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Atom lithography with near-resonant standing waves
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We study the optimal focusing of two-level atoms with a near-resonant standing wave light, using both classical
and quantum treatments of the problem in the thin- and thick-lens regimes. It is found that the near-resonant
standing wave focuses the atoms with a reduced background in comparison with far-detuned light fields. For some
parameters, the quantum atomic distribution shows even better localization than the classical one. Spontaneous
emission effects are included via the technique of quantum Monte Carlo wave function simulations. We investigate
the extent to which nonadiabatic and spontaneous emission effects limit the achievable minimal size of the
deposited structures.
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I. INTRODUCTION

The ability to control the motion of atoms using laser fields
has led to the realization of optical elements such as mirrors,
lenses, beam splitters, and so on, for atomic beams. One of
the interesting applications is the laser focusing of atoms,
which is useful to the technology of atom lithography. The
principle of atom lithography is based on using a standing
wave (SW) of light as a mask on atoms to concentrate the
atomic flux periodically and create desired patterns at the
nanometer scale (for recent reviews see Refs. [1,2]). Since
the first experimental demonstration of submicron atomic
structures [3], the subject has seen a considerable growth
both theoretically [4–8] and experimentally [9–15]. In the
direct deposition setup, periodic atomic lines of sodium [3,9],
chromium [10,11], aluminum [12], ytterbium [13], and iron
[14] atoms have been successfully fabricated. The technique
has also been applied to two-dimensional pattern formation
[15].

Theoretical studies of atom lithography commonly employ
a particle optics approach to laser focusing of atoms [4,5,16].
The focal properties of the light SWs have been examined
in terms of time-dependent classical trajectories of atoms in
the light induced potential. It has been shown that the atomic
image at the focal plane exhibits a broadening due to severe
aberrations caused by anharmonicity of the sinusoidal dipole
potential [4,5]. As a result, all current lithography schemes
suffer from a considerable background in the deposited
structures. The aberration problem may be effectively resolved
by using optimized multilayer light masks, as was shown
in Ref. [16]. Quantum mechanical analysis of the focusing
of atomic beams has been performed as well. Cohen et al.
studied quantum mechanically the thin-lens regime of atom
focusing with both far detuned and exactly resonant standing
light waves [6]. Atomic nanostructures produced by exactly
resonant SW were experimentally demonstrated in Ref. [17].
In the thick-lens regime, the process of atomic focusing
is generally achieved with a blue-detuned SW light whose
detuning (�) is of the order of the Rabi frequency (�0)
characterizing the strength of the atom-light interaction [4,5].
In this case, the influence of spontaneous emission on the
focusing of atoms has been shown to be negligible by the
quantum treatment [8].

Optimizing the feature resolution achievable in atom
lithography has been studied both in the far off-resonance [16]
and on-resonance [18] regimes, by means of optimal light mask
configuration, requiring several light sources. In this article,
we investigate in detail the focusing properties of a single SW
light mask and explore the ways for reduction in spherical
aberrations. Specifically, we concentrate on the near-resonant
case (|�|/�0 <∼ 1), considering both blue- and red-detuned
light, and give a comprehensive theoretical analysis for both
the classical and quantum treatments of the problem. The
parameters for the best focusing of atoms are found as func-
tions of the detuning (|�|) using the optimization procedure
developed in Ref. [16]. To include momentum diffusion and
spontaneous emission effects on atoms, we perform Monte
Carlo wave function simulations. High-resolution deposition
of chromium atoms is considered as an example, though the
general conclusions drawn should apply well to other atoms.

The article is arranged as follows. In Sec. II, the basic
framework of the problem is defined and the focusing of
atoms is studied classically under the influence of adiabatic
light potentials. In this section, we examine the optimal
focusing scheme of Ref. [16] when applied to the atomic-beam
traversing a near-resonant SW light. In Sec. III, the problem is
treated in the quantum domain to account for nonadiabatic
and diffraction effects on atom focusing. The effects of
spontaneous emission of atoms are considered in Sec. IV.
Finally, in Sec. V, we summarize our main results.

