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Spin dynamics and domain formation of a spinor Bose-Einstein condensate in an optical cavity
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We consider a ferromagnetic spin-1 Bose-Einstein condensate (BEC) dispersively coupled to a unidirectional
ring cavity. We show that the ability of the cavity to modify, in a highly nonlinear fashion, matter-wave phase
shifts adds an additional dimension to the study of spinor condensates. In addition to demonstrating strong
matter-wave bistability as in our earlier publication [L. Zhou et al., Phys. Rev. Lett. 103, 160403 (2009)], we
show that the interplay between atomic and cavity fields can greatly enrich both the physics of critical slowing
down in spin-mixing dynamics and the physics of spin-domain formation in spinor condensates.
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I. INTRODUCTION

Experimental realization of spinor Bose-Einstein conden-
sates (BECs) has opened up a new research direction of cold
atom physics [1], in which superfluidity and magnetism are si-
multaneously realized. Compared to scalar condensates, spinor
condensates possess unique features: (i) The spin-dependent
collision interactions allow for the population exchange among
hyperfine spin states; (ii) The spinor condensate is described
by an order parameter with vector character and therefore
may exhibit spontaneous magnetic ordering. These give rise
to spin-dependent phenomena such as coherent spin mixing,
spin textures and vortices, spin waves, and spin domains. These
phenomena have been demonstrated by many pioneering
experimental works [1–8] and extensively studied in theory
[9–22].

In the study of spinor BEC, it has been found that magnetic
field plays an important role, particularly via the quadratic
Zeeman effect. Coherent control of the spin-dependent be-
havior has been achieved by tuning magnetic field. These
include the control of the oscillation period and amplitude of
coherent spin mixing [3–5,12–15], formation of spin-domain
structure [1–3,18–22], and quantum phase transitions between
different magnetically ordered states [2,8,11].

In another frontier of cold atom research, recent exper-
imental progress has realized strong coupling of BEC to
electromagnetic modes of optical cavity [23,24]. This heralds a
new regime of cavity quantum electrodynamics, where a cavity
field at the level of a single photon can significantly affect
the collective motion of the atomic samples, hence opening
up new possibilities in manipulating ultracold atomic gases
with cavity-mediated nonlinear interaction. Previous works
focused on the interplay between the cavity field and the atomic
external degrees of freedom—the center-of-mass motion of
scalar condensates [25–33]. The ground-state and collective
excitations [28,29], cavity-induced Mott-insulator–superfluid
phase transition [32], and cavity optomechanics [33] were
theoretically investigated in detail. Such a system was also
shown to have the potential applications in probing atomic
quantum statistics in optical lattices and atomic quantum
state preparation [34]. Experimentally, optical bistability at
few-photon level has been observed, which is made possible
by the strong atom-photon coupling [25,27].

In our recent work [35], a system of a spin-1 BEC
trapped inside a unidirectional ring cavity was studied, where
the cavity couples to the atomic internal spin degrees of
freedom. We examined the equilibrium properties of this
system under the single-mode approximation (SMA)—where
all three atomic spin states are described by the same spatial
wave function—and showed that the interplay between the
atomic spin mixing and the cavity light field can lead to strong
matter wave and optical bistability simultaneously. Our current
work is an extension of Ref. [35]. Here we will conduct a
more thorough investigation by including the study of the
nonequilibrium properties and the collective excitations of
the system. We will also examine the validity of the SMA
for atomic wave functions and show that, when the SMA
becomes invalid, spatial domain structure will form in the
spinor condensate. This spin-domain formation is initiated
by the modulational instability induced by the cavity light
field. It adds an alternative route toward spin-domain formation
besides the use of magnetic field. This study will help us gain
insight into such properties as the spinor dynamics, dynamical
stability, spin-domain formation, etc.

The rest of the paper is organized as follows. Sec. II
introduces the theoretical model. Sec. III is devoted to a
discussion of spinor dynamics under the SMA, where both
equilibrium and nonequilibrium properties are studied. The
validity of the SMA is examined in Sec. IV by investigating
the modulational stability of a homogeneous system. We then
present results showing the formation of spin-domain structure
in the ground state in a regime where the SMA becomes invalid.
Finally we conclude in Sec. V.

