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Electromagnetically induced transparency and absorption (EIT and EIA) are usually demonstrated using
three-level atomic systems. In contrast to the usual case, we theoretically study the EIT and EIA in an equivalent
three-level system: a superconducting two-level system (qubit) dressed by a single-mode cavity field. In this
equivalent system, we find that both the EIT and the EIA can be tuned by controlling the level-spacing of the
superconducting qubit and hence controlling the dressed system. This tunability is due to the dressed relaxation
and dephasing rates which vary parametrically with the level-spacing of the original qubit and thus affect the
transition properties of the dressed qubit and the susceptibility. These dressed relaxation and dephasing rates
characterize the reaction of the dressed qubit to an incident probe field. Using recent experimental data on
superconducting qubits (charge, phase, and flux qubits) to demonstrate our approach, we show the possibility of
experimentally realizing this proposal.
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I. INTRODUCTION

A. Electromagnetically induced transparency in optics and
superconducting circuits

Electromagnetically induced transparency (EIT) [1,2] man-
ifests spectroscopically the quantized three-level structure
of an atomic medium through its interactions with two
semiclassical fields. It has been widely explored in vari-
ous contexts (e.g., [3–6]) since its inception. For example,
the EIT effect has been studied in the context of a two-
level atom [6], instead of the usual three-level system. In
Ref. [6], the energy levels of the atom are split by a
driving optical field into doublets, equivalent to ac Stark
shifts, and the transparency is realized on the final four-level
system.

The development of superconducting quantum circuits
(SQCs) in recent years has heavily employed concepts from
quantum optics, and SQCs have become a testbed of quantum
optical phenomena, including EIT (e.g., [7–9]). In one case [7],
a flux qubit system has even taken advantage of the EIT effect
as a means to probe decoherence by circling the flux qubit
with a readout superconducting quantum interference device
(SQUID) in the SQC. Both the optical version and the SQC
version of the EIT effect are illustrated on the left and right
panels, respectively, of Fig. 1, to compare their similarity and
differences. This also serves as a prelude to our discussion of
the tunability of electromagnetically induced transparency and
absorption.

For the optical version, on the left of Fig. 1, two different
kinds of classical electromagnetic waves, �p(t) = �pe

−iωpt

and �c(t) = �ce
−iωct , are shown, for a typically weak probe

field �p(t) and a strong control field �c(t) (where �c � �p).
These are shown incident on an optical medium in Figs. 1(a)
and 1(b), respectively. The frequencies, ωp and ωc, of these
two fields are resonant with some energy level spacings of the
optical medium, which are typically �-type three-level atoms,
and each of these two fields alone will be absorbed and cannot

travel through the medium. Figure 1(g) shows a canonical level
diagram for such three-level atoms, where the probe field is
resonant with the level spacing between |1〉 and |3〉 and the
control field with that between |2〉 and |3〉.

When the probe and control fields are simultaneously
incident on the medium, as shown in Fig. 1(c), the resonance
between the control field and the medium will render the
medium detuned from the probe field and hence let the probe
field travel through without being absorbed. Level |3〉 is driven
out of its original position from |2〉 and makes the |1〉-to-|3〉
spacing detuned from the probe field frequency in Fig. 1(g).
In other words, an absorbing medium becomes transparent to
an incident probe field when a control field is simultaneously
applied. More precisely, the transparency of the probe field
can be considered as an effect of its quantum interference with
the control field. The strong coupling of the medium with the
control field perturbs the original level spacings and provides
two excitation pathways of equal probability but opposite signs
to the probe field, indicated by the Autler-Townes levels |3+〉
and |3−〉 in Fig. 1(g). The resulting signal that exits from the
medium is thus a destructive superposition of two versions
of the same signal, and hence a destructive interference and
a zero-absorption of the linear susceptibility (see, e.g., [2]
for a comprehensive review). Note that in the atypical case
where both the probe and the control are strongly coupled to
the medium, the interference pattern is severely altered: In one
case, simultaneous transparency for both fields is achieved [10]
whereas, in another, an enhanced absorption of the probe can
occur [11].

The SQC version of the optical EIT is illustrated on the
right side of Fig. 1, where the optical medium is replaced by a
Josephson-junction multilevel system. In a similar manner,
when the probe and the control signals �in

p (t) and �in
c (t),

which are either current or voltage signals in this case, are
fed separately into the SQC [shown in Figs. 1(d) and 1(e)],
the amplitudes of their outputs �out

p (t) and �out
c (t) will be

smaller than those of their inputs. This shows that the SQC
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FIG. 1. (Color online) Schematic diagram illustrating electro-
magnetically induced transparency. Panel (a) schematically shows
a medium that strongly absorbs a probe light beam of amplitude �p;
(b) shows the same absorption, but for a control light beam of
amplitude �c. However, when both beams are applied simultaneously,
as in (c), then the previously absorbing medium becomes transparent
for the probe beam �p (i.e., transparency is electromagnetically
induced by the control field �c). The superconducting circuit analog
of this phenomenon is schematically shown in (d), (e), and (f), where
a “box” schematically represents the circuit. In (d) a classical voltage
or current signal (in the microwave range) of amplitude �in

p is fed into
the input of the circuit. The signal is “absorbed” in the circuit and the
amplitude �out

p of the output signal is less than that of the input. Panel
(e) shows the same effect with another microwave control signal of
amplitude �c. However, when both microwave signals are applied
simultaneously to the circuit, as in (f), then the previously “absorbing
medium,” now a circuit, becomes transparent for the first signal �in

p .
Panel (g) shows a canonical level diagram for a three-level system
coupled to a weak probe field and a strong control field.

separately absorbs the input signals due to resonances between
the input electrical signals and the energy level spacings of
the Josephson-junction device. Nonetheless, a simultaneous
application of the two input signals would let the probe
signal conduct through the circuit without losing energy,
while the control signal is mostly absorbed, as shown in
Fig. 1(f).

B. Electromagnetically induced absorption

Two closely related, but far less studied, optical phenomena
are electromagnetically induced absorption (EIA) [12] and
switchable dispersion [13], where the hyperfine structure of the
ground state of an atom is used. The quasi- or near-degenerate
levels originate from the same ground-state hyperfine level and
have a very small splitting; when the configurations of their
total angular momentum and that of their excited state have
even parity, a �-type three-level system with closed cyclic
transitions is formed. In contrast to the odd-parity case, where
the three-level system becomes of � type and can exhibit EIT,
the even-parity configuration makes the multilevel medium
absorptive to the probe field even when it is resonant with the
control field. These relations between optical properties and
the parities of SQCs were recently predicted theoretically [14]
and verified experimentally [15] based on selection rules and
symmetry breaking.

C. Tunable transparency and absorption

The circuit designs in Refs. [7,8] are based on the multilevel
energy structure of Josephson-junction devices. These designs
require advanced measurement techniques where the third and
higher energy levels are often far separated from the bottom
two. We therefore consider in this article an alternative way to
construct a multilevel energy structure in SQCs by “mixing”
a two-level system with a resonant field, forming a dressed
multilevel structure that is tunable and does not entirely rely
on the device characteristics of the junctions.

