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The photonic de Broglie wave, in which an ensemble of N identical photons with wavelength A reveals A /N
interference fringes, has been known to be a unique feature exhibited by the photon-number-path—entangled
|N,0) + |0, N) state or the NOON state. Here, we report the observation of the photonic de Broglie wave for a pair
of photons, generated by spontaneous parametric down-conversion, that are not photon-number-path entangled.
We also show that the photonic de Broglie wave can even be observed for a pair of photons that are completely
separable (i.e., no entanglement in all degrees of freedom) and distinguishable. The experimental and theoretical
results suggest that the photonic de Broglie wave is, in fact, not related to the entanglement of the photons, rather
it is related to the indistinguishable pathways established by the measurement scheme. The phase sensitivity
surpassing the standard quantum limit, however, is shown to be closely related to the NOON state.
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I. INTRODUCTION

The nature of multipartite quantum entanglement is often
manifested in quantum interference experiments. For exam-
ple, in the case of entangled photon states generated by
spontaneous parametric down-conversion (SPDC), quantum
interference is observed in coincidence counts between two
detectors, each individually exhibiting no interference fringes
[1-3].

One notable example of photonic quantum interference is
the photonic de Broglie wave in which an ensemble of N
identical photons with wavelength X exhibits /N interference
fringes [4]. The photonic de Broglie wavelength A/N can be
observed at the N-photon detector placed at an output port
of an interferometer if the beam splitters that make up the
interferometer do not randomly split N photons. The quantum
state of the photons in the interferometer is then the photon-
number-path—entangled state or the NOON state,

[¥) = (IN)110)2 + 10)1|N)2)/+2, )]

where the subscripts refer to the two interferometric paths. For
this reason, the photonic de Broglie wave has been considered
to be a unique feature exhibited by the NOON state and
essential for quantum imaging and quantum metrology [5-7].
Experimentally, photonic de Broglie waves up to N = 4 have
been observed with corresponding NOON states [8—12].

Note, however, that A/N modulations in the coincidence
rate among N detectors may not necessarily be of quantum
origin. For instance, consider the A/N modulation in coinci-
dences among N detectors reported in Ref. [13], where each
detector was placed at an output port of a multipath interferom-
eter. The A/ N modulation in this case is a classical effect since
the coincidence modulation is a direct result of modulations
(with different phases) observed at individual detectors. This
classical interference effect can be observed both with classical
light (e.g., laser) and with nonclassical light. Also, classical
thermal light may exhibit subwavelength interference fringes
in coincidences but at the reduced visibility consistent with
classical states [14,15]. Thus, the reduced-period fringe itself
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need not be of quantum origin. It is, however, important to point
out that Nth order quantum interference, such as quantum
optical A/N modulations due to the photonic de Broglie
wave, must exhibit high visibility (up to 100% in principle)
in the absence of any lower-order interference. For example,
it should not be possible to explain the second-order quantum
interference effect with various first-order interference effects.

In this paper, we report an intriguing new observation of
A/N (N = 2) photonic de Broglie wave interference that has
no classical interpretation and is not associated with the NOON
state. We also show theoretically that photonic de Broglie
waves can even be observed for a pair of nonclassical single
photons that are completely separable (i.e., no entanglement in
all degrees of freedom) and distinguishable. The experimental
and theoretical results suggest that the photonic de Broglie
wave interference is, in fact, not related to the entanglement
of the photons, rather it reflects the characteristics (i.e.,
the indistinguishable pathways) of the measurement scheme.
The interferometric phase sensitivity surpassing the standard
quantum limit, however, is shown to be closely related to the
NOON state.

