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Simulation of resonant high-order harmonic generation in a three-dimensional fullerenelike system
by means of a multiconfigurational time-dependent Hartree-Fock approach
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We performed a series of simulations of resonant high-order harmonic generation (HHG) by means of a
multiconfigurational time-dependent Hartree-Fock (MCTDHF) approach for three-dimensional fullerenelike
systems. The results proved the theory of resonant recombination proposed in this article and showed the ways
of resonant HHG optimization. The results of MCTDHF calculation of the HHG for C60 were in good qualitative
agreement with reported experimental data.
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I. INTRODUCTION

Resonant high-order harmonic generation (HHG) is the
most efficient way to obtain coherent femtosecond pulses in the
extreme ultraviolet and soft x-ray spectral ranges. The highest
conversion ratio of pump energy into a single high harmonic
is currently close to 10−4 [1]. In that regard, the fullerenes
possessing strong surface plasmon resonances (SPRs) in the
short wavelength range (∼60 nm) now draw much attention as
targets for resonant HHG. At the same time, note the absence
of reports on higher-order harmonics in fullerenes until recent
studies where the application of laser ablation allowed the
production of plasma plumes containing considerable amounts
of C60 particles for efficient conversion of the short laser pulses
(i.e., of a few tens of femtoseconds) in the extreme ultraviolet
(XUV) range [2–4]. In particular, for ablation of C60 film,
estimates of the fullerene density in the ablation plume of
no less than 5 × 1016 cm−3 were reported [2]. Broad SPRs
of fullerenes also give the possibility of enhancing a group
of neighboring harmonics, which is necessary for attosecond
pulse train generation.

We have not found any report on successful resonant HHG
in gases where a single harmonic dominates over the harmonic
spectra. This can be explained by the much narrower range of
available resonances in the XUV range for gases, as well as
by the limited number of gases which can be used for HHG.
In this regard, plasma ablation is an attractive way to create
gaseouslike ionic media from most solid targets. This gives
a greater possibility of finding a certain transition favorable
for resonant HHG. Regarding this, we should say that plasma
ablation gives a better probability of finding optimal transitions
for resonant HHG compared to gases. At the same time note
that no one can say for sure that plasma ablation should
give the largest possible harmonic intensity. Plasma ablation
of various targets is carried out by picosecond prepulses,
which can be optimized by delay with regard to the main
femtosecond pulse. A prepulse is not a disadvantage, as it
requires only a beam splitter and helps us control the optimal
conditions for HHG. In this approach, the application of pre-
pulse allows the creation of monoparticle- and nanoparticle-
containing plasmas, resonance-induced enhancement of
harmonics, generation of extended plasma, etc.; that is, it
gives the additional freedom of variation of nonlinear medium
characteristics.

Theoretical studies of HHG from C60 involved extending
the three-step model [5], analyzing an electron constrained
over the surface of a rigid sphere, with geometrical parameters
similar to those of the C60 fullerene [6], and using the dy-
namical simulations [7]. In the latter, higher-order harmonics
were shown to be due to multiple excitations and could be
easily generated even with a weak laser field. Both studies
reveal how HHG can be used to probe the electronic and
molecular structure of C60. At the same time, theoretical
investigation of such systems is hampered by the fact that
the Hamiltonian of HHG is time dependent and the systems
consist of many electrons. The investigation of influence of the
fundamental properties of electrons on resonant HHG can be
performed by means of a multiconfigurational time-dependent
Hartree-Fock (MCTDHF) approach, which has the accuracy
of direct numerical solution of Schrödinger equation and is
almost as simple as the ordinary time-dependent Hartree-Fock
(TDHF) approach. Our computations are based on the Heidel-
berg multiconfigurational time-dependent Hartree (MCTDH)
software packages [8–10]. It can easily handle MCTDHF
problems as well by setting all particles identical and the A

vector of the wave function of the system fully antisymmetric
in the initially unsymmetric MCTDH approximation.

