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Interplay of vacuum-mediated inter- and intra-atomic couplings in a pair of atoms
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The resonance fluorescence emitted by a system of two dipole-dipole interacting nearby four-level atoms in a
J = 1/2 ↔ J = 1/2 configuration is studied. This setup is the simplest realistic model system which provides
a complete description of the (inter-atomic) dipole-dipole interaction for arbitrary orientation of the inter-atomic
distance vector, and at the same time allows for intra-atomic spontaneously generated coherences. Our main
interest is the interplay of both these different coupling mechanisms. We discuss different methods to analyze
the contribution of the various vacuum-induced coupling constants to the total resonance fluorescence spectrum.
These allow us to find a dressed state interpretation of the contribution of the different inter-atomic dipole-dipole
couplings to the total spectrum. We further study the role of the spontaneously generated coherences, and
identify two different contributions to the single-particle vacuum-induced couplings. We show that they have
a noticeable impact on the total resonance fluorescence spectrum down to small inter-atomic distances, even
though the dipole-dipole coupling constants then are much larger in magnitude than the the single-particle
coupling constants. Interestingly, we find that the inter-atomic couplings can induce an effect of the intra-atomic
spontaneously generated coherences on the observed spectra which is not present in single-atom systems.
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I. INTRODUCTION

Coherence and interference effects form the basis of many
quantum-mechanical phenomena [1,2]. Its applications have
been revolutionized by the invention of the laser as a coherent
source of light. But somewhat surprisingly, under certain
conditions it is also possible for coherences to be created
in the interaction with the vacuum. An archetype system
in which these spontaneously generated coherences (SGC)
have been predicted is the three-level V-type system shown
in Fig. 1(A–C) [3–5]. The relevant physical processes can be
understood intuitively as follows. Suppose the atom is initially
in state |e1〉. The atom can be deexcited to the ground state
|g〉 by the emission of a photon into the vacuum. This photon
can leave the system, giving rise to spontaneous emission.
Alternatively, it can be reabsorbed on the same transition,
which leads to the Lamb shift. Finally, it could be reabsorbed
on the second transition, with final state |e2〉. The latter process
leads to the creation of SGC between the two excited states,
and it has been shown in many theoretical works that such
SGC could give rise to fascinating applications [1,6–18]. The
interpretation is facilitated by a quantized treatment of the
light fields [19]. In contrast, so far there are no conclusive
observations of SGC in atomic systems [20]. The reason for
this is that the process leading to SGC only occurs if both
the two involved transitions are near-degenerate, and if their
dipole moments are nonorthogonal. Speaking pictorially, the
photon then cannot distinguish between the two transitions.
Unfortunately, these conditions usually are not fulfilled in real
atoms. A proof-of-principle experiment verifying the presence
of SGC could, however, be achieved in quantum dots [21].

Recently it was found that there is a variant of such vacuum-
mediated couplings with slightly relaxed conditions [22–24].
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In this case, the two transitions involved do not share a common
state, as it is the case, e.g., with |g〉 in the V-type scheme.
The simplest example is the four-level J = 1/2 ↔ J = 1/2
setup, see Fig. 1(D–F). One might be tempted to conclude that
vacuum-mediated interactions between the two transitions are
not possible, because two ground states of the transitions are
orthogonal, 〈S−

1 S+
2 〉 = 0 with S−

1 = |3〉〈1| and S+
2 = |4〉〈2|.

But it turns out that there are observables which nevertheless
are affected by SGC. An example is the resonance fluorescence
spectrum, which depends on 〈S−

1 (t)S+
2 (t + τ )〉. This two-time

correlation was shown to be nonzero in general, which can be
understood from the fact that the atom may evolve between
the two ground states |3〉 and |4〉 in the time delay τ . It is
therefore possible to observe the effects of SGC in realistic
atomic systems. In the following, we will denote couplings of
this type as intra-atomic couplings or single-particle vacuum
couplings (SPVC), since two transitions within the same atom
are coupled.

Similar vacuum-mediated photon exchange processes can
also take place between two transition dipoles belonging to
different atoms [25–41]. Figure 1(G–I) illustrates this for two
two-level systems. Here, one atom is deexcited and emits a
virtual photon, and the second atom absorbs this photon and
is excited from the ground state to the excited state. Processes
of this type are known as dipole-dipole couplings, and will
be called inter-atomic couplings of two-particle vacuum
couplings (TPVC) in the following. The TPVC crucially
influence the dynamics of the combined system, as can be
seen, for example, from the resonance fluorescence spectrum
[34,37]. Such an energy transfer process between two particles
is only possible if the distance r separating the two atoms is
small compared to the respective transition wavelength, and
if the two transitions are near-degenerate. In contrast to the
SPVC, however, in general for TPVC there is no restriction on
the dipole moments of the two transitions [35–41]. The TPVC
between orthogonal dipole moments only vanish in certain
relative alignments of the inter-atomic distance vector and the
involved dipole moments. Therefore, in general TPVC have to
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FIG. 1. (Color online) Vacuum-mediated couplings between dif-
ferent transition dipole moments. (A–C) illustrate intra-atomic or
single-particle vacuum-induced couplings (SPVC) between different
transition dipole moments in a single atom. (D–F) show a generalized
form of these SPVC in a four-level J = 1/2 ↔ J = 1/2 level
scheme. (G–I) depict inter-atomic or two-particle vacuum induced
couplings (TPVC) between transition dipole moments in different
atoms. In all three cases, the system is initially excited on one
of the involved transitions, see (A,D,G). In the second step, a
virtual photon is emitted together with the deexcitation of the atom
(B,E,H). Finally, the virtual photon is reabsorbed on the second
transition (C,F,I).

be described using complete angular momentum multiplets in
order to obtain correct results [38].

From the above discussion it is clear that TPVC and SPVC
are closely connected, and this is also reflected in their similar
theoretical description and in the many applications that have
been suggested. Nevertheless, so far, the two couplings have
only been considered individually.