II. PHOTONIC DE BROGLIE WAVE INTERFERENCE
WITHOUT THE NOON STATE: EXPERIMENT

Consider the experimental setup shown in Fig. 1. A
405-nm blue diode laser, with the full width at half-maximum
(FWHM) bandwidth of 0.67 nm, pumps a 3-mm-thick type-I
BBO crystal to generate, via the SPDC process, a pair of energy
time-entangled photons centered at A = 8§10 nm. The photon
pair is coupled into the single-mode optical fiber after passing
through the interference filter with an FWHM bandwidth of
5 nm. For optimal coupling, the pump was focused at the BBO
and the focal spot was imaged to the single-mode fiber [16].

The photon pair is then sent to a Mach-Zehnder interfer-
ometer (MZI), formed with BS1 and BS2, via the different
input ports @ and b. The input delay x| between the photons is
controlled by axially moving the output collimator of a fiber
and the interferometer pathlength difference x, is controlled
by translating one of the trombone prisms P2. A two-photon
detector, consisting of BS3 and two single-photon detectors
D3 and D4, is placed at the output mode e of MZI for photonic
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FPC P2 D2

FIG. 1. (Color online) Schematic of the experiment. BS1, BS2,
and BS3 are 50:50 beam splitters. FPC is the fiber polarization
controller and CC is a coincidence counter.

de Broglie wave measurement [9]. Two auxiliary detectors, D1
and D2, are used to adjust the input delay x; by observing the
Hong-Ou-Mandel (HOM) interference [17].

First, we consider the well-known photonic de Broglie wave
for a biphoton NOON state and this requires preparing the
state |1) = (12)¢]0)q + [0)¢|2)4)/~/2 in the MZI [4,9]. This
can be accomplished by using HOM interference: the photon
pair arrives at BS1 (or enters the MZI) simultaneously via
the different input ports a and b. The high-visibility HOM
interference, measured in coincidence counts between D1 and
D2 as a function of xi, reported in Fig. 2 indicates that when
the input delay is zero (i.e., x; = 0), the quantum state of the
photons in the interferometer is indeed the desired biphoton
NOON state.

Observation of the photonic de Broglie wave for the
biphoton NOON state requires: (i) interfering the biphoton
amplitudes |2).|0); and |0).|2); and (ii)) making a proper
two-photon detection. In the experiment, we set x; = 0 with
the help of the HOM dip in Fig. 2 and the photonic de Broglie
wave corresponding to the biphoton NOON state was observed
at the two-photon detector placed at the output mode e of the
MZI. The result shown in Fig. 3(a) exhibits A /2 interference
fringes as a function of the MZI pathlength difference x,.

We note that the coincidence between single-photon detec-
tors placed at modes e and f also exhibits the interference
fringes with the period A /2 [1,2]. This A /2 interference fringe,
however, is not related to the photonic de Broglie wave since
(i) the photons are split at BS2 and (ii) it may be observed with
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FIG. 2. (Color online) The Hong-Ou-Mandel dip observed with
detectors D1 and D2. The dip visibility is better than 98%. The
arrows represent the x; positions at which the biphoton interfer-
ence measurements were performed with the two-photon detector
(i.e., coincidences between detectors D3 and D4).
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FIG. 3. (Color online) Biphoton interference observed at four
different x; positions. (a) x; =0 um, (b) x; =62 pum, (¢c) x; =
2.8 mm, (d) x; = 5.7 mm. The solid lines are fit to the data with the
modulation wavelength and the visibility fixed at A/2 = 405 nm and
98%, respectively.

the classical coherent state (e.g., |0),]|o),) at the input of the
MZI [9,13].

Consider now the situation in which the photons do not
enter the MZI simultaneously. In this case, since the photons
do not arrive at BS1 at the same time, HOM interference does
not occur and the quantum state of the photons in the MZI is no
longer the biphoton NOON state. The question we ask is whether
the A /2 photonic de Broglie wave would still be observed at
the two-photon detector in mode e (i.e., coincidences between
detectors D3 and D4) in this case.