In this article, simulations of resonant HHG are performed
by means of a MCTDHF approach for three-dimensional
fullerenelike systems. We analyze the influence of the SPR
of C60 on harmonic efficiency in the range of 60 nm
(E = 20 eV). These results showed the ways of resonant
HHG optimization and, most important, attosecond pulse
train generation. The MCTDHF calculations of the HHG for
C60 were in good qualitative agreement with experimental
data reported in previous studies of harmonic generation in
fullerene-containing laser plumes.

II. THEORETICAL APPROACHES, RESULTS,
AND DISCUSSION

The MCTDHF approach treats the wave function of a
multielectronic system as

�(Q1, . . . ,Qf ,t) =
n1∑

j1=1

· · ·
nf∑

jf =1

Aj1 · · ·jf
(t)

f∏
κ=1

ϕ
(κ)
jκ

(Qκ,t),

(1)
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where Q1, . . . ,Qf are the coordinates of electrons and
Aj1 . . .jf

is the antisymmetrized A vector for all nκ time-

dependent expansion functions ϕ
(κ)
jκ

for every degree of
freedom κ . Setting nκ = n1 describes the direct solution of the
time-dependent Schrödinger equation and nκ = 1 simplifies
the wave function to an ordinary TDHF approximation.

The equations of motion in the MCTDHF approach are
derived from the modified variational principle:

〈δ�MCHF(t)| i d

dt
− H (t) |�MCHF(t)〉 = 0∀t. (2)

The MCTDHF method was applied to simulate a three-
dimensional fullerenelike system represented by the so-called
jelliumlike sphere approximation. We used a jellium sphere
as a potential surface for the representation of fullerenes.
Then, two electrons were considered to be moving in this
potential; that is, the remaining electrons were considered to
be frozen. The system under investigation was represented by
a spherically symmetric potential of the form [11] (R0 = 8.1,
Ri = 5.3, and υ0 = 0.78)

V (r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−3
(

250
R3

0 −R3
i

) (
R2

0 − R2
i

2

)
, r � Ri

−
(

250
R3

0 −R3
i

)[
3R2

0
2 −

(
r2

2 + R3
i

r

)]
− υ0, Ri < r < R0,

−250/r, r � R0

(3)

where r =
√

x2 + y2 + z2 for both electrons.
The Coulomb repulsion between electrons was (2 is added

to avoid singularity at 0)

Vee = 1/
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 + 2. (4)

Later we present the results of the study of the interaction of the
fullerenelike system with the Gaussian femtosecond electric
pulse,

E(t) = exp

(
(t − t0)2

τ 2

)
E0 sin (ωt) , (5)

where ω = 0.046 atomic units (a.u., λ = 991 nm) or ω =
0.057 a.u. (λ = 800 nm). The first frequency was chosen
as a source of even (16th) harmonic, which coincides with
the central region of the SPR of C60 (λ = 60 nm), and the
second frequency coincides with the frequency of the laser
(Ti:sapphire) most frequently used in such experiments.

The simulation box size was 100 a.u. in each direction for
each degree of freedom. The intergrid spacing was 0.1 a.u.,
which is quite sufficient (the particles are indistinguishable, so
the main contribution comes from the A vector, if more than
one configuration is considered). No further investigations of
influence of mesh size on the results were performed, as we
just needed to check the influence of configurations.

From the solution of MCTDHF equations for
�(Q1, . . . ,Qf ,t), the time-dependent dipole d(t) =∑

f

∫
�(Q1, . . . ,Qf ,t)Qf �∗(Q1, . . . ,Qf ,t) was obtained

for the estimation of the power spectrum of HHG. It is well
known that, for analytically given expressions (such as in
semiclassical approaches), the Fourier transform gives exact
results as it treats all signals as quasi-infinite. But this turned
out not to hold true for discrete Fourier transforms when

analyzing extremely short signals due to the well-known fact
of spectral leakage which is present for any possible window
function, including a rectangular one.