Considering the recent progress in studies on supercon-
ducting qubits (e.g., [16–20]) and dressed superconducting
qubits by a single-mode cavity field [21,23], we study here
a dressed three-level qubit equivalent to those in three-level
Josephson-junction devices, in order to theoretically realize
the effect of EIT on SQCs. Also motivated by the studies of
EIT and EIA in atomic systems (e.g., [1,6,12,13]), we show
how the EIT and the EIA phenomena coexist and transmute
into each other on the same dressed SQC.

We will select three energy levels among the multiple
levels of the dressed superconducting qubit. The tunable level
spacing of the superconducting qubit then not only affects
the level splitting of the dressed states but also affects the
relaxation and dephasing rates of the dressed system. These
tunable relaxation and dephasing rates will determine the
system’s specific dynamics when coupled to a classical signal
field, effectively making it have either a �-type (closed) or
a �-type (open) transition pattern. Therefore, if two classical
electromagnetic fields, the probe field and the control field, are
fed concurrently into the circuit, the complex susceptibility
of the dressed qubit gives an absorption spectrum that either
dips or peaks at the zero probe field detuning. The choice of
dip or peak of the spectrum is analytically determined by a
biquadratic equation which is dependent on the qubit level
spacing and the environment temperature through the dressing
process. By determining the number of real roots given by
this equation, we can distinguish two effective regimes of
operations: EIT and EIA.

The dip-type and the peak-type spectra correspond to
the EIT and the EIA effect, respectively, depending on the
magnitude of the qubit level spacing with respect to the
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eigenfrequency of the resonator quantum field. Compared
to the atomic case, the lower two dressed states from the
superconducting qubit hence act like those hyperfine levels
from the atomic ground state, giving either a closed transition
for the EIA regime or an open transition for the EIT regime.
Note also that these tunable regimes of operations are closely
related to the tunable luminosity suggested by Agarwal
et al. [22], where the group velocity of light is controlled
by a “knob” signal field that couples the metastable states.
The tunable metastable-state coupling given effectively by
our dressing process is thus comparable to that given directly
through the knob field.

Our analysis will focus on superconducting quantum
circuits that have a strong coupling between the qubit and the
resonator [24,25], realized by a coplanar waveguide (CPW)
transmission line. These circuits include combinations of the
CPW resonator with a charge qubit [23,26,27], a phase qubit
[28–30], or a flux qubit [31].

In Sec. II, we first describe a general theoretical model and
derive the energy spectrum of the dressed multilevel system.
The dressing process is described in Sec. III. The first-order
susceptibility and the dressed relaxation and dephasing rates
among the multiple levels of the qubit-resonator combination
are calculated in Sec. IV using a density matrix formulation.
The determination of the switching between the transparency
and the absorption as well as the discussion of the correspond-
ing transition patterns are presented in Sec. VI. In Sec. VII, we
then consider experimentally accessible parameters for differ-
ent types of qubits to demonstrate and numerically analyze our
theoretical results. Conclusions are summarized in Sec. VIII.

II. UNDRESSED QUBIT

Our discussion of the superconducting qubit system is
independent of the specific type of qubits (phase qubit,
charge qubit, or flux qubit) employed. Because the two-level
structures of these qubits are commonly described by a
general Hamiltonian with a σz term and a σx term [16–19].
To simplify our discussion, here we consider the qubit in
the diagonal basis whose eigenfrequency ωq is the root
mean square of the coefficients of the σz and σx terms. The
CPW resonator that couples to the qubit, akin to a cavity for
photons, is described by a pair of annihilation and creation
operators a and a† with a resonant frequency denoted by ω0.
The dipole-field coupling between the qubit, acting as the
dipole, and the energy quantum within the CPW resonator,
acting as the cavity field, is along the z direction of the qubit
in the nondiagonal basis. In the diagonal basis of the qubit,
the Hamiltonian between the qubit and the transmission-line
resonator is given by the Jaynes-Cummings model

Hcir = ωqσz + ω0a
†a + η(a†σ− + aσ+), (1)

with a rotating-wave approximation and h̄ = 1, where η

denotes the coupling constant between the cavity field and
the qubit. Here, for convenience, we still use σz to denote the
qubit operator in the diagonal basis.

Two signals, the probe signal and the control signal,
with traveling frequencies denoted by ωp and ωc and Rabi
frequencies denoted by �p and �c, respectively, are fed
into the circuit. These two signals are treated as classical

|µ0〉

|ν0〉

|µ1〉

|ν1〉

|0, g〉

|1〉

|2〉

|0〉
|0, e〉

|1, g〉

|1, e〉
|2, g〉

|2, e〉

ωp ωc

undressed states dressed states

FIG. 2. (Color online) Schematic diagram of the “dressing” pro-
cess. The Fock number states |n〉 of a coplanar-waveguide resonator
(shown in the first column) as well as the ground state |g〉 and excited
state |e〉 of a qubit provide the “undressed” tensor-product states |n,g〉
and |n,e〉 (shown on the middle column). These tensor states are
modified by their mutual interaction, producing the renormalized or
“dressed” states |µn〉 and |νn〉 (shown on the right). Mathematically,
these states correspond to the eigenvectors of the circuit Hamiltonian
in a nondiagonal basis (undressed states) and the diagonal basis
(dressed states), respectively.

electromagnetic fields and their interaction Hamiltonian with
the qubit can be written as

Hext = �pe
iωpt σ− + �ce

iωct σ− + H.c. (2)

The total system Hamiltonian is then given by

H = Hcir + Hext. (3)

The energy states of the CPW resonator and the qubit before
dressing are shown as horizontal lines on the left part of the
schematic diagram in Fig. 2. Note that the energy levels |n,g〉
and |n,e〉 have equal spacings for all n: For fixed probe field
and control field, the undressed qubit with a particular level
spacing might not resonate with them. Having been dressed (a
process to be discussed in next section) by the CPW resonator,
the qubit will exhibit a spectrum with numerous energy levels
spaced in a tunable nonuniform pattern, as shown on the right
part in Fig. 2, providing more possibilities for matching levels
between the dressed qubit and the probe and control signals.