To probe this question, we intentionally add more time
delays in mode a of the MZI so that x; # 0. The arrows
in Fig. 2 indicate the x| positions at which the biphoton
interference measurements are made with the two-photon
detector in mode e. First, we set x; =62 um and x; is
scanned for the two-photon interference measurement. At this
x1 location, there is still some Hong-Ou-Mandel interference
as evidenced in Fig. 2 (i.e., the coincidence rate is still
below the random coincidence rate). The biphoton interference
measured with the two-photon detector in this condition is
shown in Fig. 3(b). Interestingly, the observed interference
fringes exhibit the same A /2 modulation with no reduction in
visibility. It is intriguing to find that the same high-visibility
interference fringes with A/2 modulations are observed even
when x; is completely out of the Hong-Ou-Mandel dip region.
In Figs. 3(c) and 3(d), we show the biphoton interference
observed with the two-photon detector at x; = 2.8 mm and at
x; = 5.7 mm, respectively. These data correspond to the x;
positions marked with the arrows shown in the inset of Fig. 2.

So far, we have established experimentally that the photonic
de Broglie wave can indeed be observed without the NOON
state. (Note that, differently from Ref. [13], this is a real
second-order quantum effect in the absence of any first-order
interference: the detectors D3 and D4 individually do not
show any modulations.) We now ask whether the shapes of
the photonic de Broglie wave packets would remain the same.
This question is probed by measuring the photonic de Broglie
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FIG. 4. (Color online) The biphoton wave-packet measurements with varying input delays at BS1. (a) x; =0 pum, (b) x; = 100 um,
(¢) x; =200 pm, and (d) x; = 500 wm. Within the wave packets, the modulation period is A /2 and the visibility around x, = 0 is better than
98%. The solid lines are the wave-packet envelopes calculated using Eq. (15).

wave packets for several different x; values and the results of
these measurements are shown in Fig. 4 [18].

In Fig. 4(a), we show the typical symmetric Gaussian de
Broglie wave packet for the biphoton NOON state generated
by setting x; = 0 wum. This case corresponds to Fig. 3(a).
For non-NOON states (i.e., for x; # 0), it is found that the
photonic de Broglie wave packet is modified dramatically.
The wave packet starts to become highly asymmetric (with
respect to the random coincidence rate) as soon as x; # 0; see
Fig. 4(b). The wave-packet envelope then takes the shape of a
double hump and a single dip for a larger value of x;; see Fig.
4(c). Eventually, for a sufficiently large x;, small side peaks
start to appear at x, = £x; see Fig. 4(d). Even for very large
values of x; (e.g., corresponding to the positions marked with
arrows in the inset of Fig. 2), the wave-packet shape remains
essentially the same as in Fig. 4(d) but the two side peaks get
relocated to their new positions, x, = =£x; [18].

III. PHOTONIC DE BROGLIE WAVE INTERFERENCE
WITHOUT THE NOON STATE: THEORY

A. Theoretical description

To explain the observed phenomena theoretically, we start
by writing the monochromatic laser-pumped SPDC two-
photon state as [19]

[¥)e = f dwydw; 8(A,)sinc(ArL/2)e wg,w;),  (2)

where the subscripts 7, s, and p refer to the idler, the signal,
and the pump photon, respectively. The thickness of the SPDC
crystal is L, A, = w, — oy — w;, and Ay =k, — k; — k;.
Since the pump is a cw diode laser with a rather large FWHM

bandwidth, the SPDC quantum state with a cw diode laser
pump should more properly be written as [18]

p= / de, S@ ) )ee (V. 3)

where the spectral power density of the pump is assumed to
be Gaussian,
S(w,) = exp[—(®, — ©0)* /280, 1/ AwpN 27, (4)

such that [ S(w,)dw, = 1.
The HOM interference can be calculated by evaluating

Ry = / didt' ulp EOOET EPHEP @), (5)

where
ED@) = [ED@ — 1)+ ESV01/V/2, (6)
EP (1) = [EP( — 1) + i EyP(0)1/V/2, (7)

and 7, = x1/c. The positive frequency component of the
electric field in mode a is given as