II. FOCUSING OF ATOMS BY ADIABATIC LIGHT
POTENTIALS: CLASSICAL TREATMENT

We begin our discussion with a model based on the
interaction of a beam of two-level atoms with a near-resonant
SW light. We take the direction of propagation of the atomic
beam through the light along the z direction. The SW (assumed
to be formed along the x direction) has a frequency of ωl and
� = ωl − ω0 defines the detuning of the light frequency from
the atomic transition frequency ω0. The atom-light interaction
is characterized by the Rabi frequency

�(x,z) = �0 exp
(−z2

/
σ 2

z

)
cos (kx). (1)

Here, the term exp(−z2/σ 2
z ) accounts for the spatial variation

(a Gaussian beam profile with diameter σz) of the light intensity
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along the z direction. The cos(kx) term comes from the
sinusoidal [I (x) ∝ cos2(kx)] variation of the SW intensity
along the x direction. The quantity �0 represents the peak
Rabi frequency of the atom-light interaction and λ = 2π/k

is the wavelength of the laser beams forming the SW. The
velocity vz of the atoms along the beam axis is sufficiently
large, so the atom’s position along the z direction can be
replaced by the time dependence z = vzt . Defining σt = σz/vz,
the time-dependent Rabi frequency is thus given by

�(x,t) = �0 exp
(−t2

/
σ 2

t

)
cos(kx). (2)

The behavior of atoms in the near-resonant light field
can be best understood in the dressed state picture of the
atom-light interaction [19]. The dressed states, which are
the eigenstates of the interaction Hamiltonian, depend on
time through the time-dependent Rabi coupling Eq. (2). If the
Hamiltonian temporal variation is smooth, the atom prepared
initially in one of the eigenstates of the Hamiltonian will follow
the time-dependent eigenstate. The corresponding adiabatic
condition is [20]

|�| �
√

�0

σt

. (3)

We assume that the atoms in the beam are initially in their
ground state and that the adiabatic condition Eq. (3) is satisfied.
In this case, the atoms can be described as pointlike particles
moving in the potential

U (x,t) = sgn(�)
h̄

2

√
�2 + �2(x,t). (4)

Here sgn(�) = +1(−1) for � > 0 (� < 0). Note that this
adiabatic potential should be contrasted with the light shift
felt by the bare atomic states in the far-detuned limit [6].
The adiabatic potentials and the focusing of atoms are shown
schematically in Fig. 1.

Many aspects of atom focusing by the standing light
waves can be explained in the semiclassical picture of the
atom’s interaction with the light-induced potential [4,5,16].
Therefore, we start considering the problem in the classical
framework. We neglect spontaneous emission from the atoms
by assuming that the atom’s interaction time with the light is
much shorter compared to the lifetime of the excited atomic
level. The classical trajectories of atoms in the adiabatic light
potential Eq. (4) obey Newton’s equation of motion

d2x

dt2
+ 1

m

∂U (x,t)

∂x
= 0, (5)

where m is the atomic mass. The force induced by the
SW focuses (localizes) the atoms near the intensity minima
(maxima) for � > 0 (� < 0). As a measure of the atomic
localization, we use the localization factor [16]

L(t) = 1 + sgn(�)〈cos [2kx(t,x0)]〉

≡ 2

λ

∫ λ/4

−λ/4
dx0{1 + sgn(�) cos[2kx(t,x0)]}, (6)

where x(t,x0) is the solution of the differential Eq. (5)
satisfying the initial condition x → x0 at t → −∞. The
average in Eq. (6) is taken over the random initial positions
of the atoms, and the localization factor is measured as

FIG. 1. (Color online) Schematic representation of laser focusing
of atoms by a SW light. (a) A collimated atomic beam impinges
on the near-resonant SW light whose intensity varies sinusoidally
along the x direction. (b) The interaction with the light induces the
adiabatic potential [either plus or minus in Eq. (4)] for the external
motion of atoms depending upon the sign of the detuning. For a
positive (blue) detuning, the atoms localize near the minima of the
light intensity, while for a negative (red) detuning they get localized
near the light intensity maxima. The dashed curves represent the
quadratic approximation to the adiabatic potentials near their minima.

a function of time t counted from the moment (t = 0) of
passing the Gaussian center of the SW. The localization factor
equals zero for an ideally localized atomic ensemble and is
proportional to the mean-square variation of the x coordinate
(modulo standing-wave period) in the case of a well-localized
distribution (L 	 1).