Motivated by this, here, we study the simplest realistic
atomic system in which both TPVC and SPVC can occur.
In particular, we analyze the interplay of both these different
types of dipole-dipole couplings. Our system consists of two
dipole-dipole interacting four-level systems in the J = 1/2 ↔
J = 1/2 configuration, see Fig. 2. In this setup, each individual
atom is modeled by a complete set of angular momentum
states and fulfills the conditions for the generalized SPVC.
In addition, the four dipole-allowed transitions in each atom
interact with the corresponding four transitions in the second
atom, giving rise to TPVC both between parallel and between
orthogonal transition dipole moments. Our general aim is to
study the impact of the couplings on the system dynamics
and the optical properties. More specifically, we are interested
in the role of the SPVC and the dependence of the SPVC
contribution on the interparticle couplings. We discuss the
resonance fluorescence spectrum of the two-atom system as
the main observable. In order to understand the effects of the
various couplings, we analyze different interparticle distance
classes. In the small-distance limit, the TPVC coupling
coefficients are much larger than all other relevant system
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FIG. 2. (Color online) The analyzed model system consisting
of two nearby four-level atoms in J = 1/2 ↔ J = 1/2 atoms.
This configuration is the simplest realistic system in which both
single-particle and two-particle vacuum-induced couplings occur.
(a) Geometrical setup. We assume that atom 1 is located at the origin
and atom 2 at the point r2. (b) Inner structure of each of our two
atoms in the J = 1/2 → J = 1/2 configuration. Note that the energy
differences are not to scale.

parameters. In the large-distance case, the TPVC vanish, such
that the SPVC are the dominant vacuum couplings. In an
intermediate case, both TPVC and SPVC coupling parameters
are of similar order. We interpret our results using two different
methods. The first analysis is based on the eigenvalues of
the matrix governing the system dynamics, which describe
position and width of the different eigenstates of the system.
Second, by artificially switching individual couplings on or
off in the analysis, the quantitative impact on the results
can be studied. A combination of both methods allows us
to understand the formation of multiply dressed states in
the system in detail. Regarding the SPVC, we find that the
contributions to the spectrum by the single-particle vacuum-
induced couplings survive even at very low interparticle dis-
tance, where the TPVC coupling coefficients are much larger
than the corresponding SPVC coefficients. Therefore, also in
the two-particle case, the J = 1/2 ↔ J = 1/2 configuration
enables one to observe spontaneously generated coherences in
a realistic level scheme. We distinguish two different types of
intra-atomic couplings, which contribute either directly in the
equations of motion or in the total expression for the resonance
fluorescence. We find that in particular for small inter-atomic
distances, the parts entering the expression for the spectrum are
the dominating intra-atomic coupling contributions, as in the
single-particle case. But in contrast to the single-particle case,
also the SPVC contribution in the equations of motion can
significantly contribute to the obtained fluorescence spectra
in the two-atom case. We thus conclude that the TPVC can
induce additional SPVC.

The outline of the paper is as follows. In Sec. II A we
provide the theoretical background for our analysis. We start
by deriving the equations of motion for our biatomic system.
We then derive expressions for the resonance fluorescence
spectrum as our main observable. Finally, we present the
eigenstate spectrum of our system as a tool to analyze the
contribution of the different coupling constants. Section III
contains our results. We start by discussing the eigenstate
spectrum in Sec. III A, and then consider the role of inter-
atomic couplings in Sec. III B. Finally, in Sec. III C, we
analyze intra-atomic couplings. Section IV concludes with a
summary.
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II. THEORETICAL ANALYSIS

A. Model system

We consider a system consisting of N = 2 atoms in the
J = 1

2 ↔ J = 1
2 configuration. Each atom has L = 4 levels

and D = 4 possible electric dipole allowed (E1) transitions
with dipole moments di (i ∈ {1, . . . ,4}) as shown in Fig. 2.
d1 and d2 couple to linearly polarized light, the so-called π

transitions, whereas the σ transitions d3 and d4 couple to
circularly polarized photons. We define the mean transition
frequency as

ω0 = 1

D

D∑
i=1

ωi, (1)

where ωi denotes the transition frequency of the ith transition.
Calculating the dipole matrix elements for our system via the
Wigner-Eckart theorem [42], we find

d1 = 〈1|µ d̂ |3〉µ = − 1√
3
Dez, d2 = −d1,

d3 = 〈2|µ d̂ |3〉µ =
√

2

3
De−, d4 = (d3)∗.

Here, D is the reduced dipole matrix element, e− = (ex −
iey)/

√
2 is the circular polarization vector, µ ∈ {1,2}, and

ex,ey,ez are the Cartesian unit basis vectors. We assume
the system to be driven by a monochromatic laser beam
propagating in the y direction,

EL(t) = ELei(kL·r−ωLt)ε + c.c. (2)

EL is the field amplitude, kL the wave vector, and ωL the
frequency, and we choose the polarization ε = ez such that the
driving field only couples to the π -transition dipoles d1 and
d2.

The free evolution of our two atoms is governed by the
Hamiltonian

Hat = h̄

2∑
µ=1

2∑
i=1

(
ωiSµ

i+S
µ

i− + ωi+2Sµ

i−S
µ

i+
)
, (3)

with Sµ

i+ the atomic excitation operator for transition i in
atom µ, and Sµ

i− is the corresponding deexcitation operator.
In Schrödinger’s picture, the interaction with the laser field is
described by

HL = −h̄

2∑
µ=1

4∑
i=1

[
�i(rµ)e−iωLtSµ

i+ + H.c.
]
. (4)

Here, the position-dependent Rabi frequency is defined as

�i(r) = �ie
ikL·r , (5a)

�i = di · εEL

h̄
. (5b)

Since d1 and d2 are antiparallel, we can define

�(r) = �eikL·r = �1(r) = −�2(r). (6)

In a suitable interaction picture with �i = ωL − ωi the laser
detunings, the full Hamiltonian then reads

H̃ = −h̄

2∑
µ=1

2∑
i=1

{
�i S̃µ

i+S̃
µ

i− + [
�i(rµ)S̃µ

i+ + H.c.
]}

. (7)

Finally, the system dynamics can be described by the master
equation

∂t �̃at(t) = 1

ih̄
[H̃,�̃at(t)] + L��̃at(t) + Lγ �̃at(t). (8)

Here,

L��̃at(t) = i

N∑
µ,ν=1
µ �=ν

D∑
i=1

D∑
j=1

�
µν

ij

[
S̃µ

i+S̃ν
j−,�̃at(t)