III. DRESSED QUBIT

The dressed qubit Hamiltonian can be derived by rewriting
the Jaynes-Cummings model, which usually describes the
atom-photon coupling for the circuit Hamiltonian Hcir

in Eq. (1). Note that the set {|n,e〉,|n + 1,g〉} spans an
invariant subspace Vn of Hcir, where n denotes the number
of energy quanta in the CPW resonator, while e and g

denote, respectively, the excited and the ground state of the
superconducting qubit. Therefore, the corresponding Hilbert
space, on which the Hamiltonian Hcir in Eq. (1) acts, can be
written as the direct sum

V = {|0,g〉}
⊕
n=0

Vn,

where the ground state (of the combination of the qubit and
the CPW resonator) does not belong to any invariant subspace.
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The basis of each subspace Vn can be transformed by rotating
an angle

θn = 1

2
tan−1

(
η
√

n + 1

ωq − ω0/2

)
(4)

such that the circuit Hamiltonian Hcir is diagonalized in the
invariant subspace Vn with eigenvalues

En =
(

n + 1

2

)
ω0 ±

√(
ωq − ω0

2

)2
+ η2(n + 1) , (5)

where the second term constitutes the Rabi splitting for each
energy level n. Written in the transformed basis

|µn〉 = cos θn |n,e〉 − sin θn |n + 1,g〉, (6)

|νn〉 = sin θn |n,e〉 + cos θn |n + 1,g〉 (7)

and by neglecting the ground state |0,g〉, the circuit Hamilto-
nian (1) can be expressed in its diagonal “dressed” form as

Hcir =
∑

n

[
Eµ

n |µn〉 〈µn| + Eν
n |νn〉 〈νn|

]
, (8)

where E
µ
n (Eν

n), associated with the basis vector |µn〉
(|νn〉), corresponds to the plus (minus) sign of the eigenvalue
of Eq. (5) at the nth Rabi splitting. The corresponding dressed
eigenvectors are diagrammatically illustrated as the lower
(upper) lines on the right side of Fig. 2.

Note from Eq. (5) that the parameter ωq provides a means to
tune the level spacing of the superconducting qubits, through
externally controlling gate voltages, or magnetic flux, or
current [16–19]. Thus the dressed qubit can exhibit different
responses to the probe field signal.

IV. COMPLEX SUSCEPTIBILITY

A. Three-level system

Originally, the undressed qubit has two levels. When this
two-level system is coupled to a driving CPW resonator, the
interaction “dresses” the system to have an infinite number
of states, instead of two. These states are shown in Eqs. (6)
and (7). The multilevel structure of the dressed system gives
vast selections of three-level structures on which the EIT or
the EIA effect can be demonstrated. Before we select three
specific levels for our purpose, we shall rewrite the external
part Hext of the total Hamiltonian, which we have not discussed
so far, in the transformed or dressed basis.

The transformed basis spans the product space of the
qubit space and the resonator space. Considering this, we
write the flip-up operator σ+ = I ⊗ |e〉〈g| = ∑

n |n,e〉〈n,g|
as the tensor product of two space bases in Hext. Taking
the inner products of these basis vectors and those of the
transformed basis, we find that, except for the first off-diagonal
elements (i.e., 〈µn+1|σ+|µn〉, 〈νn+1|σ+|νn〉, 〈µn+1|σ+|νn〉, and
〈νn+1|σ+|µn〉), all the entries (including the diagonal ones) of
the operator σ+ in the new matrix representation are zero.
The θn-dependent nonzero matrix elements are all real and, by
using Eqs. (6) and (7), the new representation reads

σ+ =
∑

n

{− cos θn+1 sin θn|µn+1〉〈µn| + sin θn+1 cos θn

× |νn+1〉〈νn| − sin θn+1 sin θn|νn+1〉〈µn|
+ cos θn+1 cos θn|µn+1〉〈νn|}. (9)

This derivation applies equally well to the adjoint
σ−.

From Eq. (9), we see that the excitations of the qubit engage
the nearest set of neighboring levels of the CPW resonator in
a way that the transition coefficients depend on the device
parameters of the superconducting qubit. Therefore, from the
point of view of these dressed qubit levels, the process of
energy pumping into a resonator through a mediating qubit
[29] is a laddering of consecutive level jumps to the next
(n + 1) dressed level.

Substituting Eq. (9) and its adjoint into Eq. (2), and also
using Eq. (8), one reaches a total Hamiltonian expressed
completely in the dressed basis. By selecting the three levels
with lowest eigenenergies according to Eq. (5), that is,

{|µ0〉,|ν0〉,|µ1〉},
a Hamiltonian resembling that of a three-level atom with two
associated dipole-field interactions is obtained:

H� = E
µ

0 |µ0〉 〈µ0| + Eν
0 |ν0〉 〈ν0| + E

µ

1 |µ1〉 〈µ1|
−�pe

−iωpt cos θ1 sin θ0 |µ1〉 〈µ0|
+�ce

−iωct cos θ1 cos θ0 |µ1〉 〈ν0| + H.c. (10)

The three selected levels, whose transitions are coupled
to the classical probe field of frequency ωp and the control
field of frequency ωc, are shown on the right side of the level
diagram in Fig. 2. Note that when selecting the levels, the state
|0,g〉, which did not participate in the basis transformation, is
ignored. The selected states (|µ0〉, |ν0〉, and |µ1〉) correspond
to the dressed ground state, metastable state, and excited state,
respectively. Each of the classical fields, ωp and ωc, can drive
(i) transitions between the ground, metastable, and excited
states, as well as (ii) those between levels of higher energies.
We choose the frequencies of the classical fields such that the
probe field ωp (the control field ωc) is near resonant with the
transition |µ1〉〈µ0| (|µ1〉〈ν0|) for our discussion of the elec-
tromagnetically induced transparency and absorption effect.
The two frequencies ωp and ωc can be considered to be far
detuned from each other and from other transitions (including
transitions to higher energy levels). Therefore, all other types
of interactions can be neglected in the Hamiltonian (10).

B. Qubit-resonator interaction

The coupling coefficients of the three-level system, given
in Eq. (10), depend not only on the Rabi frequencies �p

and �c but also on the rotation angles θ0 and θ1. That
is, the diagonalizing transformation partially determines the
magnitude of the probe and control field couplings.

From Eq. (4), we observe that the diagonalizing angles at
two different CPW-resonator levels obey the general relation

tan 2θn

tan 2θm

=
√

n + 1√
m + 1

.

If the levels are such that m < n, then θn > θm in the first
quadrant. Applying this relation to m = 0 and n = 1, we
find

θ1 = 1
2 tan−1(

√
2 tan 2θ0),
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FIG. 3. (Color online) Coupling amplitudes of the dressed qubit
to the probe field (denoted by the dashed curve) and to the control
field (denoted by the solid curve).

which is not an everywhere-differentiable function with
respect to θ0. There exist nondifferentiable points at (lπ/2 +
π/4), for integer l. Figure 3 plots the rotation-angle-dependent
factors (cos θ1 sin θ0) and (cos θ1 cos θ0) in the coupling coef-
ficients of Eq. (10), as functions of θ0, over one period, within
which four nonsmooth turning points can be spotted for each
function.

From the first quadrant (0 � θ0 � π/2) of Fig. 3, we
note that the coupling amplitude between the dressed qubit
and the probe field is monotonically increasing while that
of the control field is monotonically decreasing. The two
coupling amplitudes coincide at θ0 = π/4. Therefore, the
rotation angle can be tuned in such a way that the coupling
strengths between the dressed qubit and the external signals
vary considerably, from θ0 = 0, where the coupling to the
control field is maximized, to the opposite limit θ0 = π/2,
where the coupling to the probe field is maximized.

