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Practical quantum random number generator based on measuring the shot noise of vacuum states
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The shot noise of vacuum states is a kind of quantum noise and is totally random. In this paper a nondeterministic
random number generation scheme based on measuring the shot noise of vacuum states is presented and
experimentally demonstrated. We use a homodyne detector to measure the shot noise of vacuum states.
Considering that the frequency bandwidth of our detector is limited, we derive the optimal sampling rate so
that sampling points have the least correlation with each other. We also choose a method to extract random
numbers from sampling values, and prove that the influence of classical noise can be avoided with this method
so that the detector does not have to be shot-noise limited. The random numbers generated with this scheme have
passed ENT and DIEHARD tests.
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I. INTRODUCTION

Random numbers are essential in a very wide application
range, such as statistical sampling [1], computer simulations
[2], and cryptography [3]. Pseudorandom numbers, which
are generated from a short random seed by employing
deterministic algorithms, are widely used in modern digital
electronic information systems. Although the pseudorandom
number generator (PRNG) has been highly refined in terms
of the generation rate and robustness against random tests
owing to the development of computer science and technology,
it cannot generate an unpredictable truly random number.
Distinct from the PRNG, a truly random number generator
(TRNG) is based on the physically random processes rather
than computational algorithms; therefore, the random numbers
generated by a TRNG are unpredictable and truly random.

A TRNG can be divided into two types [4]. Type one
is based on the chaotic behavior of classical deterministic
systems, while type two is based on the truly probabilistic
nature of fundamental quantum processes. Type one can be
treated as a projection measurement in a subsystem and its
randomness mainly originates from the absence of enough
information from the global system. If the global system is
known, the output of type one is predictable and no longer
random. So type one cannot be totally trusted. However,
type two, a quantum random number generator (QRNG), can
provide us with true random numbers with proven randomness.

The QRNG has made significant achievement in recent
years. The earliest QRNG is based on performing single-
photon detections [5]. However, it has a fatal weakness because
there is no single-photon source. Even though later this
problem is dodged skillfully by proposing a scheme based
on weak coherent states [6], the random number generation
rate of this scheme is limited to tens of megabits per second
by the avalanche photodiode (APD) single-photon detector
(SPD), which has a dead time of tens of nanoseconds. In order
to enhance the generation rate, a scheme is proposed [4,7] that
is based on measuring the phase noise of a single-mode laser.
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The phase noise used in this scheme is a kind of quantum
noise, which is different than the scheme based on a chaotic
semiconductor laser [8–10]. However, the electronic noise
and the phase noise of the interferometer may influence the
randomness of this scheme. There is also another scheme based
on the measurement of the shot noise of vacuum states [11].
Moreover, a lot of the imperfections in this scheme, such as
the limited bandwidth of the detector and the electronic noise,
have not been considered. In fact, these nonideal factors are
fatal for the randomness of generated numbers. More recently,
a scheme based on entangled quantum particles was also
proposed, which does not require any assumptions about the
internal workings of the device [12].

In this paper we present an improved practical QRNG
scheme based on measuring the shot noise of vacuum states and
proving its randomness. The low-frequency noise of the laser
is suppressed using the frequency-shift technique. Considering
that the bandwidth of our detectors is limited, we derive
the relationship between the bandwidth of detectors and the
sampling rate so that the sampling points are independent of
each other. Also, we use the method proposed in Ref. [7] to
extract random numbers and prove that electronic noise has
little influence over the randomness of the system. Since the
bandwidth of the shot noise is infinite, the random number
generation rate in this scheme is just determined by the
bandwidth of the homodyne detector.