]
(9)

is a modification to the coherent part of the evolution arising
from the dipole-dipole coupling (TPVC) of the two atoms,
as can be seen from the restriction µ �= ν of the summation.
It leads to the formation of collective dressed states, similar
to the well-known symmetric and antisymmetric collective
states in two interacting two-level atoms [1]. It can be seen
that couplings between all four transitions in one of the atoms
to all four transitions in the second atom are considered. The
incoherent part is given by

Lγ �̃at(t) = −
N∑

µ,ν=1

D∑
i=1

D∑
j=1

�
µν

ij

[
S̃µ

i+S̃ν
j−�̃at(t)

+ �̃at(t)S̃µ

i+S̃ν
j− − 2S̃ν

j−�̃at(t)S̃µ

i+
]
. (10)

This term essentially contains three types of contributions. For
µ = ν and i = j , i.e., absorbing and emitting transitions are
identical, the term describes the usual spontaneous emission
with the rates γi of the individual transitions i,

γi = �
µν

ii . (11)

Second, if the energy exchange occurs between different
transitions in the same atom (µ = ν, but i �= j ), then the
corresponding process is a SPVC governed by the coupling
constant

�
µµ

ij = √
γiγj

di · d∗
j

|di ||dj | . (12)

Here, the normalized scalar product of the two dipole mo-
ments accounts for the fact that SPVC only occur between
nonorthogonal transition dipole moments. Finally, the terms
with µ �= ν and i �= j describe TPVC with coupling constants
�

µν

ij . The incoherent and coherent TPVC coupling constants
van be expressed as

�
µν

ij = 1

h̄
[(di)

TIm
↔
χ (rµν)d∗

i ] (13)

and

�
µν

ij = 1

h̄
[(di)

TRe
↔
χ (rµν)d∗

i ], (14)
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with the help of the tensor

↔
χpq (r) = (k)3

4πε0

[
δpq

(
1

η
+ i

η2
− 1

η3

)

− [r]p[r]q
r2

(
1

η
+ 3i

η2
− 3

η3

)]
eiη.

In the following we assume the energy differences δ = δa = 0.
This corresponds to the case where no external magnetic field is
applied. Then the laser detunings �1 and �2 become equal, and
we denote them by �. Additionally, all transition frequencies
become equal ωi = ω0.

B. Resonance fluorescence spectrum

The total resonance fluorescence spectrum is given by the
Fourier transform of the two-time correlation function of the
electric field operators [2]

S(ω̃) = 1

2π

∫ ∞

−∞
e−iω̃τ 〈Ê

(−)
(R,t + τ )Ê

(+)
(R,t)〉stdτ. (15)

In the far field zone, the positive frequency part can be
calculated as [3]

Ê
(+)

(R,t) = Ê
(+)
free(R,t) − 1

4πε0Rc2

2∑
µ=1

4∑
i=1

ω2
i ζ (di ,R̂)∗

× S̃µ

i−(t̂)e−iki R̂·rµ . (16)

The negative frequency part Ê
(−)

(R,t) can be found by Her-

mitian conjugation of Ê
(+)

(R,t). Here, R = R R̂ denotes the
position of the photon detector and t̂ = t − R/c the retarded
time with c the speed of light. We have also introduced the
cross product factor ζ (di ,R̂) which describes the polarization
structure of the emitted light,

ζ (di ,R̂) = R̂ × (R̂ × di). (17)

In Eq. (16), the first term denotes the positive frequency part
of the free field. If the point of observation lies outside the
driving laser beam, it does not contribute to the correlation
function.

Since we assume a polarization sensitive detector, it can
detect photons emitted by σ and π transitions separately. For
this, we choose the observation direction for the π light in
the x-y plane as R̂π = (1,1,0)T /

√
2. Then, products of the

form ζ (di ,R̂π )ζ ∗(dj ,R̂π ) with i ∈ {1,2} and j ∈ {3,4} vanish.
Thus we can observe the photons emitted by the π transitions
separately.

Ignoring retardation effects [43], the spectrum for the
linearly and circularly polarized light can be expressed as

Sπ (ω̃) = �π

π

∫ ∞

0
e−iω̃τ

2∑
µ,ν=1

2∑
i,j=1

(−1)i+j

× 〈
S̃µ

i+(t + τ )S̃ν
j−(t)

〉
ste

ik0 R̂π (rµ−rν )dτ. (18)

Here, �π = ω4
0/(4πε0Rc2)2ζ (d1,R̂π )ζ ∗(d1,R̂π ). Through-

out our analysis, we keep the positions of the detectors fixed,
such that �π is a constant prefactor which we will neglect in
our numerical calculations.

Next, we decompose the transition operators in mean values
and fluctuations,

S̃µ

i±(t) = 〈
S̃µ

i±(t)
〉
st1 + δS̃µ

i±(t), (19)

where 1 = 11 ⊗ 12 is the product of the two spaces belonging
to the two atoms. Inserting this in Eq. (18) it turns out that
the mean value contributions lead to the coherent part of the
spectra, whereas the fluctuations determine the incoherent part
[2]. The coherent parts of the spectra evaluate to

Sπ
coh(ω̃) = δ(ω̃)Iπ

coh, (20)

where Iπ
coh denotes the total coherent resonance fluorescence

intensity.
Since the coherent part of the spectrum only consists of a

delta-peaked contribution at the driving laser field frequency,
throughout our analysis we will focus on the incoherent part
of the resonance fluorescence spectrum. In order to calculate
the incoherent spectra we now define functions containing the
Fourier transform of two-time averages as

T µν

ij (ω̃) =
∫ ∞

0
e−iω̃τ

〈
δS̃µ

i+(t + τ )δS̃ν
j−(t)

〉
ste

ik0 R̂(rµ−rν )dτ.