That’s why our piecewise least-squares approximation can
be considered an efficient method for analysis of HHG on
the basis of sampled time-dependent quantities. It consists of
a least-squares approximation of d(t) to a sum of harmonics
on every sufficiently small time interval and summation of
the resulting indices to get the resulting HHG spectrum
d(t) = ∑N

i=1 ai sin(biωt),N � T/dt (T is the pulse length,
dt is the time step). Usually N is 2 or 3 times smaller than
T/dt and bi is 1+2i. The analytical Fourier transform is simply
the evaluation of an indefinite integral S(	) = ∫

d(t)ei	tdt .
However, discrete Fourier transform does not directly evaluate
the corresponding definite integral S(	) = ∫ T

0 d(t)ei	tdt .

Instead, it tries to make the fit d(t) = ∑T/dt

i=1 ai sin(aiωt). Thus,
discrete Fourier transforms, being another way of fitting the
sampled data to sinusoids, can also be done piecewise, but the
resulting set of fixed sampling frequencies will be determined
only by the time step (which may be far from harmonics) and,
most important, the fit is not guaranteed to be optimal and is not
unique (although it’s relatively exact then). At the same time,
the fit obtained by means of least-squares approximation is
always optimal by construction and unique. Its only disadvan-
tage is that the frequencies of harmonics have to be guessed,
although this is not too difficult if we know that the resulting
spectrum should consist of harmonics only. Another advantage
of this method is the fact that functions for approximation
should not necessarily be pure sinusoids. Actually, our fitting
functions were equally Gaussian-broadened sinusoids to take
into account slight deviations from the monochromaticity of
harmonics induced by the pump intensity modulation and by
possible computational inaccuracies. The advantage of this
method is not only its full mathematic correctness and accuracy
but also the fact that the harmonic spectrum becomes easily
viewable by definition.

The absorption spectrum of this system was obtained by
a procedure similar to the δ-kick method [12]. It consists of
applying to the whole system a strong rectangular pulse (E =
0.01 a.u.) in the beginning of propagation and then evaluating
the free propagation of the system, after which the spectrum is
obtained via Fourier transform of the x1(t). This approach is
not implemented in the Heidelberg MCTDH package directly,
so we simply used a user-defined field.

The spectrum had absorption maxima near 0.741 a.u.
(∼60 nm), which is approximately the 13th harmonic of ω =
0.057 a.u. radiation and the 16th harmonic of ω = 0.046 a.u.
radiation, although the absorption band is rather wide (see
inset in Fig. 1). We should mention that we consider a simple
jelliumlike system, not the C60 molecule itself, so the spectrum
may deviate from the experimental one.

Figure 1 presents the results of HHG simulation within
exact MCTDHF approximation (six expansion functions) for
carrier wave frequencies of 0.046 and 0.057 a.u. The 13th

harmonic of 0.057 a.u. radiation was approximately 10 times
enhanced relative to the plateau harmonics. Note that the
experimentally observed enhancement of this harmonic was
approximately the same and depended on the excitation of
fullerene-containing targets [2]. One can see that harmonics
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FIG. 1. (Color online) The influence of resonance on the HHG
spectrum generating in fullerenelike medium in the cases of radiation
of carrier wave frequencies 0.046 a.u. (open circles) and 0.057 a.u.
(solid squares). Inset: Absorption spectrum of the fullerenelike system
obtained by the δ-kick method.

neighboring the 13th are not so enhanced, although they are still
close to the broad absorption band of C60 (50–70 nm). At the
same time, they are not suppressed, so it is highly possible
that a competition between enhancement and absorption
takes place. The pulse in general is not monochromatic,
so its spectral properties can also have an influence on the
simulations.

We also observed even harmonics, which were 2 orders of
magnitude smaller than the neighboring odd harmonics. This
artifact can be attributed to symmetry breaking introduced
by the numerical grid, which is perhaps still too sparse and
introduces some kind of rectangular integration box as well.
Further reducing of the grid spacing may remove such an
unphysical result. Note, that in contrast to the time-dependent
density-functional theory (TDDFT) method, no spherically
symmetric integration box can be introduced in the MCTDHF
(at least, by means of the Heidelberg MCTDH package).
However, these harmonics are almost 2 orders smaller than
the odd ones and can be thus disregarded as some kind of
numerical inaccuracy.