The localization factor defined in Eq. (6) measures a
nonlinear spatial focusing of atoms beyond the linear paraxial
approximation. According to the optimal focusing theory [16],
minimal background in the atom deposition is not achieved at
the focal plane but occurs for the parameters providing global
minimum of the localization factor. The optimal parameters
can be obtained either in the thin- or thick-lens limit of
atom focusing. First, we consider the thin-lens focusing [3]
of atoms by the adiabatic potential Eq. (4), which is valid in
the Raman-Nath approximation to the atom-light interaction.
In this case, the atomic displacement along the SW direction is
negligible within the light and the focal point is well outside the
region of the light fields [5]. Within thin-lens approximation,
the SW introduces a spatially dependent sudden kick to the
atoms along the transverse (x axis) direction. The change in
velocity can be calculated from Eq. (5) as

δvx = sgn(�)
h̄k�2

0

4m

×
∫

dt
exp

(−2t2
/
σ 2

t

)
sin[2kx(t)]√

�2 + �2
0 exp

(−2t2
/
σ 2

t

)
cos2[kx(t)]

. (7)

In the Raman-Nath approximation, the position x(t) of the
atom in Eq. (7) during interaction with the light can be
approximated to be its initial position x0. After passing through
the light region, the atom (that is assumed to have zero initial
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FIG. 2. (Color online) (a) Localization factor of the atomic
distribution as a function of the dimensionless time t for σt = 0.07
and �/�0 = −0.125 (solid curve), �/�0 = 0.125 (dashed curve),
�/�0 = 5 (dotted curve). The global minimum values of L(t) are
0.17 (solid curve), 0.63 (dashed curve), and 0.42 (dotted curve).
(b) Probability density (P) of the atomic distribution at the time
t = tm of the best atomic localization. The parameters are same as
those of (a) with tm = 0.82 (solid curve), tm = 0.52 (dashed curve),
and tm = 7.38 (dotted curve). For the sake of comparison, the solid
curve has been displaced by 0.25 units along the X axis. The times tm
correspond to the global minima of the localization factor in (a).

velocity along the x axis) moves as a free particle with a
time-dependent transverse position

x(t,x0) = x0 + δvxt. (8)

Using Eqs. (6) and (8), we calculate the localization factor
as a function of dimensionless time (see below) for both blue
(� > 0) and red (� < 0) detuning conditions. The results are
shown in Fig. 2 with plots of the atomic distribution [21]
at the time of minimal localization factor. These results are
also compared with the best atomic localization that can be
achieved with the usual far-detuned (�/�0 � 1) SW light.
We use dimensionless variables in which position is measured
in units of the optical wavelength (λ), frequency in units of
the recoil frequency (ωrec ≡ h̄k2/2m), and time in units of
1/[ωrec�0σt ]. It is seen from the graph that the near-resonant
light with red detuning from the atomic transition focuses
the atoms better compared with the far-detuned light, i.e.,
the former suffers less spherical aberrations. The atomic
localization improves as the magnitude of the red detuning
decreases. This is shown in Fig. 3(a), where we plot the best
localization factor as a function of the detuning parameter
(�/�0). Note that the localization factor saturates to the well-
known value of L ≈ 0.42 in the far-detuned (|�|/�0 � 1)
case [16]. It tends to the asymptotic value of L ≈ 0.1 for
� → 0−. We note, however, that nonadiabatic quantum effects
should be taken into account when the adiabatic condition,
Eq. (3) fails (see the next section).
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FIG. 3. (Color online) Classical treatment. Minimal localization
factor of the atomic distribution as a function of the detuning �/�0

for (a) thin lens, σt = 0.07, and (b) thick lens, σt = 4.

In the opposite limit of the thick lens, the atoms are focused
within the region of the light fields [5]. The atom focusing in
this limit is very similar to the operation of the graded index
lens in traditional optics. Neglecting the time dependence in
the Rabi frequency, we find the focal length in the paraxial
approximation as

f = vzπ

2�0

√
�

ωrec
[� > 0, thick lens],

(9)

f = vzπ

2�0

√√√√√
�2 + �2

0

ωrec
[� < 0, thick lens].