II. MODEL

Figure 1 is a schematic of our model in which a spinor
BEC with hyperfine spin Fg = 1 confined in an optical
dipole trap by a spin-independent trapping potential VT (r)
is placed inside a unidirectional ring cavity. The cavity
is driven by a coherent laser field with amplitude εp and
frequency ωp, far detuned away from the Fg = 1 ↔ Fe = 1
atomic transition with transition frequency ωa such that the
atom-photon interaction is essentially of dispersive nature.
Further, the cavity is assumed to support a single π -polarized
electromagnetic mode characterized by a frequency ωc and
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FIG. 1. (Color online) Schematic diagram showing the system
under consideration. An F = 1 spinor condensate is trapped inside
the cavity using an optical dipole trap. The population of different spin
components can exchange via spin mixing. The cavity is coherently
driven by an external laser with amplitude εp and decays with a rate
κ . The cavity field is π polarized and is dispersively coupled to the
atomic system.

a decay rate κ . The selection rule then allows states |Fg =
1,mg = ±1〉 to be coupled to the corresponding states in the
excited manifold with the same magnetic quantum numbers
|Fe = 1,me = ±1〉, while it forbids state |Fg = 1,mg = 0〉 to
make dipole transitions to any excited states as shown in
Fig. 1. However, population in state |Fg = 1,mg = 0〉 can
be distributed to other sublevels via the two-body s-wave
spin exchange collisions. The total s-wave interaction is
described by two numbers, c0 = 4πh̄2(2a2 + a0)/3ma and
c2 = 4πh̄2(a2 − a0)/3ma , where ma is the atom mass, and
af is the s-wave scattering lengths in the hyperfine channel
with a total spin f = 0 or 2. Since the antiferromagnetic case
of 23Na has been considered in our previous work [35], here
we will focus on the ferromagnetic case of 87Rb spin-1 BEC
where c2 < 0. As we shall see, qualitatively similar results are
obtained in both cases, indicating that the bistability discussed
here is a rather general phenomenon insensitive to the specific
atomic system.

In this work, we take the standard mean-field approach,
describing the cavity field with a complex amplitude α(t)
which amounts to assuming the cavity field to be represented
by a coherent state, and the spinor condensate with the order
parameters ψ−(r,t),ψ0(r,t), and ψ+(r,t), which represent the
wave functions in magnetic sublevels mg = −1,0, and +1,
respectively. This treatment is justified when the condensate
atom number Nα = ∫

nα(r) dr (where nα = |ψα|2 is the atom
number density) in magnetic sublevel α are sufficiently large.
The equations of motion then read

ih̄ψ̇± = [L + U0|α|2 + c2(n± + n0 − n∓)]ψ± + c2ψ
2
0 ψ∗

∓,

(1a)

ih̄ψ̇0 = [L + c2(n+ + n−)]ψ0 + 2c2ψ+ψ−ψ∗
0 , (1b)

α̇ = [iδc − iU0(N+ + N−) − κ]α + εp, (1c)

where L = p̂2/2ma + VT (r) + c0n is the spin-independent
part of the Hamiltonian, n = n+ + n0 + n− is the total
atomic density, δc = ωp − ωc is the cavity detuning relative
to the external laser field, and U0 = g2/(ωp − ωa) is the
effective atom-photon coupling, with g being atom-cavity
mode coupling constant. Further, since the cavity decay rate
κ is typically much larger than the spin oscillation frequency,

in what follows, we adiabatically eliminate α from Eq. (1c),
replacing α in Eq. (1a) with

α(t) = εp

κ − i[δc − U0(N+ + N−)]
. (2)

One may immediately observe from Eq. (1) that the dis-
persive interaction between cavity photons and the condensate
atoms introduces an ac Stark shift, U0|α|2, to mg = ±1 states
relative to the mg = 0 state. This can be regarded as an
effective quadratic Zeeman energy shift. However, unlike the
Zeeman shift due to an external magnetic field or to a strong
off-resonant laser field [17], a key feature of the cavity-induced
effective shift is that it is sensitive to the spin population
distribution of the condensate, as manifested by Eq. (2). As
such, it generates a new effective spin-dependent interaction
which in turn induces a new set of nonlinear phenomena in
spinor condensate. In what follows, we will describe in detail
such new phenomena.