II. THEORETICAL MODEL

The Wigner function of a vacuum state is [13]

W0(x,p) = 1

π
exp(−x2 − p2). (1)

It is obvious that the vacuum state is isotropic in the phase
space. So when we use homodyne detection to measure the
vacuum noise, without loss of generality, we consider that what
we measure is the X quadrature. Since the Wigner function is
a quasiprobability distribution, we obtain [13]

|ψ0(x)|2 =
∫ ∞

−∞
W0(x,p)dp = π−1/2 exp(−x2), (2)
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FIG. 1. Schematic of the experiment for QRNG based on measur-
ing the shot noise of vacuum states by using the homodyne detection.
Laser, NP Photonics (1550 nm); BS, beam splitter; D1-2, photon
detectors; LPF, low-pass filter; ADC, 14-bit analog-digital convertor;
LSB, the least significant bit of the digital number.

where ψ0(x) is the wave function of a vacuum state in the X

representation. According to postulates of quantum mechan-
ics, when we measure the X quadrature of vacuum states, the
results are totally random and satisfy the Gaussian distribution.
So we can extract random bits from the measurement
results.

III. EXPERIMENTAL SETUP

The experimental setup of our QRNG is shown in Fig. 1.
The laser source is a 1550-nm continuous-wave fiber laser (NP
Photonics), which generates the local oscillator (LO). The LO
is split by a 50:50 beam splitter and detected by a broadband
balanced detector with photodiode G8376-05 by Hamamatsu.
As discussed, we use homodyne detection to measure the X

quadrature of a vacuum state, and the output of the subtractor
is [14]

�I = kαLOx̂, (3)

where the constant k contains all the dimensional prefactors
and αLO is the displacement of the LO. The effective bandwidth
of our detector is over 100 MHz and the signal-to-noise ratio
(SNR) is near 6 dB for 10 mW of coherent light.

In our experiment the laser has large relative intensity noise
(RIN) in low frequency, which is a kind of classical noise. Since
the common-mode rejection ratio of our homodyne detector
is limited to 40 dB, the RIN cannot be totally eliminated
by the detector. That would induce large classical noise into
our measurement. In order to avoid RIN, the output of the
subtractor is mixed with a 50-Hz carrier and filtered by a
low-pass filter (LPF) whose cut-off frequency is f0 = 12 MHz.
So we actually use the 24-Hz sideband frequency spectrum
of the shot noise, which is centered at 50 MHz, to generate
random numbers. The power spectrums of the filtered signal
and the electronic noise of the detector are shown in Fig. 2.
We can see that the SNR of the filtere signal is about 6 dB. The
spectrum analyzer we used has more noise at low frequency
than at high frequency, so the power spectrums are a little
oblique. The filtered signal x(t) is sampled and converted to
digital data by a data acquisition card (NI PXIe-5122). Then
we take the least significant bit of the digital data as the random
number.

FIG. 2. The lines from top to bottom are the power spectrums
of the filtered signal, the electronic noise of the detector, and the
electronic noise of the spectrum analyzer, respectively.

IV. COPING WITH NON-IDEAL FACTORS
IN EXPERIMENT

A. The realistic filter and the sampling rate

In fact, the sampling rate is not arbitrary for a certain
detection bandwidth and it will impact on the the randomness
of generated numbers. Then we will find the proper sampling
rate for our system. If the filter is ideal, the power spectrum
density of the filtered signal x(t) is

Px(ω) =
{ π

ω0
(|ω| � ω0)

0 (|ω| > ω0),
(4)

where ω0 = 2πf0. x(t) is just the shot noise within ω0. Since
our system is invariant under time translation, which means
that x(t) is a stationary random signal, the self-correlation
function R(t,t + τ ) of x(t) is determined by the time interval
τ and has no relationship with t . So we obtain R(t,t + τ ) =
R(τ ). According to the Wiener-Khintchine theorem [15,16]
we obtain

R(τ ) = 1

2π

∫ ∞

−∞
P (ω)ejωτ dω = sin(ω0τ )

ω0τ
. (5)