From the above expressions, it is seen that the focal length
is greater for red detuning. To go beyond the paraxial
approximation, the solution x(t) of the atomic motion needs
to be obtained directly by the numerical integration of Eq. (5).
Using Eqs. (5) and (6), we obtain the localization factor of the
atomic distribution as shown in Figs. 3(b) and 4.

Comparing the graphs in Figs. 2 and 4, we see a qualitative
similarity between the thin- and thick-lens focusing of atoms.
In particular, focusing atoms by the red-detuned light gives
rise to a much reduced background of deposited atoms in
comparison to the case of atom focusing by the blue-detuned
light. In the paraxial approximation, this can be explained by
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FIG. 4. (Color online) (a) Localization factor of the atomic
distribution as a function of the dimensionless time t for σt = 4
and �/�0 = −0.125 (solid curve), �/�0 = 0.125 (dashed curve),
�/�0 = 1 (dotted curve). The global minimum values of L(t) are
0.1 (solid curve), 0.36 (dashed curve), and 0.31 (dotted curve).
(b) Probability density (P) of the atomic distribution at the time t = tm
of the best atomic localization. The parameters are same as those of
(a) with tm = 0.2 (solid curve), tm = 0.58 (dashed curve), and tm = 2
(dotted curve). For the sake of comparison, the solid curve has been
displaced by 0.25 units along the x axis. The times tm correspond to
the global minima of the localization factor in (a).
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expanding the adiabatic potentials Eq. (4) up to the quadratic
terms (parabolic fitting) near the potential minima [22]. As
shown in Fig. 1, the spatial range, in which the quadratic
approximation is valid, is wider for the case of negative
detuning (�), which results in the reduced aberrations. We
note again that the above analysis is valid only in the range
of parameters for which the adiabatic condition Eq. (3) is
satisfied. For smaller detunings (|�|/�0 	 1), nonadiabatic
and quantum effects may dominate. This is examined in the
next section.

III. OPTIMAL ATOMIC FOCUSING: EFFECTS
OF THE WAVE NATURE OF ATOMS

In the classical treatment of atom focusing discussed so far,
the internal structure of the atom was completely ignored and
the atomic motion in a single adiabatic potential was studied.
This procedure is valid even if the atomic motion is treated
quantum mechanically, provided the adiabatic condition (3) is
satisfied. In the quantum treatment, the atomic center-of-mass
wave function ψ(x,t) evolves in time according to Schrödinger
equation with the potential U (x,t) given by Eq. (4):

ih̄
∂

∂t
ψ(x,t) =

[
p2

x

2m
+ U (x,t)

]
ψ(x,t), (10)

where px denotes the center-of-mass momentum operator of
the atom along the SW (x axis) direction.

Equation (10) is useful to study the quantum effects in
the far off-resonant atom focusing. The situation becomes
more complicated if the light detuning is relatively small
(|�| 	 �0). In this case, nonadiabatic effects arise from
transitions between the dressed atomic states. Therefore, in
order to cover a wide range of detunings while taking into
account the nonadiabatic transitions, we consider the evolution
of the atomic wave function directly in the bare-states basis,
first neglecting spontaneous emission from the atoms. The
Hamiltonian for a two-level atom with excited (|e〉) and ground
(|g〉) states interacting with the SW light is given by

H (t) = p2
x

2m
− h̄�

2
(|e〉〈e| − |g〉〈g|)

+ h̄�(x,t)

2
(|e〉〈g| + |g〉〈e|), (11)

where �(x,t) is given by Eq. (2).
The wave function of the two-level atom may be expressed

as


(x,t) =
[

ψe(x,t)

ψg(x,t)

]
. (12)

Here ψe,g(x,t) correspond to the center-of-mass wave func-
tions of the atom in its excited and ground states. We consider
a spatially uniform beam of ground state atoms having initially
zero momentum along the SW direction. The initial wave
function of the atom normalized over the region of the SW
period [21] is then given by ψg(x,t0) = √

2/λ, where the initial
time t0 → −∞. Since the atomic distribution is expected to

be periodic (in space) after interaction with the light field, the
wave functions at time t can be Fourier expanded as

ψe(x,t) =
n=∞∑

n=−∞
Ce

n(t)ei(2n+1)kx,

(13)

ψg(x,t) =
n=∞∑

n=−∞
Cg

n (t)ei2nkx.