£SO = [ doaipe ™. ®)
where a(w) is the annihilation operator for the signal photon in
mode a and E,(,+)(t) for the idler photon in mode b is similarly
defined. The filter transmission is assumed Gaussian,

P(w) = exp[—(w — w0)*/2A0°]/\/ Awr/T, 9)
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and f |¢(w)|?dw = 1. Since the natural bandwidth of SPDC,
sinc(AyL/2), is much broader than the spectral filter band-
width Aw, Eq. (5) is calculated to be

Ri» =1 —exp (—Aw’1{/2). (10)

The solid line in Fig. 2 is plotted using Eq. (10) with
measured spectral filter bandwidth Aw.

For the photonic de Broglie wave measurement, the
response of the two-photon detector in mode e must be
considered and it is given as

Ree = / dtdt' tr[p ES(ETHESDEHEP )], (1)

where
EP@) = LEP @)+ ESV (1 — w)l/V2, (12)

and 1, = xp/c. Equation (11) can then be rewritten as

Ra=/Mﬁw»/mwmwﬁm@me£
(13)

where (0] denotes the vacuum state. The biphoton amplitude
(OIESDEESD (1)), contains important information about
the quantum interference and, when expanded using the
electric field operators at input modes a and b, is calculated to
be

OIESPEELN®)|Y)e
Z%mwﬁa—n—QWWW—w>

+EPC -1 —)E) )t — ) — ESV( — )EV ()

— ESNG — t)EY (1) - ESP (- )EP (- )

—EXP —t)ES (1 — ) + EF (-1 — )Ey (1)

+EDW — 1 — )ES O )e. (14)

Note that only nonzero biphoton amplitudes are written in the
above equation: terms that contain E(P E(Y and EjY E(Y are
eventually calculated to be zero because of the nature of the
input state |1 )e.

If we now consider the two-photon detector shown in Fig. 1,
the normalized coincidence rate between detectors D3 and D4
corresponds to R, and is given as

Ry = ;{4 +exp[—(1) — )’ Aw?/2]
+ expl—(11 + 1)’ A0’ /2] — 2exp (—1; Aw’/2)
—2cos 2wyny) exp (— 75 Aw; /2)
x [1+exp(—17Aw?/2)]}, (15)

where 1/Aw} = 1/Aw) + 1/ A0’

Equation (15) clearly shows that the 2wy or X/2 in-
terference fringe (corresponding to the photonic de Broglie
wavelength), in fact, is not related to the biphoton NOON-
state condition 7; = 0. As long as 1, is within the effective
coherence length «/5/ Auw,, the biphoton photonic de Broglie
wave interference can be observed regardless of the t; value.

Another interesting feature of Eq. (15) is that the shape of
the biphoton de Broglie wave packet is 7; dependent while the
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FIG. 5. (Color online) The Feynman paths for the photon pair.
All the Feynman paths become indistinguishable when 7, =0,
regardless of 7; values. Note that each line (top to bottom) in
Eq. (14) corresponds to each Feynman path (left to right).

period of interference fringes remains the same at 2wg. Note
also that the maximum interference visibility is not affected by
71. The theoretical result in Eq. (15) is found to be in excellent
agreement with the experimental data in Fig. 4.

B. The Feynman diagram

The interesting features of the biphoton de Broglie inter-
ference in this experiment can be intuitively understood by
analyzing the Feynman diagrams representing the two-photon
detection amplitudes.

Given the experimental setup in Fig. 1, there exist four
Feynman paths in which the photon pair exits BS2 via the
output mode e and these Feynman paths are shown in Fig. 5.
Since the signal, w,, and idler, w;, photons must always
transmit (reflect) and reflect (transmit) at BS3 to contribute to
a final two-photon detection event, each Feynman path shown
in Fig. 5 branches off into two final Feynman amplitudes.
There are, thus, a total of eight Feynman paths which lead to
a detection event at the two-photon detector in Fig. 1.