The zeros of R(τ ) are τ = i/(2f0) (i = 1,2,3, . . .).
When the sampling period is Ts and the nth sampling value

is xs(n), the self-correlation function of the sampling signal
Rs(n) is

Rs(n) = E[xs(0)xs(n)] = E[x(0)x(nTs)] = R(nTs), (6)

where E(x) stands for the mean value of a random variable
x. Since the sampling points are used to generate random
numbers, they should be uncorrelated with each other. Rs(n)
must be 0 for all possible n, which means R(τn) = 0, where
τn = nTs (n = 1,2,3, . . .). Therefore, Ts must be one of the
zeros of R(τ ), that is, the sampling frequency should satisfy

fs = 1

Ts

= 2f0

j
(j = 1,2,3, . . .). (7)

However, the realistic filter is not ideal, and its falling edge
is not as steep as the ideal one. As shown in Fig. 2, we can see
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FIG. 3. The relationship between the self-correlation function R′

and the time interval τ .

that above 12 MHz, the power intensity of the filtered signal
x ′(t) attenuates at the rate of 6 dB/MHz. It can be written as

Px ′ (ω) =
{

π
ω0

(|ω| � ω0)
π
ω0

e−a(|ω|−ω0) (|ω| > ω0),
(8)

where a = 1/(2π ) ln(100.6) MHz−1. x ′(t) can be divided into
two parts,

x ′(t) = x(t) + f (t), (9)

where x(t) is the shot noise within ω0 and f (t) is a signal with
the frequency component above ω0 that has not been totally
eliminated by the filter. The power spectrum density of f (t) is

Pf (ω) =
{

0 (|ω| � ω0)

Px ′ (ω) (|ω| > ω0).
(10)

It is obvious that x(t) and f (t) are independent. Ac-
cording to Eq. (8) we obtain the self-correlation function
of x ′(t),

R′(τ ) = 1

2π

∫ ∞

−∞
P ′(ω) ejωτ dω

= sin(ω0τ )

ω0τ
+ τ sin(ω0τ )

ω0(a2 + τ 2)
+ a cos(ω0τ )

ω0(a2 + τ 2)
, (11)

where the first term is due to x(t) while the second and the
third terms are due to f (t). The relationship between the
self-correlation function and the time interval τ is shown in
Fig. 3. We can see that R′(τ ) has no periodical zeros. So,
we cannot find a sampling frequency to make the sampling
values x ′

s(n) uncorrelated with each other. However, when the
sampling frequency satisfies Eq. (7), xs(n) are uncorrelated
with each other, where xs(n) = x(nTs). We take x(t) as
the signal from which we extract random numbers, while
f (t) is treated as noise. In our experiment j is chosen
to be 1 and we actually use a sampling frequency of
24 MHz.

B. Electronic noise and the method of extracting
random numbers

Besides the imperfection of the filter, there is another noise
source in our system. The broadband electrical amplifier used

in this system exhibits classical electronic noises e(t). The nth
value we actually sample is

x ′′
s (n) = xs(n) + fs(n) + es(n) = xs(n) + gs(n), (12)

where fs(n) and es(n) are the values of f (t) and e(t)
at sampling points, respectively, and gs(n) = es(n) + fs(n).
Since x(t) is independent of f (t) and e(t), xs(n) is independent
of gs(n).

The sampling values {x ′′
s (n)} are digitized by a 14-bit

analog-to-digital converter (ADC) in the data acquisition card,
and the corresponding digital data are {x ′′

d (n)}. Since the sam-
pling values are not totally random and do not satisfy uniform
distribution [7], the 14-bit digital data cannot be used as ran-
dom numbers. Therefore, we should extract random numbers
from {x ′′

d (n)}.
One way is to compare x ′′

d (n) with 0, the mean value of
x ′′

d (n), and the nth random bit is assigned as either “1” if
xd (n) > 0 or “0” if x ′′

d (n) < 0 [4]. However, using this method
the result will be influenced by nonideal factors in the system.
For example, when gs(n) = ε, the probabilities of “1” and “0”
are

P (1|ε) = 1

σ
√

2π

∫ ∞

(1/2)Q−ε

e−(x2/2σ 2)dx,

(13)

P (0|ε) = 1

σ
√

2π

∫ −(1/2)Q−ε

−∞
e−(x2/2σ 2)dx,

where σ is the standard deviation of xs(n) and Q is the
resolution of the ADC in volts per step. When ε �= 0, P (1|ε) �=
P (0|ε). Since the electronic noise in a broadband electrical
amplifier is a kind of classical noise, it is predictable if
information about the global system is sufficient. So the
generated bits are also not random.