The Fourier coefficients Ce
n(t) and C

g
n (t), defined above,

represent the probability amplitudes for finding the atom in
the excited and ground states with momentum (2n + 1)h̄k

and 2nh̄k, respectively. Using Eqs. (11)–(13), the Schrödinger
equation ih̄∂
/∂t = H
 then leads to the coupled equations
for the Fourier amplitudes:

i
d

dt
Ce

n(t) =
{

(2n + 1)2ωrec − �

2

}
Ce

n(t)

+ �(t)

4

[
Cg

n (t) + C
g

n+1(t)
]
,

(14)
i

d

dt
Cg

n (t) =
{

4n2ωrec + �

2

}
Cg

n (t)

+ �(t)

4

[
Ce

n(t) + Ce
n−1(t)

]
,

with �(t) = �0 exp(−t2/σ 2
t ).

We now proceed to the calculation of the quantum local-
ization factor defined as

L(t) = 1 + sgn(�)〈cos(2kx)〉

≡ 1 + sgn(�)
∫ λ/4

−λ/4
dx|
(x,t)|2 cos (2kx). (15)

The atomic density |
(x,t)|2 = |ψe(x,t)|2 + |ψg(x,t)|2 is
found using Eq. (13). For the initial beam of ground-state atoms
C

g

0 (−∞) = √
2/λ. The localization factor can be obtained by

solving numerically Eq. (14):

L(t) = 1 + sgn(�)
λ

2
Re

n=∞∑
n=−∞

[
Ce

n(t)Ce
n+1(t)∗

+Cg
n (t)Cg

n+1(t)∗
]
. (16)

As discussed in the previous section, the best spatial localiza-
tion of atoms occurs at the time t = tm of the global minimum
of the localization factor. To minimize the localization factor
Eq. (16), we first rescale the time variable t in terms of the
recoil time trec ≡ 1/ωrec. In the classical analysis of atom
focusing, we used a time scale that depends on the strength
(�0) of the atom-light interaction. However, a quantized
space-periodic motion of ground state atoms in free space [23]
repeats itself (in time) after each revival period of tR = πtrec/2.
It is therefore convenient to use the recoil time trec for scaling
the variables t and σt .

In Figs. 5 and 6, we display the localization factor and
the atomic spatial density for the thin-lens focusing of atoms.
Comparing the quantum mechanical localization factor with
its classical counterpart (see Figs. 2 and 5), we see that they
have the same structure for short times and the same minimal
values for both blue- and red-detuning situations. However,
the localization factor differs considerably in the long time
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FIG. 5. (Color online) Localization factor of the atomic distribu-
tion as a function of the dimensionless time t for the parameters σt =
0.0006, �0 = 1.92 × 105, and (a) �/�0 = −0.125, (b) �/�0 =
0.125 (solid curve), �/�0 = 5 (long-dashed curve). The global
minimum values of L(t) are (a) 0.15, and (b) 0.2 (solid curve), 0.42
(long-dashed curve).

evolution of the atomic distribution. It reaches a new minimum
value of L = 0.2 at about half of the revival period for the
blue detuned (�/�0 = 0.125) light [24]. Due to these distinct
quantum features in the atom localization, the quantum atomic
distribution becomes narrower than the classical distribution
[compare Figs. 2(b) and 6] in the atom focusing by the blue-
detuned light. Next, we show the best quantum localization of
atoms that can be achieved by varying the detuning [Fig. 7(a)].
Again, comparing it with the classical result [see Fig. 3(a)],
it is seen that they are identical for the red-detuning (� < 0)
case. New quantum features exist only in the focusing of atoms
by the blue-detuned light (� > 0). For the thick-lens focusing
of atoms, the results are shown in Figs. 7(b) and 8. In this
case, the quantum and classical results are quite similar in
the adiabatic regime of atom focusing and there are no distinct
quantum features in the localization of atoms. The wave effects
in propagation have a limited manifestation in this case due to
the relatively short focal length.