Coherent trapping, usually discussed in the context of
quantum optics, also occurs here in this superconducting
dressed two-level system. If the initial state of the dressed
qubit is prepared with equal populations in the two lower states
with no phase difference [i.e., |ψ(0)〉 = (|µ0〉 + |ν0〉)/

√
2],

then the interactions with the external signals, as described in
Eq. (10), will drive the population at the excited level to be
dependent only on the coupling Rabi frequencies �p and �c.
In the dressed system, when the qubit level spacing reaches
the exact values

ωq = ω0

2
+ η

tan[2 tan−1(�c/�p)]
,

the population at the upper lever will remain zero, while those
of the two lower levels stay the same over all time t . The
phenomenon of “trapping” is then achieved in the sense that
the dressed system will remain in such a configuration with no
population in the upper excited level, even though the classical
signals are continually pumped into the system.

C. Demonstrating EIT via the complex susceptibility

Using the standard density matrix formalism [32], in this
section, we demonstrate the EIT effect through the derivation
of the first-order susceptibility of the dressed qubit. The
dressed qubit acts as a signal-absorbing medium driven by
the two external signals ωp and ωc, as schematically shown
in Fig. 2, similar to the three-level atom with the optical
fields given in Fig. 1(g). We will use the matrix element
notation ραβ = |α〉〈β|, where α and β can be one of the
symbols µ,ν for the lower levels |µ0〉,|ν0〉 and 1 for the
excited level |µ1〉; ραβ denotes level populations when α = β,
or transition amplitudes otherwise. We shall also use the
following shorthand for the coupling coefficients:

ζp(t) = −�pe
−iωpt cos θ1 sin θ0,

ζc(t) = �ce
−iωct cos θ1 cos θ0.

The matrix elements thence evolves according to
Schroedinger’s equation with respect to the Hamiltonian in
Eq. (10), analogous to the optical Bloch equations,

ρ̇µµ = −�µρµµ − iζpρ1µ + iζ ∗
p ρµ1, (11a)

ρ̇νν = −�νρνν − iζcρ1ν + iζ ∗
c ρν1, (11b)

ρ̇11 = −�1ρ11 + iζpρ1µ + iζcρ1ν − iζ ∗
p ρµ1 − iζ ∗

c ρν1, (11c)

ρ̇µ1 = −[
i
(
E

µ

0 − E
µ

1

)+ γµ1
]
ρµ1 − iζp(ρ11 − ρµµ) + iζcρµν,

(11d)

ρ̇ν1 = −[
i
(
Eν

0 − E
µ

1

)+ γν1
]
ρν1 − iζc(ρ11 − ρνν) + iζpρ

∗
µν,

(11e)

ρ̇µν = −[
i
(
E

µ

0 − Eν
0

) + γµν

]
ρµν − iζpρ

∗
ν1 + iζ ∗

c ρµ1. (11f)

In these equations, we have added phenomenologically the
relaxation rate �µ (�ν,�1) for the level |µ0〉 (|ν0〉,|µ1〉) as
well as the dephasing rate γµ1 (γν1,γµν) for the transition
|µ0〉〈µ1| (|ν0〉〈µ1|,|µ0〉〈ν0|). Note that the subscripts µ, ν,
and 1 here refer to the levels |µ0〉, |ν0〉, and |µ1〉, respec-
tively, to simplify the notation. This system of equations is
homogeneous, which gives a zero steady-state solution (i.e.,
the system’s thermal equilibrium state) when the coefficient
matrix is nondegenerate. Therefore, we can assign, without
loss of generality, the population under consideration entirely
to the ground state, (i.e. ρ(0)

µµ = 1 and ρ(0)
νν = ρ

(0)
11 = 0) and

the polarization 〈P(0)〉 (dipole moment) among the three
energy levels at the zeroth-order expansion to zero value
(i.e., ρ

(0)
µ1 = ρ

(0)
ν1 = ρ(0)

µν = 0).
Since we are concerned with the dispersion and ab-

sorption spectrum of the dressed qubit, only the first-order
perturbative expansion of the density matrix elements in
Eqs. (11d)–(11f) are needed. Substituting the steady-state
solution into these two equations and removing the time
dependencies of the coefficients in the rotating frame of
reference, ρ

(1)
µ1 → ρ

(1)
µ1 exp{−iωpt}, ρ(1)

µν → ρ(1)
µν exp{−i(ωp +

Eν
0 − E

µ

1 )}, we have

ρ̇
(1)
µ1 = −(i� + γµ1)ρ(1)

µ1 + i�c cos θ1 cos θ0ρ
(1)
µν

− i�p cos θ1 sin θ0, (12)

ρ̇(1)
µν = −(i� + γµν)ρ(1)

µν + i�c cos θ1 cos θ0ρ
(1)
µ1, (13)
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where

� = (
E

µ

1 − E
µ

0

) − ωp

is the detuning between the probe field and the level spacing
of the ground state and the excited state. The control field
frequency ωc is assumed to match the level spacing between the
metastable state |ν0〉 and the excited state |µ1〉: ωc = E

µ

1 − Eν
0 .

The strength of the probe field is related to the polarization
of the medium through the relation

ε0χ
(1)�p = |dµ1|2ρµ1,

where ε0 denotes the vacuum permittivity and dµ1 the qubit
dipole moment. Combining this relation with Eqs. (12) and
(13) in steady state, we can find the first-order
susceptibility

χ (1) = χ ′ + iχ ′′

decomposed into a real part

χ ′ = Z�[�2 − γµ1γµν − (�c cos θ1 cos θ0)2

+ γµν(γµ1 + γµν)] (14)

and an imaginary part

χ ′′ = Z
[
γµ1�

2 + γµ1γ
2
µν + γµν(�c cos θ1 cos θ0)2

]
, (15)

where the common factor is

Z = |dµ1|2
ε0

cos θ1 sin θ0{�2(γµ1 + γµν)2

+ [�2 − γµ1γµν − (�c cos θ1 cos θ0)2]2}−1.

Note that the dependencies of Eqs. (14) and (15) on the
detuning � are similar to those of the susceptibilities of
regular three-level atomic systems. The difference here is the
extra dependence on the qubit level spacing ωq through the
transformation angles θ1 and θ0. First, the Rabi frequency
(�c cos θ1 cos θ0), which describes the coupling strength of the
control signal to the dressed qubit, has an explicit dependence
on the angles θ1 and θ0. Second, the relaxation rates γµ1

and γµν have implicit dependencies on these angles. These
cosinusoidal dependencies will vary the magnitude of every
term and will hence vary the functional behaviors of the two
parts χ ′ and χ ′′ of the susceptibility. In the following sections,
we will see that these dependencies are crucial to the tunability
of the dressed qubit to become either transparent or absorptive.