III. SPIN DYNAMICS UNDER SMA

In this section, we consider the spin dynamics under
the assumption of the SMA. This describes, for example, a
condensate whose size is smaller than the spin healing length ξs

defined as ξs = h/
√

2ma|c2|n which represents a length scale
over which a local perturbation in spin density gets forgotten.
Under the SMA, each spin component shares the same spatial
wave function φ(r) according to

ψα(r,t) =
√

Nφ(r)
√

ρα(t) exp{−i[µt + θα(t)]}, α = ±,0,

(3)

where θα(t) is the phase, ρα(t) is the population normalized
with respect to the total atom number N = ∑

α Nα , and
φ(r) is the solution to the time-independent Gross-Pitaevskii
equation, Lφ = µφ, where µ is the chemical potential and
φ(r) satisfy the normalization condition

∫
dr|φ(r)|2 = 1.

By inserting Eq. (3) into Eqs. (1a) and (1b), we arrive at a
set of equations:

dρ0

dτ
= 2λaρ0

√
(1 − ρ0)2 − m2 sin θ, (4a)

dθ

dτ
= −2

Ū0|α|2
N

+ 2λa

×
[

1 − 2ρ0 + (1 − ρ0)(1 − 2ρ0) − m2√
(1 − ρ0)2 − m2

cos θ

]
, (4b)

which describe the spin-mixing dynamics, where θ = 2θ0 −
θ+ − θ− is the relative phase, m = ρ+ − ρ− the magnetization,
and τ = κt the dimensionless time. In Eq. (4), we have also
introduced other dimensionless quantities given by

λa = Nc2
∫

dr|φ(r)|4
κ

, Ū0 = NU0

κ
, η = εp

κ
, δ̄c = δc

κ
.

To facilitate our study below, we follow Refs. [13,36] and use
dρ0/dτ = −2∂H/∂θ and dθ/dτ = 2∂H/∂ρ0 to construct, in
terms of two conjugate variables ρ0 and θ , the following mean-
field Hamiltonian H :

H = λaρ0 [1 − ρ0 +
√

(1 − ρ0)2 − m2 cos θ ] + U (ρ0), (5)
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where

U (ρ0) = η2

N
arctan [Ū0(1 − ρ0) − δ̄c]

represents the cavity-mediated atom-atom interaction.

A. Equilibrium property: bistability

In this subsection, we will use Eq. (4) to study the
equilibrium property of a condensate in the parameter regime
that supports bistability. As can be seen from Eq. (4a), at
steady state, there are two branches of stationary solutions:
one with θ = 0 (the in-phase state) and the other with θ = π

(the out-of-phase state). The in-phase state always has a
lower energy for c2 < 0 and we will therefore only focus on
the in-phase state in this work. In addition, we will restrict
ourselves to the case with zero magnetization m = 0 (i.e.,
we only consider the case where there are equal numbers of
mg = 1 and mg = −1 atoms).

Under these conditions, the intracavity photon number can
be found, by combing the stationary solution of Eq. (4b) with
Eq. (2), to obey the following transcendental equation:

|α|2 = η2

1 + (� + χ |α|2)2
,

where � = Ū0/2 − δ̄c and χ = Ū 2
0 /4Nλa . It is well known

that when η2|χ | > 8
√

3/9, the system will display bistable
behavior [37].

Figure 2(a) shows how the intracavity photon number
changes with detuning δ̄c, based on a set of realistic parameters:
λa = −6.8 × 10−5 [38], Ū0 = −5, η2 = 5, and N = 2 × 105.

FIG. 2. (Color online) (a) Mean intracavity photon number |α|2
and (b) the normalized spin-0 population ρ0 versus cavity-pump
detuning δ̄c for a steady-state solution with θ = 0. The ones
represented by the red dashed lines correspond to dynamically
unstable solutions. The vertical dotted lines indicate the position of
the first-order transition which occurs at δ̄c = −4.75.

With this set of parameters, η2|χ | is found to be around
2.3, which is above the threshold value 8

√
3/9 ≈ 1.54 for

bistability to take place. Indeed, for −4.9 < δ̄c < −4.6, the
system supports three stationary solutions. The dynamical
properties of these solutions can be studied with the standard
linear stability analysis. Substituting ρ0 = ρs

0 + δρ0 and θ =
θs + δθ (ρs

0 is the stationary solution with θs = 0) into Eq. (4)
and keeping terms up to the first order in fluctuations (δρ0,δθ ),
we have

d

dτ
δρ0 = 2λaρ

s
0

(
1 − ρs

0

)
δθ,

d

dτ
δθ = −2

(
4λa + Ū0

N

∂|α|2
∂ρ0

∣∣∣∣
ρ0=ρs

0

)
δρ0,

from which we find the small oscillation frequency ω as
determined by the following equation:

ω2 = 4λaρ
s
0

(
1 − ρs

0

) (
4λa + Ū0

N

∂|α|2
∂ρ0

∣∣∣∣
ρ0=ρs

0

)
.