(21)

The T µν

ij (ω̃) can be evaluated using the quantum regression
theorem [44,45]. Using these functions, the incoherent π

spectrum can be written as

Sπ
inc(ω̃) = �π

π

2∑
µ,ν=1

2∑
i,j=1

(−1)i+jT µν

ij (ω̃). (22)

C. Eigenstate analysis

It is well known that the interpretation of the dynamical
properties of a given quantum optical system often is facilitated
by the introduction of the system dressed states. These
dressed states are commonly defined as the eigenstates of
the interaction picture Hamiltonian [2]. For our purposes, we
follow a similar strategy, but include the incoherent parts of the
master equation as well, since they are crucial for the SPVC
and TDPC effects studied here. We start by writing the master
equation Eq. (8) as a vector-matrix equation

∂t �̃at(t) = M �̃at(t). (23)

Here, �̃at(t) is a vector containing the 256 different density
matrix elements describing our system, and M is a 256×256
matrix describing the dynamics of the system. Next, we apply
a unity transformation U

Mdiag = UMUT, (24)

�̃D = U �̃at, (25)

leading to a diagonal matrix Mdiag and a transformed state
vector �̃D . The solution of the transformed master equation is
given by

�̃D(t) = eMdiagt �̃D(0). (26)

We express the complex eigenvalues of Mdiag as

ξj = χj + iυj , (27)
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with j ∈ {1, . . . ,256} and χj ,υj ∈ R. Then, the components
of the solution for the transformed density matrix vector can
be written as

[�̃D(t)]j = eξj t [�̃D(0)]j = e(χj +iυj )t [�̃D(0)]j . (28)

Similar to the dressed state analysis, we find that negative
real parts of the eigenvalues lead to an exponential decay of
�̃D(t), whereas the imaginary parts result in an energy shift.
Therefore, the υj can be used to understand the origin of the
different lines in the resonance fluorescence spectrum.

III. RESULTS

To allow for a clearer interpretation of the results, in the
following discussion, we fix certain parameters. The case
of degenerate magnetic sublevels δa = δ = 0 is considered,
since we want to focus on the impact of the vacuum-induced
couplings on the resonance fluorescence spectrum. Nonzero
δa = δ = 0 would give rise to additional peaks in the spectra
unrelated to the vacuum-induced couplings. We further assume
the atoms to be located in the x-y plane (θ = π/2) and choose
φ = π/4. This alignment choice eliminates the TPVC between
one π and one σ transition, and therefore simplifies the
interpretation of the spectra in terms of the coupling constants.
It should be noted that fixing the alignment does not necessarily
imply a restriction of generality. For an undriven pair of atoms,
the eigenstate spectrum is independent of the alignment of
the inter-atomic distance vector, since there is no preferred
direction in space [38]. This independence of the energy levels
on the alignment persists in the presence of driving fields
as long as the ac Stark shifts are small perturbations to the
dipole-dipole induced level shifts [41]. For example, for the
parameters in Figs. 6 and 7, the peak positions depend little
on the values of θ and φ. In contrast, the peak amplitudes
are influenced by both θ and φ. These amplitudes, however,
will not be of relevance to the following discussion. For the
driving field Rabi frequency, we choose � = 10γπ if not noted
otherwise.

A. Eigenstate analysis

We start by analyzing the position of the system’s dressed
states in order to identify different parameter ranges of interest.
Figure 3(a) shows the imaginary parts υj of all eigenvalues of
the matrix Mdiag in dependence of the Rabi frequency and at a
large inter-atomic distance rµν = r12 = 10λπ . In this case, the
two atoms essentially act independently. Here, the imaginary
parts of the eigenvalues lie around 0, ±�/γπ , and ±2�/γπ .
It should be noted, however, that not all potential positions
indicated by the eigenstate analysis do lead to a significant
peak in the spectrum. In fact, in [23] it was shown that in
the spectrum of a single such a four-level atom, only peaks at
0,±�/γπ occur. We also have to expect this Mollow spectrum
for two independent atoms. In Fig. 3(b), the positions of the
eigenstates are shown against the inter-atomic distance r12

for fixed Rabi frequency � = 10γπ . Three different distance
regimes can be distinguished. In the large-distance case, which
is already reached at r12 >∼ 0.2λπ , the eigenvalue spectrum is
dominated by the Mollow structure already shown in Fig. 3(a).
In the small-distance case r12 <∼ 0.05λπ , different eigenvalue
branches with positions depending on the inter-atomic distance
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FIG. 3. (Color online) Energy shifts of the system dressed states,
evaluated as the imaginary part υj of the eigenvalues ξj = χj + iυj

of the matrix M governing the system dynamics. The inter-atomic
distance vector has direction given by θ = π/2 and φ = π/4.
(a) Case of large inter-atomic distance r12 = 10λπ in dependence
of the Rabi frequency �. The four branches clearly show the splitting
of the spectrum into a central feature and Mollow sidebands due to
the ac Stark splitting of the bare states. The horizontal dotted lines
mark the values for � chosen for calculations in the later sections.
(b) Energy shifts as a function of the inter-atomic distance for
fixed Rabi frequency � = 10γπ . The three different cases of large,
intermediate, and small distance can clearly be distinguished. The
horizontal dotted lines mark distances for which we will present
resonance fluorescence spectra in later sections.

are formed. These can be attributed to the TPVC-induced
energy shifts, with a r−3

12 dependence of the inter-atomic
coupling constants. Finally, in the intermediate distance case
0.05λπ <∼ r12 <∼ 0.2λπ , the eigenvalues overlap such that a
clear interpretation becomes difficult.

Next, we will present results for the spectra in these
three different regimes of inter-atomic distances, and in detail
explain the structure of the obtained spectra based on the
different coupling mechanisms.

B. Interatomic couplings

In the following we study the influence of the inter-atomic
couplings on the resonance fluorescence spectra. Since these
parameters are negligible for large r12 we mostly choose
smaller distances as compared to the wavelength λπ . We will
see that additional peaks in the spectra occur due to these
couplings between the two atoms as observed when calculating
the eigenvalues of the matrix M in Sec. II C. Artificially
turning on and off some coupling constants will help us to
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FIG. 4. (Color online) Linearly polarized resonance fluorescence
spectra for different inter-atomic distances r12. In curve (a) we chose
r12 = 0.08λπ , in (b) r12 = 0.1λπ , in (c) r12 = 0.2λπ , and in (d) r12 =
10λπ . In all curves, the Rabi frequency is � = 10γπ , and the laser
field is applied on resonance � = 0. The inter-atomic distance vector
is aligned with θ = π/2 and φ = π/4.

get a better understanding of the peak positions and thus the
relevant physical coupling mechanisms.