The photonic de Broglie wavelength observed in Fig. 3 is a
manifestation of quantum interference among these Feynman
paths. For arbitrary t; and 7,, the Feynman paths shown in
Fig. 5 are clearly distinguishable (in time). However, if 7, =
0, all Feynman paths become indistinguishable, regardless
of 7, values. This is confirmed theoretically in Eq. (15)
and experimentally in Fig. 3: high-visibility 2wy or A/2
interference fringes are observed when 1, is scanned around
Ty = 0.

In addition, it is shown in Fig. 4 that the shape of the
biphoton wave packet is dependent on the 7; value. In the
case that 7| = 0, the third and fourth Feynman paths in Fig. 5
cancel out and the wave-packet envelope is determined by the
overlap between the first two Feynman paths. As shown in
Fig. 4(a), the result is a Gaussian wave packet whose width is
determined by Aw,.

Consider now the case of 1, = 1;. The signal and idler
photons arrive simultaneously at BS2 for the third Feynman
path in Fig. 5 and, because of the Hong-Ou-Mandel effect, the
two photons will always exit BS2 via the same output port.
If we now consider the case of 7, = —1y, the same situation

063801-4



OBSERVING PHOTONIC DE BROGLIE WAVES WITHOUT ...

occurs for the fourth Feynman path in Fig. 5. Therefore, the
detection probability of the third and the fourth Feynman paths
would increase twice as big compared to 7, # +71;. The net
results are the distinct side peaks observed at 7, = £7; in
Fig. 4(d).

In general (i.e., 71 #0), all the eight Feynman paths
contribute to quantum interference in a complex manner so
an intuitive explanation becomes difficult.

IV. PHASE SENSITIVITY

In Secs. II and III, we have shown both in experiment
and in theory that the photonic de Broglie wave interference
can be observed without the NOON state. In other words, the
so-called phase superresolution can be achieved without using
the photonic NOON state. Note that, since high-visibility two-
photon interference exhibiting the fringe spacing of A/2 is
observed without any first-order interference, this is a genuine
quantum interference effect, different from the classical effect
shown in Ref. [13].

In this section, we consider the question of phase sensi-
tivity of our quantum interferometer. Specifically, we explore
whether the so-called phase supersensitivity can be achieved
without the NOON state. The phase sensitivity S in an N-photon
interferometer can be defined as the ratio of the phase error
in the interferometer under study and the phase error at the
standard quantum limit (SQL) [20]. If we choose an optimal
value of the bias phase for the two-photon interferometer
(N =2), the maximum phase sensitivity, Sy, is found to
be [20]

(1 —n?/n

(16)

where 7 is the intrinsic detection efficiency and V is the fringe
visibility. At SQL, Sy = 1 and Sy, > 1 corresponds to phase
supersensitivity.

We have calculated the maximum phase sensitivity Sy, from
the experimental data shown in Figs. 3 and 4 and the results
are shown in Fig. 6. The condition x; = 0 um corresponds
to the NOON state condition and, as seen in Fig. 4, changes
in the x; value cause significant reshaping of the wave packet
which in turn affects the value of 5. The value 7 is calculated
from the experimental data as the ratio between the maximum
coincidence count rate at x, &~ 0 um (the visibility is highest
at this point) and twice the random coincidence rate. Different
n values then correspond to different values of x;.

Figure 6 shows a few interesting characteristics. When
V =1, the NOON state condition (x; = 0 um) leads to the
Heisenberg-limited phase supersensitivity of Sy = ~/2. For
non-NOON states (e.g., x; > 150 um), SQL (Sy; = 1) can still
be reached. If the visibility is lower, the phase sensitivity is
accordingly reduced and it can be seen in Fig. 6 that, with
V = 0.98, it is not even possible to reach SQL if NOON states
are not used. It is interesting to note that nonperfect NOON
states (e.g., x; < 100 um) also exhibit phase supersensitivity.