V. DECAY RATES BETWEEN THE DRESSED LEVELS

A. Overview of recent theories

In this section, we study how the relaxation rates γµ1 and γµν

in Eqs. (14) and (15) and other dephasing rates are implicitly
dependent on the qubit level spacing ωq and other system
parameters. In particular, we will determine how these decay
rates are affected by the dressing process (i.e., after the qubit
levels are rotated into the new dressed basis).

The decay of an undressed qubit induced by an environmen-
tal coupling has been extensively studied in Refs. [33] and [34]
through a first-order perturbation model based on Bloch and
Redfield’s analysis [35] on what was called a relaxation or
distribution matrix. The relaxation process induced by the

environment has many implications on multilevel systems,
including the lasing action of superconducting circuits [36].

The recent article by Wilson et al. [37] is the first study
that took a step further to deal with the dressing effect on
relaxation and dephasing, in which the resonator field couples
to the z direction of the qubit and diagonalizing in a displaced
basis results in a splitting of levels that has a Bessel-function
dependence on the quantum number n. The approach here
with the rotating wave approximation, in contrast, has a linear
dependence of the splitting on n [cf. Eq. (5)]. This number
n determines both the thermal distribution of energy quanta
in the CPW resonator and the rotation angles of the levels
in each invariant subspace, for which we expect to see a
two-fold dependence of the relaxation rates on the level n.
Moreover, the environmental temperature T determines the
CPW resonator’s thermal distribution, as well as the magnitude
of the fluctuations induced by the thermal coupling of the
nondressed qubit. Therefore, the dressed qubit has a two-fold
dependence on the temperature T .

We will study each aspect of this dependence separately
in the following sections. The direct fluctuations introduced
by the thermal coupling before the dressing process will
be discussed first. The indirect dependence through the
resonator’s thermal distribution after the dressing process
will follow, where the implicit dependence on the qubit level
spacing ωq is also introduced.

B. Relaxation and dephasing before dressing

The two steps of computing the dressed decay rates can
be separated by first assuming that the system has reached
thermal equilibrium and the two-level qubit provides the only
source of noise (i.e., the resonator has no thermal fluctuations).
Following the standard methodology (e.g., in Ref. [33]), we de-
scribe the thermal environment by a single quantum variable X,
which interacts with the qubit along all three directions through
the Hamiltonian HI = (cxσx + cyσy + czσz)X. Among the
interaction coefficients, those of the σx and σy directions
affect the population decay between two levels, that is, they
contribute a total relaxation rate

r1 = r↓ + r↑,

which consists of a “down” relaxation rate r↓ and an “up”
relaxation rate r↑:

r↓ = |cx + icy |2SX(ω)/4,

r↑ = |cx + icy |2SX(−ω)/4.

The SX shown in these expressions indicate the power spec-
trum of the heat bath; its value has an exponential dependence
on the environment temperature T :

SX(ω) = 1

2π

∫ ∞

−∞
dω′〈X(ω)X(ω′)〉

= Rω

2π
coth

(
ω

2kBT

)
,

where R denotes a nominal resistance.
The σz direction of the interaction coefficients contributes

a part, rϕ , of the total dephasing rate, which is known as the
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pure dephasing part:

rϕ = |cz|2SX(0)/2.

The interactions along σx and σy directions contribute the other
part, r1, of the dephasing, which make the total dephasing rate
of the qubit sum to

r2 = r1

2
+ rϕ.

C. Relaxation and dephasing after dressing

Given the level mixings due to the unitary transformations
in Eqs. (6) and (7), the fluctuations of the dressed levels become
the superpositions of the fluctuations originated from the states
of the undressed qubit.

The density matrix element for the lowest level of the
dressed qubit, expanded in the undressed basis, reads

|µ0〉〈µ0| = cos2 θ0|0,e〉〈0,e| + sin2 θ0|1,g〉〈1,g|
− cos θ0 sin θ0[|0,e〉〈1,g| + H.c.].

We see that this matrix element has the diagonal parts and
the off-diagonal parts in the undressed basis. To simplify the
formulation, we assume that the dressed qubit has reached
thermal equilibrium and ignore the system relaxation due to
the energy exchange between the CPW resonator and the qubit,
that is, the off-diagonal parts. Then by tracing out the subspace
of the resonator part by assuming its energy quanta has a
Boltzmann distribution, we can obtain the reduced density
matrix element

ρ ′
µµ = (1 − e−βω0 )[cos2 θ0|e〉〈e| + e−βω0 sin2 θ0|g〉〈g|],

where β = 1/kBT denotes the inverse temperature. Consider-
ing that the two levels of the undressed qubit contribute equally
to the up and down relaxations, we arrive at the relaxation rate
�µ of the lowest energy level |µ0〉 of the dressed qubit,

�µ = |cx + icy |2SX(ω)

4
(1 − e−βω0 )[cos2 θ0 + e−βω0 sin2 θ0].

(16a)

Using similar steps, we can derive the relaxation rates (�ν and
�1) of the other energy levels (|ν0〉 and |µ1〉) as well as their
dephasing rates (γµ1, γν1, and γµν):

�ν = |cx + icy |2SX(ω)

4
(1 − e−βω0 )[sin2 θ0 + e−βω0 cos2 θ0],

(16b)

�1 = |cx + icy |2SX(ω)

4
e−βω0 (1 − e−βω0 )

× [cos2 θ1 + e−βω0 sin2 θ1], (16c)

γµ1 = −|cz|2SX(0)

2
e−βω0 (1 − e−βω0 ) sin θ0 cos θ1, (16d)

γν1 = |cz|2SX(0)

2
e−βω0 (1 − e−βω0 ) cos θ0 cos θ1, (16e)

γµν = |cx + icy |2SX(ω)

4
(1 − e−βω0 )2 cos θ0 sin θ0. (16f)

We note from Eq. (16f) that the dephasing rate γµν between
the split states |µ0〉 and |ν0〉, which share the same number

of energy quanta, originates from the relaxation rates of the
undressed qubit levels |e〉 and |g〉. Therefore, in transforming
the basis for diagonalization, the roles of relaxation and
dephasing have exchanged.

The total relaxation rate among the three dressed levels
becomes now

� = �µ + �ν + �1,

which has a two-fold dependence on the environment tem-
perature T : through the noise spectrum SX(ω) and through
the resonator distribution exp(−βω0). The total relaxation rate
� is also tunable by the qubit level spacing ωq through the
transformation angle θ0.