1. Spectra for large and intermediate inter-atomic distances

In Fig. 4, we show the linearly polarized spectrum observed
from the (1,1,0) direction. As inter-atomic distances, we
choose r12 = 0.08λπ in curve (a), r12 = 0.1λπ in (b), r12 =
0.2λπ in (c), and the large distance r12 = 10λπ in (d). Since
the inter-atomic couplings vanish for large distances, in this
regime the atoms behave like two independent particles. Then
for the π spectrum, we obtain one peak at the laser frequency
where ω̃ = ω − ωL = 0 and two sideband peaks at ±2�

as in the Mollow spectrum, see curve (d). The curve for
r12 = 0.2λπ is still similar to that for large distances. Only
the amplitudes of the peaks differ from the Mollow spectrum
for large distances. Thus the inter-atomic couplings can be
considered weak for a distance as small as 0.2λπ , which is
in agreement with our findings from Fig. 3. If we further
decrease r12 the peaks at ω̃ = 0 and ω̃ = ±2� become lower
and additional peaks arise at higher frequencies |ω̃|, see curves
(a) and (b). In Fig. 3 we marked the values r12 = 0.08λπ and
0.1λπ by dotted lines. This regime of inter-atomic distances
gives rise to rather complicated dynamics, and several υj occur
very close to each other. This is also reflected in the spectra,
which is characterized by overlapping peaks. The reason for
this is that the inter-atomic coupling parameters are of the
same order of magnitude as the laser Rabi frequency � in this
intermediate-distance regime.

2. Spectra for small inter-atomic distances

In Fig. 5, we show results for inter-atomic distances chosen
as (a) r12 = 0.04λπ , (b) r12 = 0.046λπ , and (c) r12 = 0.06λπ .
In this regime of small distances, we can see four clear
sideband peaks in the spectrum instead of two in the Mollow
spectrum. Since these sideband peaks move farther away from
the center ω̃ = 0 when decreasing r12, they can be associated
with the TPVC which increase in magnitude with decreasing
distance. For the linearly polarized light, we still obtain a peak
at ω̃ = 0 which becomes higher and narrower with decreasing
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FIG. 5. (Color online) Resonance fluorescence spectra at small
inter-atomic distances. In (a) r12 = 0.04λπ , in (b) r12 = 0.046λπ and
in (c) r12 = 0.06λπ . All other parameters are chosen as in Fig. 4.

inter-atomic distances. These spectra again correspond to
the results of Fig. 3. One can see that the accumulation of
imaginary parts of eigenvalues υj for intermediate r12 splits up
into clear branches when decreasing the inter-atomic distance.

3. Interpretation of the spectra

In this section, we interpret the origin of the different
spectral features found in the previous section. In order to do
so, we artificially switch off parts of the inter-atomic couplings
and observe the change in the corresponding spectra. Note
that in the following discussion, the SPVC are always kept
in the analysis. For this procedure we divide our inter-atomic
coupling constants into five groups: G1, G2, G3, G4, and G5.
These groups are defined as follows:

G1 = {
�

µν

ij ,�
µν

ij

∣∣ i ∈ {1,2} and j ∈ {3,4}}
∪ {

�
µν

ij ,�
µν

ij

∣∣ i ∈ {3,4} and j ∈ {1,2}}
= {couplings between one π and one σ dipole},

G2 = {
�

µν

ij ,�
µν

ij

∣∣ i,j ∈ {3,4} and i �= j
}

= {couplings between two different σ dipoles}
G3 = {

�
µν

ij ,�
µν

ij

∣∣ µ �= ν and i,j ∈ {1,2} and i �= j
}
,

= {inter-atomic couplings between

two different π dipoles},
G4 = {

�
µν

ij ,�
µν

ij

∣∣ µ �= ν and i,j ∈ {3,4} and i = j
}

= {inter-atomic couplings between

two equal σ dipoles},
G5 = {

�
µν

ij ,�
µν

ij

∣∣ µ �= ν and i,j ∈ {1,2} and i = j
}

= {inter-atomic couplings between

two equal π dipoles}. (29)

G1 and G2 also contain some intra-atomic couplings. However,
these are zero because of the orthogonality of the respective
dipole moments. Additionally, if both atoms are in the x-y
plane, which means θ = π/2, all inter-atomic couplings of
group G1 vanish. Since our system contains only two atoms
and the couplings do not change when exchanging µ and ν, we
use as superscript of the inter-atomic couplings inter instead
of µν. Our classification is done in such a way that within one
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group the absolute values of both real and imaginary part of
all �inter

ij or �inter
ij , respectively, are equal. This still holds if

we choose θ �= π
2 . For each group Ga we define one pair of

coupling parameters (�a,�a) as representative of this group.
These definitions are made as follows:

�1 = �inter
13 , �1 = �inter

13 ,

�2 = �inter
34 , �2 = �inter

34 ,

�3 = �inter
12 , �3 = �inter

12 , (30)

�4 = �inter
33 , �4 = �inter

33 ,

�5 = �inter
11 , �5 = �inter

11 .

The absolute values |�inter
ij | and |�inter

ij | of all pairs of coupling
constants belonging to the same group are equal.

In Fig. 6, our results for the spectrum emitted by the π

transitions are shown. We choose r12 = 0.04λπ and the Rabi
frequency � = 10γπ . Since our atoms are located in the x-y
plane, all couplings of G1 vanish. The upper subfigure shows
spectra obtained when only one group of couplings is on and
the others are set equal to zero. In curve (a) all parameters
of G2, in (b) the ones of G3, and in (c) the ones of G4 are
on. Turning only coupling constants of G5 on gives us the
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FIG. 6. (Color online) Here, we show the π spectrum for the
distance r12 = 0.04λπ while we artificially set some inter-atomic
couplings equal to zero. In each curve of the upper subfigure, except
curve (d), only the couplings of one Ga are on. In curve (a) the
parameters of G2 are turned on, in (b) the ones of G3, in (c) the ones
of G3, and in (d) we plot the spectrum with all couplings on. In the
lower subfigure, we turn one group of inter-atomic couplings after
the other on. In curve (a) only coupling parameters of G2 are on, in
(b) the couplings of G2 and G3, in (c) the constants of G2, G3, and G4

are on, and curve (d) depicts the spectrum with all couplings on. All
other parameters are chosen as in Fig. 4.

same spectrum as in curve (b). Thus we conclude that the
inter-atomic interaction between equal π dipoles and between
two different ones has similar impact on the dynamics. This is
not surprising since d1 and d2 are antiparallel.