The resonant 13th harmonic of the radiation with car-
rier frequency ω = 0.057 a.u. was enhanced. However, the
16th harmonic of the radiation with carrier frequency ω =
0.046 a.u. was suppressed due to symmetry effects, which are
still strong in our system. We should mention that in both
cases the maximum observed harmonic order was 23, which is
close to reported experimental results (19th and 25th harmonics
[2–4]) at moderate excitation of fullerene-containing targets.
All these results point out that the MCTDHF approximation
indeed allows us to describe both resonant HHG and harmonic
cutoff in the fullerenelike medium.

Then more simplified systems were studied under the same
conditions for the Gaussian field with carrier wave frequency
0.057 a.u. The results of resonant HHG simulations in these
approximations compared to results of MCTDHF calculations
with six expansion functions are shown in Fig. 2. It is seen
that reducing the number of configurations up to the TDHF
approximation (i.e., one expansion function) did not lead to
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FIG. 2. (Color online) The influence of approximations on the
observability of resonant HHG. (a) Without the influence of exchange,
(b) without the influence of interaction, (c) six expansion functions,
(d) three expansion functions, (e) one expansion function.

complete vanishing of resonant HHG, although the conversion
efficiency of the resonant harmonic was reduced. In the
one-dimensional case, when only a single coordinate of each
particle was taken into account, the conversion efficiency of
the resonant harmonic decreases as well. To sum it up, a large
number of expansion functions is needed to observe resonant
HHG in the one-dimensional case. However, the resonant
nature of HHG for the 13th harmonic is unchanged by the
number of configurations.

Two-electron interaction is a Coulomb repulsion [Eq. (4)]
between two electrons. Neglecting the two-electron interaction
resulted in nonresonant HHG without any significant suppres-
sion of other harmonics. At the same time the representation
of quasielectrons as distinguishable particles had almost no
influence on resonant HHG observability. The most important
application of this phenomenon is the necessity of exact
description of the two-electron interaction, while exchange
processes have almost no effect on resonant HHG simulations.
Probably some enhancement of the other harmonics observed
in these calculations in the case of six exchange functions
is determined by other resonant transitions in the system
regarding dynamical modifications of the plasmon absorption
spectrum.

These simulations, however, give no information about the
origin of the resonant HHG process. According to the most
widely accepted theory [13], resonant HHG is observed when
there is a multiphoton resonance between the ground and
excited states having different parities. Therefore there might
have been a HHG process from the electrons, which left the
excited state. The inevitable consequence of this theory is
the enhancement of the harmonics neighboring the resonant
one and this has not yet been proved by experiments. Here
another theory is presented and it can in principle explain
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FIG. 3. Various scenarios of resonant and nonresonant HHG.
(1) Nonresonant HHG case (ordinary three-step process); (2) HHG
through the resonant multiphoton excitation [13]; (3) HHG from
resonant recombination.

all the experimentally observed features of resonant HHG.
This theory which we called direct resonant recombination
theory consists of a strong increase in the single harmonic
emission probability when the laser-induced energy level of the
accelerated electron matches the resonant level of the system.
The difference between the theory [13] and our direct resonant
recombination theory is shown in Fig. 3, where a nonresonant
case (1) is presented for comparison. One should note that,
in Fig. 3, not the kinetic energy only, but the total energy is
shown, so potential part of total energy obtained during tunnel
or multiphoton ionization is also spent during recombination.

Let us compare our theory of direct resonant recombination
[Fig. 3, case (3)] with the theory of harmonic generation from
coherent superposition of states having different parities [13]
[Fig. 3, case (2)]. As well as for nonresonant case [Fig. 3,
case (1)], in our theory of direct resonant recombination [Fig. 3,
case (3)], the electron is first ejected from the ground state by
tunnel ionization (dashed arrow), whereas, in theory [13], the
electron leaves the ground state due to resonant multiphoton
excitation (solid arrow) to the excited state. Then, in all three
cases, the electron accelerates in the field of laser radiation
(solid curved arrows) and acquires the kinetic energy Ek .
Further, the recombination of electron into the ground state
with a HHG photon emission occurs.