VI. TUNING THE ELECTROMAGNETICALLY INDUCED
TRANSPARENCY AND ABSORPTION

A. Local extrema of the susceptibility

The qubit, together with the CPW resonator, acts as a non-
linear medium of electron propagation in the quantum circuit.
This nonlinear medium gives the rotation-angle-dependent and
relaxation-rate-dependent responses of both the dispersion and
the absorption to the incident probe signal �pe

−iωpt . These two
responses are quantified by the real and the imaginary parts
of the susceptibility, respectively, in Eqs. (14) and (15). Since
the relaxation rates γµ1,γµν themselves depend on the rotation
angles θ0,θ1 [cf. Eqs. (16d)–(16f)], which in turn depend on the
qubit level spacing ωq [cf. Eq. (4)], the spacing ωq tunes the
dispersion and absorption spectra by controlling the Josephson
coupling energy.

The absorption spectrum as a function of the detuning
� between the probe signal and the dressed level spacing
(Eµ

0 − E
µ

1 ) is particularly interesting with its number of
maxima depending on the spacing ωq . The derivative of χ ′′
with respect to � is the product of � and a quartic expression
of �. Therefore, the absorption spectrum always takes an
extremal value at the zero root �0 = 0. The quartic expression
is actually biquadratic, whose two roots are given by

�± = ± 1√
γµ1

{−γµν

[
ζ 2

c (0) + γµ1γµν

]

+ (γµ1 + γµν)ζc(0)
√

ζ 2
c (0) + γµ1γµν

}1/2
, (17)

where the other two roots that are associated with the negative
sign of the second term are omitted since the detuning � can
only admit real values. The two admissible roots coincide and
meet the zero root (i.e., �± = �0 = 0) when

(�c cos θ1 cos θ0)2 + γµ1γµν = 0. (18)

That is, at near resonance ωq ≈ ω0/2, when the qubit level
spacing reaches the critical values

λC,± = 1

2

{
ω0 ± η

F 2 − √
2

[(
√

2 + 1)F 2 + 2
√

2

−F

√
(
√

2 − 1)2F 2 + 16 + 8
√

2]

}
, (19)
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where

F (�c,T ) = 8�2
ce

βω0 (1 − e−βω0 )−3

|cx + icy |2|cz|2SX(0)SX(ω)

is a control field amplitude-dependent and temperature-
dependent factor. We can also check that the condition
(�c cos θ1 cos θ0)2 + γµ1γµν > 0 has already guaranteed the
right-hand side of Eq. (17) to be greater than zero (see the
Appendix).

Consequently, inside the critical range λC,− < ωq < λC,+,
the only admissible root of dχ ′′/d� occurs at the zero point,
and from the second-order derivative, it can be seen that this
root corresponds to a local maximum. In the opposite case,
when the qubit level spacing ωq is tuned outside the critical
range, two new extrema arise in the absorption spectrum,
giving a total of three turning points in the absorption curve.
Because χ ′′ is an even function of �, the original peak point at
zero detuning splits symmetrically about the origin, creating
two symmetric peaks whose distance (�+ − �−) is extended
when ωq is tuned away from the critical values λC,± at either
end, whereas the original peak

χ ′′|�0 ∝
[

1 + �2
c

cos θ1 cos θ0

C sin2 θ0

]−1

itself, where C denotes some constant, starts to dip from a
maximum value to a local minimum. This local minimum
tends to zero when the spacing ωq is tuned away from its
resonant value ω0/2 and the amplitude �c of the control field
is increased.

This “peaking-to-dipping” transition (or the increase of the
number of extrema) indicates the switching of the dressed qubit
from being transparent to being absorptive to the probe field.
The magnitude of the qubit level spacing ωq with respect to the
frequency ω0 of the resonator field determines the nature of the
dressed medium. The critical condition of Eq. (18) indicates
the competition between the population pumping to the excited
level and the spontaneous relaxations to the ground state. The
transparency effect is present only when the coherent pumping
is sufficiently strong to overcome the relaxation; otherwise,
the probe signal is trapped and the dressed medium becomes
absorbing.

While the imaginary part of the susceptibility is an even
function of �, the real part is odd and one order higher in
� than the imaginary part. The dispersion spectrum similarly
admits multiple local extrema, though the dispersion is always
zero at � = 0 for any value of qubit level spacing ωq because of
the odd symmetry about the origin. However, when sweeping
ωq across the resonance point ω0/2, the spectrum is inverted
(i.e. the dispersion is switched from positive to negative or
vice versa).

B. Near degeneracy and the switching from closed
to open transitions

The phenomena discussed in the last section are somewhat
analogous to those presented in Refs. [12,13], so here we give
a physical interpretation of the tuning from transparency to
absorption using the terminology of atomic physics.

The three dressed states |µ0〉, |ν0〉, and |µ1〉 that we have
selected as the basis of the three-level system have tunable

level spacings based on the transformation angles θ0 and θ1,
which are defined by the detuning between the parameters
ωq and ω0. After coupling to the strong control field, the
two dressed states |ν0〉 and |µ1〉 will have line broadening.
The metastable state |ν0〉 in particular might be so broadened
that it overlaps with the ground state |µ0〉. Such a case most
easily occurs at resonance with ωq = ω0/2, where the spacing
between the lower two states |µ0〉 and |ν0〉 is minimized to 2η

[cf. Eq. (5)].
When the overlap occurs, the three-level system becomes

effectively a two-level system. The lower two levels |µ0〉
and |ν0〉 become quasidegenerate or near degenerate; more
precisely, they degenerate into a single ground state and differ
from each other only as hyperfine levels of the common
ground state. The minimal amplitude �c of the coupling
needed for overlapping can be roughly estimated by using
a first-order perturbative expansion. Considering the spacing
between the metastable state |ν0〉 and the excited state |µ1〉 to
be E

µ

1 − Eν
0 = ω0 − (

√
2 + 1)η, we find the level shift of |ν0〉

up to first order to be

E
ν(1)
0 − E

ν(0)
0 = |�c|2

ω0 − (
√

2 + 1)η
.

After equating this to 2η, the amplitude needed can be obtained
as

�c =
√

2η[ω0 − (
√

2 + 1)η]. (20)

Comparing Eq. (20) with Eq. (18), we can observe that,
in order to exhibit electromagnetically induced transparency,
the coupling amplitude �c would have to be within a
range such that it can simultaneously overcome the spon-
taneous relaxation and yet prevent the system from being
degenerate, in addition to the requirement that ωq be out-
side the critical range indicated by Eq. (19). Without this
range, the dressed medium becomes unresponsive to the
incident probe signal and the absorption spectrum becomes
flat.

If we draw the analogy of the lower dressed levels to the
Zeeman sublevels of the degenerate ground state [12], then
|µ0〉 and |ν0〉 can be deemed sharing the same nonzero “angular
momentum.” The remaining factor for deciding the dressed
medium to be transparent or absorbing depends on whether
the transition between the two sublevels is open or closed—in
other words, whether the transitions within the three-level
system are noncyclic (� type) or cyclic (� type). Different
from the usual case, where this factor is determined by the
hyperfine structure of a particular atom, the dressed qubit
system we discuss here has this factor effectively determined
by the dressed relaxation rates γµ1 and γµν .