We can therefore conclude that, even in quantum interfer-
ometry, phase supersensitivity requires a particular entangled
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FIG. 6. (Color online) Maximum phase sensitivity Sy, at different
x1 positions. The solid and dotted lines are calculated from Eq. (16)
for V =1.00 and V = 0.98, respectively. Phase sensitivity greater
than 1 corresponds to phase supersensitivity (i.e., phase sensitivity
better than SQL). The Heisenberg limit Sy, = /2 is reached at x; =
0 um and at V = 1.00, corresponding to a perfect two-photon NOON
state. For non-NOON states (e.g., x; > 150 um), SQL (Sy; = 1) is
reached for V = 1.00. It is interesting to note that nonperfect NOON
states also exhibit phase supersensitivity.

state or the NOON state in the interfrometer while phase
superresolution can be achieved with non-NOON states.

V. PHOTONIC DE BROGLIE WAVE INTERFERENCE
WITH NONENTANGLED PHOTON PAIRS

So far, we have shown experimentally and theoretically that
the photonic de Broglie wave is in fact not related to the photon-
number-path—entangled or the NOON state. The photonic de
Broglie wave, instead, appears to be linked to the underlying
spectral entanglement of SPDC photons which are used for
both experimental observation and theoretical analysis [19].
The question then becomes whether the two input photons
need to have any entanglement at all to exhibit the photonic de
Broglie wave phenomenon.

A. Photonic de Broglie wave interference for two identical
photons with no entanglement

Consider two single photons with identical spectra and
polarization, each emitted from a separate single-photon
source. It is known that HOM interference can occur with
a pair of identical single photons [21,22]. The biphoton NOON
state resulting from HOM interference should then exhibit the
photonic de Broglie wave.

The relevant question therefore is what would happen when
there is no HOM interference between the two identical single
photons with no a priori entanglement. Would the photonic
de Broglie wave still be observed in the absence of any
entanglement between the photons?

To investigate this question, let us consider a single photon
in the pure state at each input mode of the MZI in Fig. 1. Since
the joint quantum state of the two single photons at the input
modes of the MZI is separable, it can be written as

[¥)s =/dwa w(wa)lwa)@)/dwb p(wp)lwp), (A7)
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where the single-photon spectral amplitude is assumed to be
Gaussian,

@(w) = exp[—(w — w)*/2Aw?]/y/ Awy/7w,  (18)

and [ |p(w)|*dw = 1.

Given the input quantum state as in Eq. (17), the response of
the MZI can now be studied. First, the single-photon detection
rates at D3 and D4 are calculated to be constant, completely
independent of x; and x,. This is because the single-photon
detection probabilities due to the single photons in mode a
and in mode b have the same Gaussian envelopes but are out
of phase by 180°. In other words, similarly to the case of
entangled-photon pairs at the input, no first-order interference
can be observed. Second, the two-photon detection rates for
the photonic de Broglie wave measurement can be calculated
by evaluating

RY = / dtdt' tr[p® ECOED@YEP EHES ()], (19)

where ) = |¢)s(¥|. The above equation can then be
rewritten as

RY = / dtdt’ [(O|ESPYESD () |w)s)2. (20)

The biphoton amplitude (0| ESP(+)EP(1)|)s in Eq. (20) is
evaluated to be

OIESPEED (0]
= %(0|[E2+)(t —1-n)E (1 - )

+EP( =1 —w)E (1t —w) — EP( — ) EP ()

— ESO0 — mEP () — ESOG — )E (W — 1)

— EDW — m)ES( — 1)+ B — 1 — m)ESO()

+ED — 1 — )ESN O]9 @D

Finally, the normalized coincidence rate on D3 and D4 in
Fig. 1 is proportional to R and is given as