The main difference between these theories is the following.
In theory [13], resonances originate from the recombination
into low-order even harmonics (0 or 2) with respect to the
excited state, which stands in place of the ground state. Taking
into account extremely high conversion efficiency for lower
orders, such resonant enhancement is mainly determined by
the efficiency of multiphoton transition. At the same time,
direct resonant recombination gives us the emission of a single
enhanced harmonic for any existing strong transition resonant
with it and has almost no dependence on the excited state’s
population caused by multiphoton resonance.

The electron in the intermediate state is not supposed to
be held too strongly, because the difference between this state
and the ground state of the corresponding higher-lying ion

is much smaller than in Fig. 3. However, this fact can be a
counterargument to the theory of resonant HHG from coherent
superposition of states [13], but by no means to our theory of
direct resonant recombination.

Another fascinating peculiarity of our theory of resonant
recombination is the fact that all the equations given in [13] can
describe our theory as well without any changes. We can write
the resulting expression for the induced dipole like in [13]:

�djj ′ (t) = −i

∫ t

0
dt ′

∫
d3 �q �d∗

j (�q + �A(t)) �E(t ′) · �dj ′(�q + �A(t ′))

× exp[iSjj ′ (�q; t,t ′)] +
∑
j,j ′

a∗
j aj ′ 〈j |r|j ′〉

× exp[−i(Ej ′ − Ej )t] (6)

The only difference between theory [13] and our theory lies
in the fact that the last term of Eq. (6), which is resonant,
in our theory does not merely increase the effectiveness
of ionization, as considered in [13], but plays the decisive
role in the resonant recombination process, because its exact
Fourier transform will give a contribution to the harmonic with
frequency Ej ′ − Ej . So our theory can be easily explained
semiclassically as well, giving us the full effectiveness of the
semiclassical approach.

In order to check the correctness of these theories by
means of numeric simulation, the time-dependent electric
field was changed so that in the region of relatively low
intensities (the beginning and the end of the pulse) the carrier
wave had a frequency of 0.046 a.u., while in the region
of higher intensities it had a frequency of 0.057 a.u. (see
Fig. 4, open squares). For comparison the opposite case was
considered in Fig. 4 (solid circles) where the carrier wave
frequency was 0.057 a.u. for low intensities and 0.046 a.u. for
higher intensities, respectively. No harmonic enhancement was
observed in the former case. The results of HHG simulation
showed that resonant HHG requires exact resonance at higher
intensities first of all.

FIG. 4. (Color online) Results of simulation of the HHG for
various deviations of carrier wave frequency from the resonant
one for regimes favorable for coherent superposition or resonant
recombination.
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There are few recently published suitable theories that can
explain resonant enhancement of a single harmonic. Some
attempts in explanation of experimental observations have
been reported in [13–16]. In particular, in [14], it has been
shown that the influence of atomic autoionizing states on the
phase matching of HHG may result in efficient selection of
the single harmonic in calcium plasma. So, the real intensity
enhancement can be even greater than that in single-atom
approximation. An approach that suggests a HHG model
describing enhancement of the generation efficiency for the
harmonic resonant with the transition between the ground and
the autoionizing state of the generating ion was developed
in Ref. [15]. We should add that, although the autoionizing
state is also a collective excitation, only the broadness of the
SPR allows direct stimulated transition from the continuum
into the ground state as in our theory, without additional need
of radiationless transition, thus making possible competing
enhancement of neighboring harmonics, which is useful for
attosecond pulse train generation. In general, multielectron
plasmon resonance of C60 is a generalization to two-electron
autoionizing states in atoms and simple molecules; however,
the extreme width of the plasmon resonance allows direct
recombination, whereas for autoionizing states radiationless
transition to these states should happen first. Usage of strongly
ionized medium with some delocalized electrons as a target
for resonant HHG can be favorable for extension of such
attosecond pulse trains into the water-window region.