In order to assure the dynamical stability of the system, ω2

should be positive. We find that in the region with three
solutions, two of them are dynamically stable while the third
one is dynamically unstable. This unstable state is shown by
the red dashed line in Fig. 2; it links the two stable ones,
representing a typical example of bistability.

In the region where the intracavity photon number is low,
the interaction is dominated by the intrinsic s-wave scattering,
which favors the ferromagnetic state in which ρ0 = 0.5 for
m = 0. In the region where the photon number is high, the
cavity-induced effective Zeeman effect takes a more prominent
role which, for the choice of U0 < 0, favors a condensate in
the mg = ±1 magnetic sublevels in which ρ0 becomes small.
If α is fixed to a value independent of the atomic dynamics
as in the case when it represents a strong off-resonant laser
field [17], the system will experience a smooth crossover from
the ferromagnetic-interaction-dominated phase to the Zeeman-
effect-dominated phase as the strength of U0 is tuned. In our
case, however, there is a first-order transition located within
the bistable region as indicated in Fig. 2. This phase transition
exists as a result of the cavity-mediated nonlinear atom-atom
interaction.

B. Non-equilibrium property: critical slowing down

In this subsection, we study the spin-mixing dynamics of
the system initially prepared in a state away from equilibrium.
To begin with, we make use of Eq. (5) and rewrite Eq. (4a) for
m = 0 as(

dρ0

dτ

)2

= 8λaρ0(1 − ρ0)[H − U (ρ0)] − 4[H − U (ρ0)]2,

(6)

where H is the energy of the system which is a constant
determined by the initial condition. In the cavity-free model
when U represents a constant quadratic Zeeman shift inde-
pendent of ρ0, Eq. (6) is known to support analytical solutions
in the form of elliptic functions [13]. In our case, we have
to resort to numerics to solve the above equation. As the
system is conservative, the spin dynamics is expected to feature

063641-3



ZHOU, PU, LING, ZHANG, AND ZHANG PHYSICAL REVIEW A 81, 063641 (2010)

FIG. 3. (Color online) (Top panel) Period of spin oscillations as a
function of cavity-pump detuning δ̄c. (Middle panel) The anharmonic
time evolution of ρ0 for the three peaks marked in the top panel.
(Bottom panel) From left to right, the phase-space contour plot of H

corresponding, respectively, to the peak 1, 2, and 3 marked in the top
panel. The black dots refer to the initial state of the system, while the
white dots refer to dynamically unstable fixed points.

periodic population exchanges among different spin states,
as in the cavity-free model with a homogeneous magnetic
field [13,14].

Figure 3 shows how the oscillation period changes with
cavity detuning δ̄c, where the period is obtained by solving
Eq. (6) numerically starting from the initial condition (ρ0 =
0.1,θ = 0.16π ) under the same set of parameters that resulted
in the equilibrium state in Fig. 2 with θ = 0. Here, cavity
detuning δ̄c serves as a control knob with which the departure
between the initial nonequilibrium state (ρ0 = 0.1,θ = 0.16π )
and the closest equilibrium state (an in-phase state with θ = 0)
can be conveniently tuned. It plays a similar role as the
magnetic field in the study of spin dynamics in the presence of a
homogeneous magnetic field. In the ferromagnetic case, it has
been theoretically predicted [13] that there is a single critical
magnetic field around which oscillation period diverges. In
contrast, the period as a function of δ̄c in Fig. 3 exhibits
three peaks around which the period (or the oscillation)
experiences a dramatic enhancement (or slowing down).1

1This critical slowing down should not be confused with those
discussed in [39], in which it refers to an extremely slow return of the
system to equilibrium in the vicinity of the bistable transition points.

The spin population ρ0 as functions of time at three peaks
are illustrated in Fig. 3.