From Eqs. (16d)–(16f), we observe that unlike the usual
multilevel SQUID systems, the relaxation rates of the dressed
qubit are tunable through the transformation angles θ0 and θ1.
In addition, the relaxation rate γµν between the lower levels is
actually derived from the dephasing rate rϕ of the undressed
qubit. The type of transitions in the dressed qubit thus becomes
exploitable since the dephasing rates of the superconducting
qubits are in general much greater than their relaxation rates
r1 and the different dependencies on the transformation angles
control whether |γµν | > |γµ1| or |γµν | < |γµ1|.
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When the qubit is closely resonant with the CPW resonator,
or precisely, ωq is within the critical range between λC,−
and λC,+, the magnitude of γµν is greater, under which the
flipping processes of the populations between the ground
and the metastable states dominate over the excitation process
from the ground state to the excited state. The transition
between the ground and the metastable states is thus closed,
effectively degenerating the two levels and making the three-
level system operate in a �-type setting. On the other hand,
when the qubit is off-resonant with the CPW resonator, the
opposite condition γµ1 > γµν is met and the lower two levels
become sufficiently nondegenerate that the transitions among
the three levels cannot be considered cyclic. The system then
operates in the usual �-type setting that electromagnetically
induced transparency can take place.

VII. NUMERICAL ANALYSIS

We now study the two parts of the susceptibility by
considering experimentally accessible parameters. We first
examine the dressed charge qubit, which was experimentally
realized in Refs. [23,37,38]. We give the variation of the
susceptibility against multiple parameters and identify the
effective ranges of the qubit level spacing for the EIT and
EIA. The cases for phase and flux qubits are discussed later
to show that the arguments for charge qubits can be applied to
other qubits, for tuning the susceptibility to different operating
regimes.

A. Charge qubit

Without loss of generality, we now assume that the
resonator frequency is fixed at, for example, ω0/2π = 7
GHz. We consider the charge qubit model with the follow-
ing parameters: The qubit has a junction energy EJ /2π =
2.6 GHz and a charge energy in the gigahertz range that we
use to tune the qubit level spacing by varying the gate reduced
charge number ng; the coupling coefficient between them is
assumed to be η/2π = 100 MHz. The undressed relaxation
and dephasing times of the qubit are taken as 1/r1 = 0.7 µs
and 1/r2 = 48 ns, respectively. The operating temperature is
assumed to be 20 mK.

Figure 4 plots both the real χ ′ and the imaginary χ ′′ parts
of the susceptibility χ in normalized units as a function of the
normalized probe-signal detuning �/�′ (with respect to the
normalizing constant �′/2π = 25 MHz) and the normalized
qubit level spacing ωq/ω

′
q (with respect to the normalizing

constant ω′
q/2π = 3.5 GHz) near the resonance range of the

dressed qubit. The strongly coupled control field can achieve
a coupling amplitude on the order of 10 MHz [23]; in the plot
here a value of �c/2π = 12 MHz is assumed.

For the imaginary part χ ′′ (warm colored: red or yellow),
we are able to observe the absorption peaking at the resonant
frequency ωq = ω0/2 = 2π × 3.5 GHz and its immediate
falloff when ωq is tuned slightly off resonance. Along with
the attenuation of the magnitude is the symmetric splitting
of the peak about the zero detuning point � = 0 at either
off-resonant side. The zero-detuning point itself falls from its
maximum value to its local minimum along the path of off
resonance, indicating the switching of the dressed medium
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FIG. 4. (Color online) Real part χ ′ (blue) and imaginary part
χ ′′ (red or yellow) of the normalized susceptibility of the dressed
charge qubit versus the detuning � and the qubit level spacing
ωq . The detuning abscissa is normalized with respect to �′/2π =
25 MHz; the qubit-level-spacing abscissa is normalized with respect
to ω′

q/2π = 3.5 GHz. This plot indicates the dispersion and absorp-
tion spectra of a probe signal over different operating ranges.

from “maximally absorbing” to being transparent to the probe
signal.

The switching phenomenon is better illustrated in Fig. 5(a)
where the imaginary part χ ′′ of the susceptibility is plotted for
various values of the spacing ωq . We note that the susceptibility
obtains a maximum value and a minimum half-width with
a Lorentzian shape when the dressed medium is resonant
(the thickened curve for ωq/2π = 3.5 GHz). Following the
detuning between the qubit and the CPW resonator, the
half-width starts to spread out while the peak starts to dent.
The switching occurs at the critical value λC/2π = 3.40 GHz,
according to the approximate analytical solution of Eq. (19),
where the qubit-to-resonator coupling η is not very large. A
numerical estimate gives λC/2π ≈ 3.47 GHz, as can be seen
from Fig. 5(a).

The plot of Fig. 4 also shows that the falloff of the absorption
is even symmetric about the resonance point ωq = ω0/2,
becauset χ ′′ is an even function of the dressed relaxation rates
γµ1 and γµν , which in turn are odd functions of the qubit
spacing ωq . This symmetry verifies the exchangeable roles of
the near-degenerate levels |µ0〉 and |ν0〉: When ωq < ω0/2,
|µ0〉 has the lower eigenenergy of the dressed states and is
regarded as the ground state that couples to the probe signal,
while |ν0〉 is regarded as the metastable state; when ωq > ω0/2,
|µ0〉 becomes the metastable level and |ν0〉 becomes the ground
state.

In Fig. 4, for the real part χ ′ (blue colored), we can see the
dispersion spectrum having an odd symmetry around the zero
probe detuning point � = 0 [i.e. χ ′(ωq)|�=0 = 0] throughout
the range of the qubit spacing ωq . Unlike χ ′′, this real part
χ ′ of the susceptibility is an odd function of the dressed
relaxation rates, resulting in its odd symmetry of ωq around
the resonance point ωq = ω0/2, which is better illustrated in
Fig. 5(b). There, the dispersion spectrum for various values
of ωq is plotted versus the detuning �. The one curve at
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FIG. 5. (Color online) Normalized susceptibility spectra at
typical values of the qubit level spacing ωq plotted versus the scaled
detuning �/�′: (a) the absorption χ ′′ = Im[χ ] and (b) the dispersion
χ ′ = Re[χ ]. The curves that correspond to the resonant frequency
ω0/2 = 2π × 3.5 GHz are thickened and all the numbers indicate
the value of ωq taken (in unit of GHz) in both (a) and (b). Note
that in (a) a dip appears at the center of the curve about ωq/2π ≈
3.47 GHz, which indicates the switching of the dressed qubit from
being absorptive (>3.47 GHz) to being transparent (<3.47 GHz). In
(b), the curves that correspond to ωq below ω0/2 are solid and those
above ω0/2 are dashed. Note that the solid and dashed curves with
equal distance from the resonance ω0/2 are symmetric counterparts
of each other. Their roles for positive and negative dispersion across
the range of the detuning � are exchanged above and below the
resonance frequency.

resonance (ωq/2π = 3.5 GHz) is thickened and the ones that
have their symmetric counterparts below resonance are shown
as dashed curves, from which we can observe the switching
from positive dispersion to negative dispersion of the dressed
medium discussed in Sec. VI.