When the light frequency is tuned very close to the
atomic resonance (|�| 	 �0), the adiabatic potentials, Eq. (4),
experience sharp spatial variations along the x coordinate in
the regions of avoided crossings near the nodes of the SW. As
a result, nonadiabatic effects degrade greatly the focusing of
atoms. In this case, the atoms do not follow single adiabatic
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FIG. 6. (Color online) Probability density (P = |
(x,t)|2) of the
atomic distribution at the time t = tm of the best atomic localization.
The parameters are σt = 0.0006, �0 = 1.92 × 105, and �/�0 =
−0.125, tm = 7 × 10−3 (solid curve), �/�0 = 0.125, tm = 0.778
(dashed curve), �/�0 = 5, tm = 0.72 (long-dashed curve). For the
sake of comparison, the solid curve has been displaced by 0.25 units
along the x axis. The times tm correspond to the global minima of the
localization factor in Fig. 5.
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FIG. 7. (Color online) Quantum treatment. Minimal localization
factor of the atomic distribution as a function of the detuning �/�0

for (a) thin lens, σt = 0.0006, and (b) thick lens, σt = 0.01.

potential [either plus or minus in Eq. (4)] during the interaction
with the SW but rather make random transitions between them
in the regions of quasicrossing. As a result, they tend to focus
near both the minima and maxima of the light intensity with
no well-defined localization region, as shown in Fig. 9 for the
thick-lens focusing. The localization factor defined in Eq. (15)
is not appropriate to characterize the atomic distribution for
this case. It is to be noted that the result of splitting of atomic
wave packets (similar to Fig. 9) by nonadiabatic effects is a
common feature in the thin-lens regime as well. In fact, we have
verified this numerically and found that our numerical results
are consistent with the analytical study of atom focusing using
resonant SW’s considered in Ref. [6].

IV. MONTE CARLO SIMULATIONS

We have so far simplified the classical and quantum
treatments of the problem by assuming that the atoms do
not change their internal states by spontaneous emission
during the interaction with the light. This is strictly valid for
far-detuned light fields when an adiabatic elimination of the
excited atomic level may be performed [6]. However, for atoms
interacting with the near-resonant SW, the restriction to include
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FIG. 8. (Color online) (a) Localization factor of the atomic
distribution as a function of the dimensionless time t for the
parameters σt = 0.01, �0 = 4 × 104, and �/�0 = −0.125 (solid
curve), �/�0 = 0.125 (dashed curve), �/�0 = 1 (long-dashed
curve). The global minimum values of L(t) are 0.1 (solid curve),
0.37 (dashed curve), and 0.31 (long-dashed curve). (b) Probability
density (P = |
(x,t)|2) of the atomic distribution at the time t = tm
of the best atomic localization. The parameters are same as those of
(a) with tm = 0 (solid curve), tm = 1.5 × 10−3 (dashed curve), and
tm = 5.3 × 10−3 (long-dashed curve). For the sake of comparison, we
have displaced the solid curve by 0.25 units along the x axis and the
dashed curve by 20 units along the P axis. The times tm correspond
to the global minima of the localization factor in (a).
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FIG. 9. Probability density (P = |
(x,t)|2) of the atomic dis-
tribution for the parameters σt = 0.01, �0 = 2 × 104, t = 0, and
�/�0 = 10−2.

spontaneous emissions may be relaxed only if �σt 	 1, where
� is the decay rate of the excited atomic level. In the specific
case of the chromium atom (� = 238 in units of the recoil
frequency ωrec) deposition which we consider, the quantity �σt

becomes of the order of 0.1 and 2 in the thin (σt = 0.0006)
and thick (σt = 0.01) lens regimes, respectively. Therefore,
it is necessary to study the extent to which spontaneous
emission degrades the focusing performance of the adiabatic
light potentials.