All curves show peaks at ω̃ = 0 and ω̃ = ±2� due to the
driving laser field as in the spectrum without inter-atomic
couplings, see Fig. 4. In the spectrum plotted in curve (a)
we can see additional peaks at ω̃ ≈ ±|�2| = ±286.5γπ .
These peaks arise due to an energy splitting of the atomic
levels caused by the vacuum-mediated coupling of the atoms.
Curve (b) shows additional maxima at approximately ω̃ ≈
±|�3| = ±91.6γπ . Looking closely one can see that the peak
frequencies are a little bit higher than the coupling parameter.
The reason for this likely is the influence of the Rabi frequency
on the position of these outer peaks. This also holds for other
peaks analyzed below. In curve (c), peaks at ω̃ ≈ ±103.2γπ

occur which is equal to ±|�4|.
Now we continue by turning on the coupling constants one

after the other. In the lower subfigure of Fig. 6 the resulting
spectra are depicted. Curve (a) is the same as in the upper
subfigure (only the plot range is changed).

Curve (b) shows the π spectrum where the couplings of G2

and G3 differ from zero. We can see four peaks in addition
to the triplet around ω̃ = 0. These new peaks are located
at approximately ω̃ ≈ ±|�2| = ±286.5γπ and ω̃ ≈ ±|�3| =
±91.6γπ . Note that the maxima around ±286.5γπ are hardly
visible in the graph, since other curves show peaks at the same
positions.

In order to obtain curve (c), we turn the couplings of G4

on in addition to G2 and G3. Then the peaks at about ω̃ ≈
±|�3| vanish and new maxima around ω̃ = ±200γπ arise.
Since this is not equal to the value of any coupling parameter,
this peak cannot be interpreted straightforwardly as the peaks
in curves (a) and (b). In order to find the origin of these peaks
around ω̃ = ±200γπ we turn the couplings of G4 progressively
on, see Fig. 7. Here, “progressively” means that we multiply
the respective coupling parameters by a factor p ∈ [0,1]. For
curve (a) the couplings of G4 are set zero (p = 0), in (b)
p = 0.1, in (c) p = 0.3, in (d) p = 0.6, in (e) p = 0.9, and in
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FIG. 7. (Color online) Incoherent resonance fluorescence spec-
trum emitted by the π transitions for the case where the couplings of
G2 and G3 are considered, and in addition we progressively switch
on the parameters of G4. In curve (a) the coupling constants of G4

are zero, in (b) they are multiplied by 0.1, in (c) by 0.3, in (d) by 0.6,
and in (e) by 1. All other parameters are as in Fig. 6.
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(f) the respective couplings are on which means p = 1. We can
observe that the peaks at about ±|�3| = ±91.6γπ split up into
two peaks. This splitting becomes larger for increasing values
of the factor p. For p = 1 where the couplings of G4 are on, the
respective peaks are located at ω̃ ≈ ±11γπ = |�3| − |�4| and
ω̃ ≈ 194.8γπ = |�3| + |�4|. Note that the maxima at about
±11γπ cannot be distinguished clearly from the ones caused
by the Rabi frequency of the driving laser field at ±20γπ

and the centered peak at ω̃ = 0. During this level splitting
when slowly turning on the couplings of G4, the peaks at
about ±286.5γπ = ±|�2| do not change. This means that the
couplings between equal σ dipoles (�4) and between different
σ dipoles (�2) enter the dynamics of our system independently.
By contrast, the level splitting of Fig. 7 shows us that the
couplings between π dipoles and between equal σ dipoles
influence each other.

Additionally turning on the parameters of G5, we obtain
the spectrum with all inter-atomic couplings as already
plotted in the upper subfigure of Fig. 6. Here, the peak at
±|�2| = ±286.5γπ no longer exists but is replaced by max-
ima at ω̃ ≈ ±(|�2| ± |�5|) = ±(286.5γπ ± 91.6γπ ). Note
that for our parameters |�3| + |�4| = 91.6γπ + 103.2γπ =
194.8γπ ≈ |�2| − |�5| = 286.5γπ − 91.6γπ = 195.5γπ and
therefore the peaks at these positions cannot be distinguished.
To confirm the splitting of the peaks at ω̃ ≈ 286.5γπ in curve
(c), we do the same procedure for G5 as done for G4. We turn
all couplings of G5 progressively on while the parameters of
G2, G3, and G4 are always on. Here we found a similar peak
splitting as for G4.

Finally, we conclude our findings in this section by
summarizing the various splittings in a dressed state analysis
shown in Fig. 8.

C. Intra-atomic couplings

1. Classification of intra-atomic couplings

We now turn to the intra-atomic (SPVC) couplings. In
our system, we can distinguish between two different types
of intra-atomic couplings. The first type are the coupling
constants entering in the equations of motion for our system,
�

µµ

ij and �
µµ

ij (where �
µµ

ij are always zero) with i �= j . The
second type are contributions of second-order correlation
functions to the spectrum in Eq. (22) where µ = ν. We are
thus led to split the resonance fluorescence spectrum into four
contributions,

Sπ
inc(ω̃) = P1(ω̃) + P2(ω̃) − P3(ω̃) − P4(ω̃), (31)

where

P1(ω̃) = �π

π

2∑
µ=1

2∑
i=1

T µµ

ii (ω̃), (32a)

P2(ω̃) = �π

π

2∑
µ,ν=1
µ �=ν

2∑
i=1

T µν

ii (ω̃), (32b)

P3(ω̃) = �π

π

2∑
µ=1

2∑
i,j=1
i �=j

T µν

ij (ω̃), (32c)

2 |Ω5|

2 |Ω5|

|Ω2|

|Ω2|

2 |Ω3|

2 |Ω4|

2 |Ω4|

FIG. 8. (Color online) Splitting of the atomic energy levels
due to the inter-atomic coupling parameters for a small distance
r12 = 0.04λπ . For this inter-atomic distance, the values of the
coupling constants are |�2| = 286.5γπ , |�3| = |�5| = 91.6γπ , and
|�4| = 103.2γπ .