In addition to the spacing ωq , tuning the dressed qubit
from transparency to absorption also depends on the dressed
system’s coupling strength �c to the control field since this
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FIG. 6. (Color online) Plot of the normalized absorption spectrum
χ ′′ = Im[χ ] versus the normalized detuning �/�′ and the coupling
amplitude �c to the control field.

coupling strength directly affects the absorption [cf. Eq. (15)].
Its influence is illustrated in Fig. 6 where the absorption is
plotted against �/�′ (over the same range as in Fig. 4) and
�c (from 4.5 to 45 MHz) while the qubit spacing is held at
a typical value ωq/2π = 3.4 GHz. We can notice the single
peaking at the lower end of the coupling to the control field,
where the dressed medium is weakly driven by the control
field and exhibits a population trapping of the probe signal.
Toward higher values of the coupling, the excited state of
the dressed three-level system is sufficiently detuned from
the probe signal that it starts to exhibit the transparency effect.
Then similar to ordinary �-type atoms, the dressed qubit has its
twin absorption peaks further apart when the coupling strength
is increased.

B. Phase qubits

We now examine our general theory of the tunable
transparency and absorption effects on other superconducting
quantum circuit systems.

For a phase qubit, we adopt the experimental parameters
of Ref. [30]: The CPW resonator has a frequency ω0/2π =
6.57 GHz; the coupling strength between the resonator and
the qubit is fixed at η/2π = 19 MHz; the undressed relaxation
and dephasing times of the qubit are, respectively, 650 and 150
ns. The coupling strength to the control signal is assumed to
be �c/2π = 3.85 MHz. The operation temperature is held at
25 mK. The normalized absorption spectrum is plotted as a
contour plot versus the normalized qubit level spacing ωq/ω

′
q

with respect to the charge qubit case (ωq from 3.2 to 3.37 GHz;
normalizing constant ωq the same as that of the charge qubit)
and the normalized probe detuning �/�′ (� from −6.5 to
6.5 MHz; normalizing constant �′ the same as that of the
charge qubit) in Fig. 7(a).

Similar to the case of a charge qubit in the last section,
the peak at the center of the contour falls off symmetrically
as the qubit spacing is tuned off the resonant frequency
ωq/2π = 3.285 GHz. The peak also splits symmetrically
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FIG. 7. (Color online) Contour plots of the normalized absorption
spectra χ ′′ versus the normalized detuning �/�′ on the vertical axis
and the normalized qubit level spacing ωq/ω

′
q on the horizontal axis

(a) for a phase qubit and (b) for a flux qubit. The red end of the
color spectrum (i.e., the centers of both contour plots) indicates peak
values of the absorption, where the qubit is maximally dressed with a
rotation angle θ0 = π/2. The deep blue end of the color spectrum for
�/�′ = 0 (i.e., the middle sections of the left and right borders of
both plots) indicates the minimum values of the absorption, where the
qubit is dressed with a rotation angle θ0 < π/2. Namely, maximum
transmission due to EIT occurs at those blue ends.

around the zero detuning � = 0, and it enters from the
absorption region into the transparency region at the critical
frequency λC/2π = 3.266 GHz according to Eq. (19). The
half-widths of the absorption peaks decrease along with the
falloff of the magnitude.

C. Flux qubits

For a flux qubit, we adopt the experimental parameters
of Ref. [31]: The CPW resonator has oscillating frequency
ω0/2π = 9.907 GHz; the qubit-resonator coupling strength
is η/2π ≈ 100 MHz; the undressed relaxation and dephasing
times of the qubit are, respectively, 1.9 and 1 µs [39]. The

coupling strength to the control signal is set to �c/2π =
0.63 MHz. The operation temperature is 50 mK. The
normalized absorption spectrum of the dressed flux qubit
is also plotted as a contour plot versus the normalized
qubit level spacing ωq/ω

′
q with respect to the charge

qubit case (ωq from 4.7 to 5.2 GHz; normalizing con-
stant ω′

q the same as that of the charge qubit) and
the normalized probe detuning �/�′ (� from −1.5 to
1.5 MHz; normalizing constant �′ the same as that of the
charge qubit) in Fig. 7(b).

Similar operating regions of transparency and absorption
can be observed in this flux qubit system compared to the
other qubit systems discussed before, except for the scale of
variations. For instance, comparing Figs. 7(a) and 7(b), we
see that the falloff of the magnitude along the zero detuning
is relatively slower in the flux qubit case due to the slower
dephasing time of the undressed flux qubit. The switching
occurs at the critical frequency λC/2π = 4.854 GHz. In this
case, the absorption peaks also split out slower and have
narrower half-widths.

VIII. CONCLUSION

We have proposed a method to realize the effects of both EIT
and EIA on superconducting quantum circuits using dressed
states derived from the coupling between an arbitrary type
of two-level superconducting junction qubits and a coplanar
waveguide resonator. The use of dressed states alleviates the
need to maintain a multilevel structure of the Josephson
devices and gives rise to tunable relaxation rates between
the energy levels. The tunable structure of the levels leads
to the switching between EIT and EIA, which depends on the
variable qubit level spacing and is associated with the open or
closed transition structure and the hyperfine degeneracy of the
dressed three-level system.

Our investigation demonstrates another example of non-
linear optical phenomena implementable on superconduct-
ing quantum circuits. We can also see that the special
characteristics of Josephson junction devices, the externally
controllable Josephson coupling energy in this case, could
bring new perspectives to the study of quantum optics where,
for example, the many parameters are usually fixed for the
particular type of atom studied and the cavity QED system
that surrounds it. The switching between EIT and EIA might
have important applications for the control of superconduct-
ing circuits and for quantum information transfer in these
systems.
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APPENDIX: CONDITION OF LOCAL EXTREMA FOR THE
SUSCEPTIBILITY

The two roots of Eq. (17) that correspond to local extrema
of the dispersion spectrum must satisfy

(γµ1 + γµν)ζc

√
ζ 2
c + γµ1γµν − γµν

(
ζ 2
c + γµ1γµν

)
> 0,

which is equivalent to

(γµ1 + γµν)ζc > γµν

√
ζ 2
c + γµ1γµν.

When squaring the two sides, this inequality implies

γ 2
µ1ζ

2
c + 2γµ1γµνζ

2
c − γµ1γ

3
µν > 0.

For ζ 2
c > −γµ1γµν , with the relaxation rates taking values

γµ1 < 0 and γµν > 0 from Eqs. (16d)–(16f), we have

γµ1
{
(γµ1 + 2γµν)ζ 2

c − γ 3
µν

}
> γµ1

{−(γµ1 + 2γµν)γµ1γµν − γ 3
µν

}
= −γµ1γµν(γµ1 + γµν)2 > 0,

so the real roots exist under this condition.
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