The effects of spontaneous emission on the focusing of
atoms are twofold. First, it may modify the trajectories of
atoms by imparting momentum kicks in random directions.
Second, the dressed internal state of the atom changes due to
spontaneous emissions, resulting in random jumps between
the plus and minus adiabatic potentials [see Eq. (4)] that the
atom experiences. To model all these features, we employ the
quantum Monte Carlo wave function (MCWF) simulations
[25,26] for the description of atoms emitting spontaneous
photons and moving in a SW light field. In this approach, the
atomic density P is calculated by forming N realizations of
quantum trajectories ψs

e,g(x,t) and then averaging over them:

P ≡ |
(x,t)|2 = 1

N

N∑
s=1

[∣∣ψs
e (x,t)

∣∣2 + ∣∣ψs
g(x,t)

∣∣2]
. (17)

Each quantum trajectory ψs
e,g(x,t) consists of a set of

deterministic Hamiltonian evolution periods interrupted by
quantum collapses. The evolution is governed by a non-
Hermitian Hamiltonian Heff = H (t) − ih̄(�/2)|e〉〈e|, where
the term H (t) describes the coherent dynamics of the atom-
light interaction as given in Eq. (11) and the imaginary term
(containing �) accounts for the spontaneous decay of the
excited atomic level. The collapse of the atomic wave function
is given by the action of the operator

Ck′ = [�N(k′)]1/2 exp(−ik′x)|g〉〈e|, (18)

where

N (k′) = (3/8k)

[
1 +

(
k′

k

)2
]

(19)

is the normalized probability density for the distribution
of the spontaneously emitted photons with the momentum
component h̄k′ along the SW direction (x axis).

When there is no spontaneous emission event, the internal
states of the atom are coupled only by stimulated processes.
The atomic wave function at time t is given by a Fourier series
[cf. Eq. (13)]

ψe(x,t) =
n=∞∑

n=−∞
Ce

n(t,ti)e
i[p0+(2n+1)h̄k]x/h̄,

(20)

ψg(x,t) =
n=∞∑

n=−∞
Cg

n (t,ti)e
i[p0+2nh̄k]x/h̄,

where p0 is the momentum of the atom along the SW direction
at the initial time ti . The Fourier coefficients defined above
depend on the initial time ti and evolve with time t (until a
spontaneous emission takes place) as governed by the non-
Hermitian Hamiltonian Heff :

i
d

dt
Ce

n(t) =
{

[po + (2n + 1)h̄k]2

2mh̄
− �

2
− i�

2

}
Ce

n(t)

+ �(t)

4

[
Cg

n (t) + C
g

n+1(t)
]
,

(21)

i
d

dt
Cg

n (t) =
{

[po + 2nh̄k]2

2mh̄
+ �

2

}
Cg

n (t)

+ �(t)

4

[
Ce

n(t) + Ce
n−1(t)

]
.

If a spontaneous emission from the atom takes place at the time
t , the momentum h̄k′ of the spontaneously emitted photon
is chosen randomly according to the probability law N (k′)
[Eq. (19)] and the collapse of the atomic wave function to the
ground state is carried out with the operator Eq. (18) as follows

Cg
n (t) = Ce

n(t)

/√
(λ/2)

∑
n

∣∣Ce
n(t)

∣∣2
,

Ce
n(t) = 0, (22)

p0 → p0 + h̄k − h̄k′.

In the MCWF simulations [26], the random moment t

at which the spontaneous emission takes place is chosen
when the decaying total norm of the atomic wave function
reaches the value of 1 − ε, where ε ∈ [0, . . . 1] is a random
number uniformly distributed between 0 and 1. The moment
of emission is determined by solving the equation

1 − (λ/2)
n=∞∑

n=−∞

[∣∣Ce
n(t,ti)

∣∣2 + ∣∣Cg
n (t,ti)

∣∣2] = ε. (23)

We take the initial time ti to be −5σt (instead of −∞) at
which the Rabi frequency �(x,t) [Eq. (2)] drops significantly
compared to its peak value. We assume, as before, the
initial condition in the form of an atomic plane wave in
the ground state with zero transverse momentum (p0 = 0).
The norm |
(t)|2 = (λ/2)

