linear transformation as discussed in Eqs. (14) or (15) and
as shown in Figs. 7(a) [two-dimensional (2D) plot) and 7(d)
[three-dimensional (3D) plot]. We χ2 fit the width of the
reconstructed Wigner function in position for p = 0 to obtain
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FIG. 9. (Color online) The KR distribution for two slightly
displaced coherent beams. Top row shows the experimental re-
sults and the bottom row shows the theoretical predictions for a
Gaussian beam blocked by a wire. (a) and (c) In-phase component
of the K∗(x0,p0). (b) and (d) Out-of-phase component of the
K∗(x0,p0).
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FIG. 10. (Color online) (a) The real part and (b) the imaginary part
of the position distribution of a wire function obtained by integrating
the measured KR distribution over momentum. Imaginary part is
around zero.

a spatial width σ = 0.87 mm, whereas the corresponding
momentum distribution for x = 0 yields σ = 0.83 mm.

The characteristic function MKR(x ′,p′) is obtained by
using the numerical integration of the measured K∗(x.p)
as in Eq. (13). The Q and P distributions for this signal
Gaussian beam are then obtained through Eqs. (17) and (16),
as shown in Figs. 7(b) (2D plot) and 7(e) (3D plot) and
Figs. 7(c) (2D plot) and 7(f) (3D plot), respectively. The P
distribution has a narrower peak in phase space compared to
the other distributions. This is predicted for the signal beam
with R = ∞ in the P distribution of Eq. (41), which should
have δ(x)δ(p) in phase space. The Q distribution has a broad
peak in phase space compared to the other distributions. The
Q distribution for this signal beam can be evaluated from
Eq. (41) with R = ∞, as given by

Q(x,p) ∝ exp

(
−p2σ 2

2
− x2

2σ 2

)
. (43)

The position width of the Q distribution at p = 0 is about
√

2
larger than the position width of Wigner distribution at p = 0
as from Eq. (40). Hence the beam waist for the signal beam ob-
tained from the Q distribution is

√
2 larger than the exact value.

2. Measurement of superposition of two slightly displaced
coherent beams

As a fundamental feature in the process of quantum
measurement, we cannot observe physical properties of a
quantum objects directly because the overall backaction of
any observation cannot be made less than Planck’s constant
h. Instead, we observe the wave or the particle aspects of the
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FIG. 11. (Color online) (a) The real part and (b) the imaginary
part of the momentum distribution of a wire function obtained by
integrating the measured KR distribution over position. Imaginary
part is around zero.
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FIG. 12. (Color online) The reconstructed Wigner distribution for a wire function (a) 2D plot, (b) 3D plot, and (c) the imaginary part of the
reconstructed Wigner function is around zero.

physical objects. The K∗(x,p) distribution for a coherent field
more likely represents the particle picture of the field because
it contains local information of the coherent field. While the
Wigner function more likely represents the wave behavior of
the field because it exhibits phase-space interference. Based
on these properties, the K∗(x,p) and Wigner distributions are
very useful in characterizing a wave field or a physical object
through phase-space imaging in many applications such as
quantum imaging, metrology, and biomedical imaging. To
illustrate the particle picture of K∗(x,p) and the wave picture
of the Wigner function, we use the same signal Gaussian beam
obscured by a wire with a diameter of 1 mm. Then the electric
field Es(x) as a function of position is shown in Fig. 8. It does
not involve convolution integration because the wire is placed
close to the imaging lens L2. It shows the superposition of
two slightly displaced coherent beams. It is analogous to a
Schrödinger’s cat state. In this case, the slowly varying field
is Gaussian as before, but multiplied by a slit function that
sets the field equal to zero for |x| � 0.5 mm. Figure 9 shows
the contour plots of the real and the imaginary parts of the
detected signal of K∗(x,p). The top row are our experimental
results. The bottom row is the theoretical prediction. The
theoretical plots are first obtained by numerically generating
the signal function ES(x) and its Fourier transform ES(p). The
real and imaginary parts of K∗(x,p) in Eq. (10) are then
theoretically plotted. The real and imaginary parts are not
showing phase-space interferences of two slightly displaced
coherent beams. These plots show local information of the
signal field [i.e., the zero (nonzero) field is corresponding to
the zero (nonzero) K∗(x,p) phase-space distribution]. This
locality property exhibits a particle picture if an atomic wave
function or single photon function is used. The position and
momentum distributions are then retrieved

∫
K∗(x,p)dp and∫

K∗(x,p)dx as shown in Figs. 10 and 11, respectively. The
momentum distribution contains the interference features of
two spatially separated wave packets of ES(x) as shown in
Fig. 11. The imaginary part of these distributions is around
zero as expected.

The Wigner function as shown in Fig. 12 is reconstructed
by using the linear transformation of the measured K∗(x,p).
The Wigner function is a real function. The reconstructed
Wigner function should not have an imaginary part as
shown in Fig. 12(c). The imaginary part is caused by the
measurement errors in the experiment. The coherence between
these two wave packets in the signal field leads to a phase-

space interference pattern in the momentum distribution. The
signature of this coherence in the Wigner distribution is the
oscillating positive and negative values between the main
lobes. An interesting feature of this Wigner distribution is
the oscillation in momentum at the position x = 0 of the
wire. We observe the negative values which are analogous to
quantum interference in phase space. This feature can be seen
in Fig. 12 in which the reconstructed Wigner function is shown
as a three-dimensional plot. The negative values highlight the
impossibility of a particle simultaneously having a precise
position and momentum. It also makes sure that the sum
over the momentum along x = 0 in the reconstructed Wigner
distribution has zero intensity at the center. The negative
and positive parts of the Wigner phase-space distribution are
important features to obtain full information about the field.
Our observation of the negative values of the Wigner function
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FIG. 13. The momentum and position distributions for the
Schrödinger’s cat state. (a) and (c) are the theoretical prediction of
momentum and position distributions of the cat state. (b) and (d) are
the corresponding experimental results of momentum and position
distribution of the cat state obtained by integrating the reconstructed
Wigner function over x and p, respectively.
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FIG. 14. (Color online) The reconstructed P distribution (a) 2D
plot (b) 3D plot, and the Q distribution (c) 2D plot (d) 3D plot for
slightly displaced coherent beams.

for this coherent field does not claim that the negative values
exhibited by a quantum field are not a quantum feature. We
believe that classical or quantum features of an experiment
are based on classical or quantum fields involved in the
experiment.