P4(ω̃) = �π

π

2∑
µ,ν=1
µ �=ν

2∑
i,j=1
i �=j

T µν

ij (ω̃). (32d)

We then denote P1 − P3 as the intra-atomic part of the
contributions to the spectrum, and P1 + P2 − P4 as the
inter-atomic contribution. It should be noted, however, that
this separation is difficult in particular due to the term ±P4.
This term contributes for µ �= ν which indicates an inter-
atomic contribution, but at the same time it only contributes
for i �= j , which is the characteristic for an intra-atomic
coupling. One consequence of this is that spectra which are
calculated by artificially suppressing, e.g., the intra-atomic
parts, are not necessarily positive definite, which makes a
straightforward interpretation difficult. It is important to keep
in mind that results obtained by artificially suppressing parts
of the couplings do not correspond to physically observable
situations, but can only be used to interpret the obtained full
spectra in certain situations, as explained in more detail below.

2. Effect of the intra-atomic couplings on the
resonance fluorescence

We start our discussion by noting that in principle, both
the intra-atomic couplings in the equations of motion and in
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FIG. 9. (Color online) Impact of the intra-atomic couplings on
the resonance fluorescence spectrum emitted by the π transitions for
intermediate distances. The parameters are r12 = 0.09λπ , � = 6γπ ,
� = −14γπ , θ = π/2, and φ = π

4 . In curve (i) the complete spectrum
with all couplings is shown as it could be observed in an experiment.
In (ii), all intra-atomic couplings are artificially turned off. In
(iii), all intra-atomic couplings entering the equations of motion are
kept, while those entering the expression for the spectrum Eq. (18)
are set to zero. In (iv), the intra-atomic couplings in the expression
for the spectrum are kept, while those in the equations of motion are
dropped.

the expression for the spectrum can crucially modify the total
observed spectrum. This is surprising, since these couplings
in the equations of motion do not contribute to the steady
state, and thus the resonance fluorescence spectrum, of the
corresponding single-atom system [23]. The relevance of both
types of couplings can most readily be seen for parameter
ranges in which the intra-atomic coupling constants �

µµ

ij are
of similar magnitude as the inter-atomic coupling constants
�

µν

ij and �
µν

ij (µ �= ν). For this, in comparison to Figs. 6 and 7,
we choose a slightly larger distance r12 = 0.09λπ . Further, we
employ � = −14γπ and � = 6γπ as these parameters allow
for a better distinction of the different curves and therewith
also for a better visibility of the new arising effects. The
result is shown in Fig. 9. The figure shows the total resonance
fluorescence spectrum (i) emitted by the π transitions, as well
as the corresponding spectra obtained by artificially switching
off the intra-atomic couplings in the spectrum (iii), in the
equations of motion Eq. (18) (iv), or both (ii). It can be seen
that all four curves differ considerably, and we conclude that
both types of intra-atomic coupling are of relevance. It is,
however, difficult to attribute certain features of the observable
total spectrum to either of the two contributions. The reason
is that for the parameters in Fig. 9 the total spectrum cannot
simply be decomposed into the spectrum without intra-atomic
couplings and the two corrections arising from the couplings in
the equations of motion and in the expression for the spectrum.

We now return to smaller inter-atomic distances in order
to study the role of the SPVC in the case of numerically
dominating TPVC with parameters as in Figs. 5(a), 6, and
7. Since the inter-atomic coupling constants then are much
larger than the intra-atomic coupling constants, typically the
intra-atomic coupling constants �

µµ

ij entering the equations
of motion only slightly influence the total spectrum. An
example is shown in Fig. 10. The three subfigures show the
three spectral features in the ranges [−50,50], [180,205], and
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FIG. 10. (Color online) Impact of the intra-atomic couplings on
the resonance fluorescence spectrum emitted by the π transitions
in the small-distance case. The parameters are as in Fig. 5(a). The
three subfigures separately show the three spectral features visible
in the right half of the spectrum in Fig. 5(a). Each subfigure shows
four curves (i)–(iv). As in Fig. 9, these correspond to the complete
spectrum (i), the spectrum without intra-atomic couplings (ii), and the
spectrum with either the intra-atomic coupling entering the expression
for the spectrum artificially suppressed (iii) or those entering the
equations of motion switched off (iv).

[370,390] of the right-hand part of the spectrum visible in
Fig. 5(a). Again, the total spectrum and the corresponding
spectrum with one or both of the intra-atomic couplings
artificially suppressed are shown. It can be seen that despite
the clearly numerically dominating inter-atomic coupling
constants, the spectrum is strongly modified upon suppression
of the intra-atomic coupling. In contrast to the example in
Fig. 9, however, a grouping into two pairs of curves is observed.
The curve for the full spectrum (i) coincides with the spectrum
(iv) with intra-atomic couplings entering the equations
of motion artificially suppressed. Similarly, the spectrum
(ii) without intra-atomic coupling coincides with the result
(iii) obtained by suppressing the intra-atomic couplings in the
expression for the spectrum. From this, we conclude that for
these parameters, the influence of the intra-atomic coupling
clearly arises from the corresponding parts in the expression
for the spectrum, whereas the direct couplings in the equations
of motion only give rise to minor corrections. This is the
situation also found in the corresponding single-atom system.

3. Intra-atomic couplings induced by inter-atomic couplings

We found in Fig. 9 that already the intra-atomic couplings
in the equations of motion alone can give rise to a significant
modification of the resonance fluorescence spectrum, in
contrast to the corresponding single-atom case. To interpret
this difference in close analogy to the single-atom case, as a
first step, we evaluated the full steady-state density matrix for

063805-9
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parameters as in Fig. 9 for both the case with all couplings
on and the case with intra-atomic couplings in the equations
of motion suppressed. It turns out that while the magnitude
and phases of the entries in the two density matrices differ, no
elements are zero in one of the cases and nonzero in the other
case. We thus conclude that no fundamentally new coherences
are created due to the intra-atomic couplings in the equations
of motion.