RY) = Ha + expl—(11 — ©)*A0?/2]
+ expl— (11 + 1)’ Aw? /2] — 2exp(— 7 Aw?/2)
—2cos wgTy) exp(— tzzAa)z/Z)
x [1+ exp(—1{ Aw?/2)]}. (22)

It is interesting to note that the result in Eq. (22) is identical
to Eq. (15) but with Aw, replaced by Aw. Effectively, this
means that SPDC pumped with a very broadband pump laser
would give the identical result as that of two separable single-
photon states. The theoretical results summarized in Fig. 7
show that the separable two-photon state of Eq. (17) at the
input of the MZI gives nearly the same result as that of SPDC
photons pumped with a laser with 2-nm FWHM bandwidth
for both the NOON state (x; = 0 pum) and non-NOON state
(x1 # 0 um) conditions.
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B. Photonic de Broglie wave interference for two distinguishable
(orthogonally polarized) photons with no entanglement

In the previous section, we have seen that entanglement is in
fact not necessary for observing the photonic de Broglie wave
interference of two photons. It was, however, assumed that
the two input single photons were identical. In this section,
we discuss the general case in which the two input single
photons are orthogonally polarized so that they are completely
distinguishable. Note that the experimental schematic is kept
the same as in Fig. 1: no polarization-information-erasing
polarizers are added to the setup.

For two orthogonally polarized single photons, the joint
quantum state is written as

V)i = / de, $lo)|wl!) ® / dop pon|o)).  (23)

where the superscripts H and V refer to horizontal and vertical
polarization states, respectively. The counting rate at the two-
photon detector (see Fig. 1) in the output mode e of BS2 is
then given as

RUH = % /dtdt’tr[p(‘“s‘)Eg"(’)(t)EePZ(”(t’)

p1.p2€{H,V}
x EPDEP D)), (24)

where superscripts p; and p, denote polarizations and pisV =

[V ) dist dist (¥ |. Equation (24) can then be rewritten as

R = / didt’ Y JOIEPDEEP DY) g’

p1,p2€{H,V}
= f drdt' (|| EXD@VE) D)) ais |
+ [OLEY D EFD 1)) i) (25)

Note that terms that include electric field operators
EHOEH® and EYHEY® are not shown because they
eventually are calculated to be zero since the input photons
are orthogonally polarized.

The biphoton amplitudes are then expanded as

OIEIDE! DY) aist
= £(O|[E5<+)(t — 1 —)E, P - )
— EfO¢ —t)E) V) — EFD( — 0)E) Pt — )
+EFD@ — 1 — ) E) D) 1) aise (26)
and
O1E; P EI D @)Y ) aise
= OB — 1~ o) B D~ )
— EfO@ —)E) V() — EFDW — 1)E] Pt — )

+EFOW — 1 — t)EY D] aise @7
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FIG. 7. (Color online) Calculated photonic de Broglie wave packets for SPDC photons (a) and (b); for two identical single photons with
no entanglement (c) and (d); and for two distinguishable (orthogonally polarized) single photons with no entanglement (e) and (f). The plots
(a) and (b), (c) and (d), and (e) and (f) are due to the theoretical results in Egs. (15), (22), and (28), respectively. For SPDC photons, the pump
bandwidth Aw), is assumed to be 2-nm FWHM and the signal and the idler photons are filtered with 5-nm FWHM filters. For single photons,
they are assumed to have FWHM bandwidth of 5 nm. Note that, since Eq. (28) is 7; independent, (e) and (f) are identical plots with different

ranges.

Finally, the normalized output of the two-photon detector
(i.e., coincidence between D3 and D4) is calculated to be

Rgiist) — %{4 —2exp (-1 A0?/2)

—2cos Qwyny) exp (-3 Aw®/2)}.  (28)

It is interesting to note that Eq. (28) also shows 2wy
modulation as in the case of two identical single photons
[Eq. (22)], and as in the case of a pair of SPDC photons
[Eq. (15)]. This result, therefore, reveals that photonic de
Broglie wave interference is not only unrelated to the NOON
state, but it can also be observed with completely unentangled
and distinguishable photons. Note also that Eq. (28) is
completely independent of 7; and Eq. (28) can actually be
obtained from Eq. (22) by letting 7; — oo.