To gain physical insights into these dynamics, we plot in the
bottom of Fig. 3 the corresponding equal-H contour diagrams
in the phase space defined by the conjugate pair (θ , ρ0). In a
dissipationless system like ours, no matter how complicated
the system dynamics may look in the time domain, it evolves
along one such contour determined by the initial state (marked
as a black dot in Fig. 3). The critical slowing down takes place
when the energy approaches a critical value Hc below which
the contour changes its topology from an open to a closed
line. In the pendulum analogy, it corresponds to the pendulum
approaching the vertical upright position. The existence of
a bistable region in our example makes the phenomenon of
critical slowing down far richer. As can be seen, both the first
and third peaks are located outside the bistable region, where
only one attractor representing the stable state at θ = 0 exists,
while the second one is inside the bistable region, where an
unstable saddle point marked by a white dot coexists with two
attractors at θ = 0. Our results show that the oscillation period
strongly depends on the cavity light field, and the pump field
can thus serve as a control knob for the spin-mixing dynamics.

IV. BEYOND SMA

So far we have focused our discussion within the SMA. In
this section, we will investigate the validity of the SMA and
study the properties of the system when the SMA becomes
invalid.

A. Modulational instability of a homogeneous condensate

In order to gain some physical insights into the validity
of the SMA, we first consider the case without the trapping
potential and assume that the condensate inside the cavity is
homogeneous. In this case we have ψα = √

nα exp(−iµαt −
iθα), where the atomic density nα now becomes position
independent, and the stationary solution (ns

α , θs
α) is still

determined by Eq. (4) at steady state except that λa should
be redefined as λa ≡ c2n/κ .

In order to check whether these homogeneous states are
stable against spatial modulation, we examine the Bogoliubov
collective excitation spectrum by introducing small fluctua-
tions around the steady-state solution. Inserting ψα = (

√
ns

α +
δψα) exp(−iµs

αt − iθ s
α) into Eq. (1), where δψα can be ex-

panded in momentum space as δψα(r,t) = ∑
k[uα(t) exp(ik ·

r) + v∗
α(t) exp(−ik · r)], we obtain a matrix equation

idx/dt = Mx for vector x = (u+,u0,u−,v∗
+,v∗

0 ,v
∗
−)T where

M is a matrix given in the Appendix. The Bogoliubov modes
are then given by the eigenvalue equations Mx = h̄ωx, where
ω represents the excitation frequency. If all the ω’s are real,
then the system is dynamically stable. Otherwise, the system
is dynamically unstable with the growth rate of the instability
characterized by Im(ω).

In the absence of cavity, the homogeneous ground state
of a ferromagnetic 87Rb condensate has been found to be
stable against spatial modulation even in the presence of a
homogeneous magnetic field [21]. This, as we shall show,
will not always be the case when the cavity is introduced. To
illustrate this, we numerically diagonalizeM to investigate the
properties of Bogoliubov excitations. For the spin-1 system as
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FIG. 4. (Color online) (a) The gray area shows the range of
wave vector k corresponding to the unstable excitations of the
self-consistent ground state of a homogeneous rubidium condensate-
cavity interacting system. The red lines (top) refer to those with
the maximum instability growth rate. (b) Spin-domain width versus
cavity-pump detuning δ̄c

we considered here, there will be three branches of Bogoliubov
excitations—two gapless branches and one gapped branch.
Our numerical calculations reveal that one of the gapless
branches will become unstable for certain values of the wave
number k. Figure 4(a) shows the range of unstable wave
numbers as the cavity-pump detuning is varied, and those with
the maximum instability growth rate are represented by the red
lines (top). Furthermore, the Bogoliubov eigenvectors of these
most unstable modes are found to take the following form:

uT
α ,vT

α ∝ (−0.5,0,0.5) or (0.5,0,−0.5),

which describe the spin waves with spin angular momentum
±h̄. The exponential growth of these modes tends to induce
spontaneous magnetization, and spin domain will be formed
as a result of the competition between local spontaneous
magnetization and the conservation of the total magnetization.
The smallest size of the spin domain may be estimated by
the inverse of the wave number dm ≈ 2π/km where km is the
largest unstable wave number, which is plotted in Fig. 4(b).

It is important to note that if the size of the conden-
sate is small compared to the domain width dm estimated
above, the instability will be suppressed. Under such con-
ditions, the SMA is expected to be valid. Conversely, when the
size of the condensate becomes larger than dm, spin-domain
formation may occur.