In this experiment we take {x ′′
l (n)}, the LSB of {x ′′

d (n)}, as
the original random bits, and the influence caused by those
nonideal factors can be avoided, as shown in the following.

The shot noise xs(n) can be written as

xs(n) = xd (n)Q + δn, (14)

where xd (n) is the analog-to-digital conversion result of xs(n)
and δn is the quantization error which satisfies |δn| < 1/2Q.
Let g′

s(n) = gs(n) + δn, and g′
d (n) be the analog-to-digital

conversion result of g′
s(n). When x ′′

d (n) is not overflow, we
obtain

x ′′
l (n) = xl(n) ⊕ g′

l(n), (15)

where xl(n) is the LSB of xd (n), g′
l(n) is the LSB of g′

d (n),
and ⊕ is the operation of XOR. Actually Eq. (15) is just a
kind of one-time pad [17], where {xl(n)}, {g′

l(n)}, and {x ′′
l (n)}

is corresponding to the key, the plaintext, and the ciphertext,
respectively. So it has the “perfect secrecy,” providing that
(i) xl(n) and g′

l(n) are independent, and (ii) xl(n) are random
[18]. Perfect secrecy means that for a given N-bit train {g′

l(n)},
the probability that {x ′′

l } be any N-bit train is always 2−N , that
is, {x ′′

l (n)} is random. In our experiment the two conditions are
satisfied, as proven in the following.
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(i) Since xs(n) is independent with fs(n) and es(n), xd (n)
is independent with gd (n). Besides, the probability distribution
of δn knowing xd (n) is

P (δn|xd (n)) =
{

1
A

exp
(− [xd (n)Q+ δn]2

2σ 2

) (|δn| � 1
2Q

)
0

(|δn| > 1
2Q

)
,

(16)

where A = ∫ 0.5Q

−0.5Q
exp(− [xd (n)Q+δn]2

2σ 2 )dδn. Since σ ≈
1000Q � Q in our experiment, δn is nearly uniformly
distributed when knowing xd (n), that is, δn is independent
with xd (n), so we obtain that xd (n) is independent with g′

d (n).
Therefore, xl(n) is independent with g′

l(n).
(ii) Since {xs(n)} are Gaussian-distributed random numbers

and independent with each other, {xl(n)} are also independent
with each other. If the probabilities P (odd) that xl(n) = 1
and P (even) that xl(n) = 0 are both 0.5, then {xl(n)} are
random. However, in practice the probability P (odd) and
P (even) are not perfectly equal and show a small bias δ,
that is, P (even) = 0.5 + δ and P (odd) = 0.5 − δ. Since xs(n)
is a Gaussian-distributed random number with a mean of 0,
it is obvious that P (±i) > P (±(i + 1)), where P (i) is the
probability that xd (n) = i and i = 0,1,2, . . . . So we obtain

P (even) − P (0) < P (odd) < P (even) + P (0), (17)

that is, |δ| < 1/2P (0) = 1/2erf(Q/2
√

2σ ) ≈ 2 × 10−4,
where erf is the error function.

In order to further improve the randomness, we perform
a bitwise XOR operation between two trains of random
number {x ′′

l1(n)} and {x ′′
l2(n)} and get a train {x ′′

l3(n)} [19,20],
which is

x ′′
l3(n) = x ′′

l1(n) ⊕ x ′′
l2(n) = xl3(n) ⊕ g′

l3(n), (18)

where xl3(n) = xl1(n) ⊕ xl2(n) and g′
l3(n) = g′

l1(n) ⊕ g′
l2(n).