Next, for a better comparison with the single-atom case,
we analyze the steady-state density matrix for one of the two
atoms in our system. For this, we calculate the stationary state
of the total system and then trace out the second atom. As a
first example, Fig. 11(a) shows the population of state |1〉 of
atom 1 against the detuning �. From this figure it can be seen
that at large interparticle distance, the intra-atomic couplings
entering the equations of motion do not have any effect,
as expected from the single-atom case. However, at small
distances, the populations with and without these couplings
differ considerably in a range of negative detunings. In this
sense, the inter-atomic couplings between the two particles
induce an effect of the intra-atomic couplings which could
not be observed in a single-atom system. This mechanism
of inter-atomic couplings inducing intra-atomic couplings is
responsible for the dependence of the resonance fluorescence
spectra on the intra-atomic couplings in the equation of motion
found in Fig. 9. In Fig. 11(b), we show corresponding results
for the imaginary part of the coherence between states |1〉 and
|3〉 of atom 1. We again find that the inter-atomic couplings
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FIG. 11. (Color online) Intra-atomic couplings induced by inter-
atomic couplings. (a) Steady-state population of state |1〉 in atom
1 obtained by tracing over the second atom. (b) Imaginary part of
the coherence between states |1〉 and |3〉 in atom 1. The different
curves are as follows: (i) All couplings included, large-distance case
corresponding to no inter-atomic couplings. (ii) Large-distance case,
without intra-atomic couplings entering the equations of motion.
(iii) and (iv) show the corresponding results for small distance
r12 = 0.09λπ . The parameters are as in Fig. 9 except for the variable
detuning �. Note that in (b), the curves (i) and (ii) are shown
multiplied by a factor of 1/2 for better visibility.

induce an effect of the intra-atomic couplings entering the
equations of motion.

A possible explanation for these induced couplings is that
in the single-particle case, the SPVC entering the equations
of motion do not contribute to the steady state of the density
matrix since the two ground states |3〉 and |4〉 are orthogonal,
as explained in the Introduction. In contrast, in the two-
particle case, the relevant states are collective eigenstates
originating from the TPVC, which each consist of different
bare atomic states. Between these collective eigenstates, a
modified set of transitions with different dipole moments
occur. In particular, due to bare state mixing, near-degenerate
nonorthogonal transition pathways originating from a single
collective eigenstate may be created. An analogous mechanism
was suggested as a way to induce spontaneously induced
coherences in a single three-level system in � configuration
[1,46]. The two bare state transitions from the upper state
|e〉 to the lower states |a〉 and |b〉 originally are assumed to
have orthogonal transition dipole moments. If a resonant laser
field is applied to transition |a〉 ↔ |e〉, then the system can
be described in the dressed state basis {|+〉,|−〉,|b〉}, where
|±〉 = (|e〉 ± |a〉)/√2. In this new basis, the two transitions
from the dressed upper states |±〉 to the lower state |b〉 are near
degenerate and nonorthogonal, such that quantum interference
can take place.

We thus conclude that the impact of the intra-atomic
coupling constants remains important even at low inter-atomic
distances for which the inter-atomic coupling constants are
much larger than the corresponding intra-atomic ones. For a
large range of parameters and in particular at smaller distances,
the dominating contribution of the intra-atomic coupling
constants arises from the parts entering the expression Eq. (18)
of the spectrum. In contrast to the corresponding single-atom
case, in a certain parameter range, the contributions entering
the equations of motion can also have a substantial influence
on the obtained spectra. Since this contribution only occurs for
the case of two nearby atoms, we conclude that the influence
of the intra-atomic couplings is induced by the inter-atomic
couplings.

IV. SUMMARY

In summary, we have analyzed a system of two dipole-
dipole interacting nearby four-level atoms in the J = 1/2 ↔
J = 1/2 configuration. This is the simplest model system
which on the one hand provides a complete description of
the dipole-dipole interaction for arbitrary orientation of the
inter-atomic distance vector, and on the other hand allows
for spontaneously generated coherences in a realistic atomic
level scheme. In this system, dipole-dipole couplings within
one atom (intra-atomic) and between two atoms (inter-atomic)
occur at the same time. We especially studied the interplay of
both these fundamentally different coupling mechanisms.

The complete description of the dipole-dipole interactions
is achieved by considering full Zeeman manifolds for the
ground and the excited state. The spontaneously generated
coherences contribute, since this level scheme has two
near-degenerate dipole allowed transitions with (anti-)parallel
dipole moments. However, as these two transitions do not
share a common state, the comprehensive theoretical results
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on spontaneously generated coherences such as in the usual
V-type or �-type configuration cannot be applied directly.
We discuss different methods to analyze the contribution
of the various coupling constants to the total resonance
fluorescence spectrum. A first analysis is possible based on
the eigenvalue spectrum of the matrix governing the system
dynamics. Then, we artificially suppress certain groups of
couplings, in order to reveal their significance for the total
spectrum. We also gradually switch on selective couplings by
artificially multiplying the corresponding coupling coefficient
with a parameter ranging from zero to unity. This allows us
to find a dressed state interpretation of the contribution of
the different inter-atomic dipole-dipole couplings to the total
spectrum.

Regarding the intra-atomic couplings, we identify two
different types of contributions. The first is via the SPVC-
induced coupling coefficients directly entering the equation of
motion. The second contribution appears in the expression
for the resonance fluorescence spectrum. In general, both

contributions can substantially influence the total resonance
spectrum, even though it is difficult to attribute specific
spectral features to either of the two contributions. However,
in particular for smaller inter-atomic distances, we find that
the dominant contribution of the intra-atomic coupling is the
one appearing in the expression for the spectrum. A simple
interpretation is that for small inter-atomic distances, the
inter-atomic coupling coefficients entering the equations of
motion are much larger than the corresponding intra-atomic
ones, such that they typically have only a small contribution.
Nevertheless, we find that the intra-atomic couplings have an
observable impact even at small inter-atomic distances, such
that also the two-particle J = 1/2 ↔ J = 1/2 system is an
interesting candidate with which to observe these intra-atomic
couplings. Finally, we could show that the intra-atomic cou-
plings entering the equations of motion can have a significant
effect on the observed spectra, in contrast to the single-particle
case. We thus conclude that the interparticle couplings can
induce additional contributions of the intra-atomic couplings.
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