∑
n[|Ce

n(t,ti)|2 + |Cg
n (t,ti)|2] of the

wave function is then obtained by solving Eq. (21) until the
time t = tMC at which Eq. (23) is fulfilled. At this moment,
we collapse the atomic wave function to the ground state and
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FIG. 10. (Color online) (a) Localization factor of the atomic
distribution as a function of the dimensionless time t around its
global minimum for the parameters σt = 0.0006, �0 = 1.92 × 105,
�/�0 = −0.125, and � = 238 (solid curve), � = 0 (dashed curve).
The minimum values of L(t) are 0.175 (solid curve) and 0.15
(dashed curve). (b) Probability density (P = |
(x,t)|2) of the atomic
distribution at the time t = tm of the best atomic localization. The
parameters are same as those of (a) with tm = 7 × 10−3. The solid
curve is almost indistinguishable from the dashed curve on the scale
shown. For clarity, the close-up to the right of origin (x = 0) is shown
in the inset.

add a recoil momentum to the atom [see Eqs. (18) and (22)].
After the collapse, the random number ε is renewed and the
process gets repeated by solving again Eq. (23) starting from
the new initial time ti = tMC and the new values for the initial
Fourier coefficients. This procedure gets continued until the
final time t at which the calculation of the deposited atomic
density should be performed. This results in a single quantum
trajectory ψs

e,g(x,t) obtained by normalizing the wave function
Eq. (20) at the final time t . An ensemble average of many such
trajectories [Eq. (17)] is statistically equivalent to the solution
of the density matrix equations.

When the detuning of the light frequency is relatively
large (|�| � �0), the atoms primarily evolve in their ground
state during the interaction with the light. In this case,
the degradation of the atom focusing due to spontaneous
emission is negligible as reported in earlier studies [6,16].
However, if a near-resonant light is used to focus the atomic
beam, the spontaneous emission may broaden significantly
the atomic distribution because of the random atomic recoils
and fluctuations of the focusing potentials discussed above.
These effects are particularly considerable in the case of atom
focusing by red-detuned light fields, because the focusing
then occurs near the light intensity maxima, resulting in
substantial population of excited atoms. In order to measure
this quantitatively, we again use the localization factor Eq. (15)
with the atomic density |
(x,t)|2 given by Eq. (17). We find
that an average of N = 5000 quantum trajectories is sufficient
to give a statistical error below 2% of the mean value in
Eq. (17). The results are shown with (� = 238) and without
(� = 0) spontaneous decay of the atoms for the thin-lens
(Fig. 10) and thick-lens (Fig. 11) focusing regimes. It is seen
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FIG. 11. (Color online) (a) Localization factor of the atomic
distribution as a function of the dimensionless time t around its global
minimum for the parameters σt = 0.01, �0 = 4 × 104, �/�0 =
−0.125, and � = 238 (solid curve), � = 0 (dashed curve). The
minimum values of L(t) are 0.18 (solid curve) and 0.1 (dashed curve).
(b) Probability density (P = |
(x,t)|2) of the atomic distribution at
the time t = tm of the best atomic localization. The parameters are
same as those of (a) with tm = 0. For clarity, the close-up to the right
of origin (x = 0) is shown in the inset.

from the graphs that spontaneous emission does not shift the
optimal time t = tm for the global minimum of the localiza-
tion factor, but it reduces the atomic density and increases
the background significantly in the thick-lens focusing of
atoms.

V. SUMMARY

In this article we studied the spatial focusing of an atomic
beam by a near-resonant SW light in the context of atom lithog-
raphy. The problem was treated both classically and quantum-
mechanically using the optimization approach suggested in
Ref. [16] for the efficient focusing of atomic beams. We found
that in the case of red detuning, the spherical aberrations of
the periodic potential are reduced as the SW frequency gets
closer to the atomic transition resonance, resulting in better
focusing both in the thin- and thick-lens regimes. When the
light mask is blue detuned, classical calculations show that
near-resonance light degrades the localization. However, in
the thin-lens regime, quantum-mechanical effects give rise
to a new focusing mechanism that enhances the localization
in this case. Finally, we considered the role of nonadiabatic
transitions between the dressed atomic states and the effects of
spontaneous emission of atoms on the quality of the deposition
profile.
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