When this method is used, the random number generation
rate is actually 12 MHz. With this method the bias in xl3(n) is
diminished to |2δ2| [7], which is less than 1 × 10−7. Therefore,
xl3(n) can be treated as random.

The two conditions mentioned are both satisfied, so
x ′′

l3(n), the numbers generated by our QRNG, are truly
random.

It should be noted that we cannot decrease δ by choosing
a σ as large as possible, since when x ′′

d (n) is overflow,
Eq. (15) does not hold. Therefore, σ cannot be too large. In
our experiment, the probability that x ′′

d (n) is overflow is

P (overflow) = erfc

((
213 − 1

2

)
Q√

2σ ′′

)
≈ 1 × 10−13, (19)

where σ ′′ ≈ 1100Q > σ is the standard deviation of x ′′
s (n) and

erfc is the complementary error function. The probability is so
small as to be ignored.

V. CONCLUSION

We record a bit file of 1 × 109 bits for random test using two
standard batteries, ENT [21] and DIEHARD [22], to evaluate the
performance of our QRNG, and the corresponding test results
are shown in Tables I and II. It shows that the random numbers
generated by our QRNG can pass the two tests.

TABLE I. Results of the ENT test suite for a 109-bit sequence.

Entropy = 1.000 000 bit per bit
(the optimum compression would reduce the bit file by 0%)
χ 2 distribution is 0.38
(randomly would exceed this value by 53.73% of the times)
Arithmetic mean value of data bits is 0.5000 (0.5 = random)
Monte Carlo value for π is 3.141 529 406 (error 0.00%)
Serial correlation coefficient is −0.000 021
(totally uncorrelated = 0.0)

In this paper we present a random number generation
scheme based on measuring the shot noise of vacuum states.
Several nonideal factors in this scheme have been taken into
account, such as the limited bandwidth of the detector, the
imperfection of the LPF, and the electronic noise in the circuit.
By choosing a suitable sampling frequency and using the
LSB of the sampling data as random numbers, the generated
numbers are proven to be truly random and can pass ENT and
DIEHARD tests even though those nonideal factors exist. The
final generation rate is 12 Mbits/s, which is only limited by the
bandwidth of the LPF and the detector. Since electronic noise
will not influence the randomness of the numbers generated,
the detector does not need to be shot noise limited. That will
significantly reduce the difficulty of the experiment and the
generation rate can be easily enhanced up to gigahertz by
using a broadband homodyne detector.

TABLE II. Results of the DIEHARD statistical test suite for a
109-bit sequence. For the cases of multiple p-values, a Kolmogorov-
Smirnov (KS) test is used to obtain a final p-value, which
measures the uniformity of the multiple p-values. Overlapping-
Pairs-Sparse-Occupancy (OPSO) Overlapping-Quadruples-Sparse-
Occupancy (OQSO). The test is considered successful if all final
p-values satisfy 0.01 � p-values � 0.99.

Statistical test P -value Result

Birthday spacings 0.028 131 (KS) Success
Overlapping permutations 0.878 165 Success
Ranks of 31 × 31 matrices 0.401 160 Success
Ranks of 32 × 32 matrices 0.535 883 Success
Ranks of 6 × 8 matrices 0.081 696 (KS) Success
Monkey tests on 20-bit words 0.366 845 (KS) Success
Monkey test OPSO 0.839 116 (KS) Success
Monkey test OQSO 0.380 140 (KS) Success
Monkey test DNA 0.101 756 (KS) Success
Count 1’s in stream of bytes 0.492 151 Success
Count 1’s in specific bytes 0.275 160 (KS) Success
Parking lot test 0.802 237 (KS) Success
Minimum distance test 0.869 451 (KS) Success
Random spheres test 0.530 595 (KS) Success
Squeeze test 0.836 490 (KS) Success
Overlapping sums test 0.091 417 (KS) Success
Runs test (up) 0.675 106 Success
Runs test (down) 0.435 543 Success
Craps test (number of wins) 0.108 638 Success
Craps test (number of throws 0.434 041 Success
per game)
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