The results of numerical and analytical calculations based
on this model are in quantitative agreement with those of
the experiments showing HHG enhancement up to 2 orders
of magnitude. In [16], it has been found that the laser
intensity dependence of the intensity and phase of the single
harmonic generated in resonant HHG from plasma ablation
is different than that of the standard plateau and cutoff
high harmonics. The resonant harmonic intensity increases
continuously (i.e., without rapid oscillations) with the increase
of the laser intensity, while the resonant harmonic phase is
almost constant. Note that some recent experimental results
contradict this conclusion.

Investigations of resonant HHG in multielectronic systems
were also performed earlier for simplified systems by means
of the MCTDHF approach by Zanghellini et al. (1D [17])
and Sukiasyan et al. (2D [18]). Despite the fact that both
systems were greatly simplified and differ from our 3D case,
both articles also revealed the importance of multielectronic
effects. This can be used as an additional proof for our theory,
where, despite that only one electron is actually accelerated in
the laser field, the intermediate resonant state is required to be
a collective multielectronic excitation such as the plasmon in
this article or an autoionizing state for resonant HHG in indium
vapors [19]. It is not evident how phenomena in C60 can be
rescaled to the reduced dimensionality, although it might have
interest of its own. Most TDDFT research also studies even

the simplified jellium-sphere approximations for C60 in 3D [6],
although reducing its dimensionality could result in speeding
up computation time.

As a general conclusion, in any time-dependent HHG
calculation which supports strong excited states, a resonant
HHG should be observed if resonant conditions are met at the
moment of recombination. The states themselves can be artifi-
cially introduced for single-electron models [15] or can follow
naturally from potential well structure in multielectronic
calculations. The scheme of direct resonant recombination
presented in Fig. 3 for the corresponding initial system and +1
ionized initial system should explain all such phenomena. As a
result, the method used to solve the approximated Schrödinger
equation can have only a quantitative effect on the system. The
article [6] completed within the TDDFT framework is clear
evidence of this idea.

It should be mentioned that direct application of the
MCTDHF method to large systems is still too demanding
because of exponential growth of computational resources
with the increase of the number of particles. According to
qualitative independence of resonant HHG observation from
the method of solution of the approximated Schrödinger
equation for a given system, the approaches, such as TDDFT,
which scale almost linearly with the number of particles are
quite valid to be chosen for further investigation of complicated
multielectronic systems.

The disadvantage of a MCTDHF approach for investigation
of HHG is an artificial symmetry breaking due to integration
grids. This can lead to observance of even harmonics, but we
did not take these even harmonics into consideration within
our approach of piecewise least-squares approximation. The
TDDFT approach, in turn, being a one-electron method, suffers
from inaccuracy of correlation effects within all available func-
tionals [20]. Introduction of nonlocal exchange-correlation
functionals [21] can become a convenient softening of this
drawback.

III. CONCLUSIONS

In conclusion, the results of MCTDHF simulation of the res-
onant HHG in three-dimensional fullerenelike system revealed
the decisive factors for resonant HHG, proved the proposed
theory of resonant recombination for systems with plasmon
resonances and showed promising ways of the resonant HHG
optimization for the needs of attosecond pulse train generation.
These computations were found in good qualitative agreement
with the experimental results reported so far. It was found
that any method of numerical simulation of HHG will show
resonant HHG picture if the resonant conditions are met
in the moment of recombination and the method supports
corresponding strong resonant states. We have discussed the
peculiarities of this approach and compared them with existing
theories of resonance enhancement of harmonics.
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[13] D. B. Milošević, J. Opt. Soc. Am. B 23, 308 (2006); J. Phys. B
40, 3367 (2007).

[14] I. A. Kulagin and T. Usmanov, Opt. Lett. 34, 2616 (2009).
[15] V. Strelkov, Phys. Rev. Lett. 104, 123901 (2010).
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