From the obtained Wigner function, one can obtain
the position and momentum distribution of the Es(x)
by using the formulas |ES(p)|2 =∫ ∞

−∞ WS(x,p)dx and
|ES(x)|2 =∫ ∞

−∞ WS(x,p)dp as shown in Figs. 13(b) and 13(d),
respectively. The resolution of these plots is better than Figs. 10
and 11 because we numerically generate more data points
from the reconstructed Wigner function. The measurements
are in agreement with the theoretical predictions as shown in
Figs. 13(a) and 13(c), respectively.

As discussed previously, we first obtain the character-
istic function MKR(x ′,p′) and then the P and Q distribu-
tions for this signal field. These distributions are plotted
in Fig. 14. The Q distribution exhibits the broadening or
low resolution of phase-space features compared to the
Wigner function. While the P distribution is not a well
behaved function for this field as it is expected for a P
distribution.

V. DISCUSSION AND CONCLUSION

Spatial properties of the photon wave mechanics approach
[25] for a single photon have been studied in detail. The
approach can be applied to both the single-photon state and
coherent field. As a consequence, the coherent field is the
best testing ground for developing the tomography method for
quantum information processing. In similar efforts, coherent
fields have played an important role in quantum communi-
cation and computing such as the search algorithm [47–50]
and factorization of numbers [51]. Optical wave mechanics
implementations [52,53] of entanglement and superposition
with coherent fields (coherent state with large photon numbers)

have been demonstrated. This implementation has been used
to study entanglement swapping and tests of nonlocality.
However, the photon wave mechanic approach [25] for two-
photon and multiphoton spatial qubits has not been relatively
explored. The two-LO technique developed in this paper will
provide another tomography tool to explore spatial qubits
because it can provide local and nonlocal information of the
wave field through the KR and Wigner distributions. In general,
the particle-wave duality of a single-particle wave function
can be represented by both distributions. However, we found
that, based on our results on the superposition of two slightly
displaced coherent beams, the phase-space interference of the
Wigner distribution can clearly exhibit particle-wave duality
of the wave field compared to the KR distribution. The
local information of the wave field represented by the KR
distribution, which did not exhibit phase-space interference, is
useful to explore particle properties of the wave field.

We would like to discuss the KR and Wigner distributions
separately because the local and nonlocal information of
the wave field can provide independent useful information
for quantum and coherent information processing including
biomedical imaging [40].

Particle picture or local information of a wave field
exhibited by the KR distribution in Fig. 9 has advantages in
positioning or angle (momentum) resolving to extract local
activities of an target. The method can directly locate the
field or structure of an object without applying any raw data
transformation. This will be particularly useful in cell tissue
characterization such as prostate cancer cell detection. The KR
distribution can be used to study Goos-Hanchen (GH) shifts
[54] occurring in near-field optics and photonic waveguide.
GH shifts in position and momentum can be used to identify
the loss due to photonic crystal waveguide fabrication.

The wave picture or nonlocal information of a wave field as
shown in Fig. 12 is best exhibited by the Wigner function. We
observe the nonpositive properties of the Wigner function for
a superposition of two spatially separated Gaussian fields E(x)
analogous to a Schrödinger’s cat state in a spatial coordinate.
We have demonstrated the similarities in phase-space inter-
ference between spatial properties of quantum and coherent
fields via the measurement of the Wigner function. We also
show that an interesting analogy exists between our choice
of LO field and that employed in the quantum-teleportation
experiment [55]. In the x-p representation, the small and the
large beams of our two-LO can be viewed as the superposition
of the position (in-phase) and the momentum (out-of-phase)
squeezed fields. A E(x) spatial Gaussian field of TEM00 is
the lowest mode and is similar to a coherent state in the
phase-space picture. Gaussian beams of smaller (larger) size
than the lowest mode correspond to position (momentum)
squeezed states. The two-LO technique here can only be used
if we know the nominal size of the signal beam. The focused
and collimated LO beams must be chosen to achieve sufficient
x and p resolutions for the given signal beam. These are the
similar problems encountered in our experiments and in the
quantum-teleportation experiments which teleport an arbitrary
state as a Wigner function via EPR beams [55].

In a complex multiparticle system or large-N biological
system, we believe the KR and Wigner distributions are
very useful to study the local and nonlocal information
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of a macroscopic wave field such as the mechanisms of
decoherence due to neighbor particles, quantum mapping of
theN-particle system or semiclassical system, and macroscopic
entanglement between two macroscopic mirrors.

In conclusion, we have demonstrated the direct mea-
surement of the KR distribution using two-LO balanced
heterodyne detection technique. The characteristic function
of the KR is related to the Wigner, P, and Q distributions.
Then the Wigner, P, and Q distributions are plotted by using
raw data from the KR distribution. The physical properties
of a wave field such as local and nonlocal phase-space

information are illustrated through the KR and Wigner
functions, respectively. This two-LO technique can be used
in information processing including quantum information
for quantum mapping and optical imaging for biomedical
applications.
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