Equation (28) is plotted in Figs. 7(e) and 7(f). The plots
show very clearly that high-visibility photonic de Broglie
wave interference appear for two orthogonally polarized single

photons. Note, however, that the shape of the wave packet in
Fig. 7(e) is quite different from Figs. 7(a) and 7(c) but rather
similar to Figs. 7(b) and 7(d). This comes from the fact that
Eq. (28) is 7| independent and the other two results converge
toward Eq. (28) as 7; gets bigger. This fact is also reflected in
the absence of side peaks in Fig. 7(f).

We can now comment on phase sensitivity for interfer-
ograms shown in Fig. 7. Clearly, as we have discussed
in Sec. IV, only Figs. 7(a) and 7(c) would lead to phase
supersensitivity. (The visibility is 1 in all plots.) Since the
phase supersensitivity conditions in Figs. 7(a) and 7(c) directly
leads to the two-photon NOON state in the interferometer and
vice versa, the NOON state interferometer is an essential tool
in achieving phase supersensitivity. Phase superresolution, on
the other hand, does not require NOON states as witnessed in
Fig. 7(e): two input single photons are orthogonally polarized
so no NOON states are formed in the interferometer, yet high-
visibility A/2 second-order interference fringes are observed
without any first-order interference.
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VI. SUMMARY

We have shown both in experiment and in theory that
photonic de Broglie wave interference can be observed
for non-NOON states as well as for NOON states using a
pair of energy-time-entangled spontaneous parametric down-
conversion photons. It is important to point out that both the
NOON state interference and the non-NOON state interference
demonstrated in this paper are quantum interference which
cannot be observed with classical light: the coincidence events
between two single-photon detectors exhibit the second-order
modulations (interference) while the single-photon detection
rates do not show any first-order interference fringes.

We then examined the connection between the photonic de
Broglie wave interference and entanglement between the input
single photons. The monochromatic-pumped SPDC in Eq. (2)
is strongly energy-time-entangled and, as the pump bandwidth
is increased, the degree of energy-time entanglement is
reduced [23]. The experimental and theoretical results on
photonic de Broglie wave interference for broadband-pumped
SPDC shown in Figs. 4(d) and 7(b) make it clear that the quality
of the photonic de Broglie wave interference for non-NOON
states is not affected by the reduced energy-time entanglement
between the photon pair at the input. Furthermore, Figs. 7(d)
and 7(f) show that even two nonentangled and distinguishable
(orthogonally polarized) single photons lead to essentially the
same photonic de Broglie wave interference.

These results therefore reveal that entanglement between
the two input photons plays essentially no role in the

PHYSICAL REVIEW A 81, 063801 (2010)

manifestation of the photonic de Broglie wave interference.
Rather, it is the measurement scheme (i.e., indistinguishable
pathways established by the measurement scheme) that brings
out the photonic de Broglie wave phenomenon [24]. Note,
again, that for observing quantum interference, the input
photons are still required to be nonclassical (e.g., entangled
SPDC photon pairs, two separable single-photon states, etc.).

Although the photonic de Broglie wave interference, which
is linked to phase superresolution, has been shown to be
unrelated to the NOON state, phase supersensitivity has been
shown to be closely tied to the NOON state. We have shown
that non-NOON states can only achieve phase sensitivity up
to the standard quantum limit while NOON states can exhibit
the Heisenberg-limited phase sensitivity. In experiment, NOON
states and nonperfect NOON states are shown to exhibit
phase supersensitivity while non-NOON states exhibit phase
sensitivity less than the standard quantum limit.

The experimental and theoretical results in this paper apply
to N = 2 photonic de Broglie wave interference. It will be an
interesting problem to study these effects for the N-photon
case.
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