B. Spin domain structure

Equipped with the insights gained from the study of a
homogeneous condensate in the previous subsection, we are
now in the position to explore the effect of cavity-induced
atom-atom interaction on spin-domain formation in a trapped

condensate. For simplicity, we consider a cigar-shaped trap
with a harmonic trapping potential VT (r) = ma[ω2

⊥(x2 +
y2) + ω2

zz
2]/2 in which the transverse trap frequency ω⊥ is

much higher than the longitudinal trap frequency ωz. This
allows us to introduce a longitudinal wave function φα(z,t) via
the ansatz ψα(r,t) = φ⊥(x,y)φα(z,t) exp(−2iω⊥t), assuming
that the transverse wave function φ⊥(x,y) always remains in
the ground state of the transverse potential. This assumption
is valid when the condensate chemical potential is much less
than the transverse trap frequency such that the transverse
condensate wave function is frozen in the ground-state motion
of the transverse trapping potential. Following the standard
approach (see, e.g., Refs. [18,21]), we simplify Eqs. (1a), (1b),
and (2) into a set of equations for φα(z,t):

ih̄φ̇± = [L̃ + U0|α|2 + c̄2(ρ± + ρ0 − ρ∓)]φ± + c̄2φ
2
0φ

∗
∓,

(7a)
ih̄φ̇0 = [L̃ + c̄2(ρ+ + ρ−)]φ0 + 2c̄2φ+φ−φ∗

0 , (7b)

which describe an effective one-dimensional trapped system,
where

L̃ = − h̄2

2ma

∂2

∂z2
+ m

2
ω2

zz
2 + c̄0ρ,

with ρα = |φα|2, ρ = ρ+ + ρ0 + ρ−, and c̄0(2) =
c0(2)maω⊥/2πh̄.

In our calculation, we set the trap frequencies as ω⊥ =
(2π )240 Hz and ωz = (2π )24 Hz [20], and other parameters
the same as before. The Thomas-Fermi radius in the z

direction is then about 24 µm. In the numerical simulation,
we obtain the ground state in a self-consistent manner by
propagating Eq. (7) in imaginary time subject to the constraints
set by the conservation of both the total particle number
and the magnetization. The results are shown in Fig. 5.
From the numerical simulation we find there exists a critical

FIG. 5. The ground density profile of a 87Rb condensate trapped
in a unidirectional ring cavity. Here the distance z is scaled with
as = √

h̄/maωz and the parameters used are specified in the main
text.
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value of the cavity-pump detuning �c ≈ −3.5. The ground
state exhibits a typical spin-domain structure when δ̄c > �c,
in which mg = 1 and −1 states occupy the opposite ends
of the cigar-shaped trap. While for δ̄c < �c, all three spin
components are completely miscible with no spin domains
forming, and the ground state is well described by the SMA.
This is a clear proof that the cavity light field can be used
to control spin-domain formation in the condensate. The
mechanism lies in the fact that the domain width can be
significantly modified by tuning the cavity-pump detuning δ̄c,
as we have shown in Fig. 4(b). When δ̄c > �c, the domain
width (around 14 µm) is smaller than the condensate size and
spin domain can be formed. While for δ̄c < �c, the domain
width is larger than the size of the condensate, then the domain
formation instability is suppressed.

At this point, we comment that spin domains were first
observed in the ground state of a 23Na antiferromagnetic
condensate in the presence of the magnetic field gradient
[1]. Later studies [18–20] discovered that a ferromagnetic
spinor condensate initially prepared in an excited state will
be subject to dynamical instability and lead to spin-domain
formation, while antiferromagnetic ones are dynamically
stable. The experiment of Ref. [2] displayed the spin domains
formed in a quenched 87Rb ferromagnetic condensate. Recent
work [21] clarified that for a spin-1 condensate subject to a
homogeneous magnetic field, the ground state exhibits domain
formation only in antiferromagnetic condensates, but not in
the ferromagnetic ones. The significance of our work here is
that spin-domain structures can also be created in the ground
state of a ferromagnetic condensate with the aid of a cavity.
This can be traced to the effective spin-dependent atom-atom
interaction induced by the cavity.

V. CONCLUSION

In conclusion, we have studied the mutual interaction of a
ferromagnetic spin-1 condensate with a single-mode cavity.
The intracavity light field and condensate wave functions
are calculated self-consistently. The cavity-mediated effective
interaction gives rise to a variety of interesting spin-dependent
phenomena. Under the SMA, both the equilibrium properties
and nonequilibrium dynamics are investigated in detail. We
show that the system can display bistable behavior. By tuning
the cavity-pump detuning, the spin-mixing dynamics can
be manipulated. We also discussed the situation when the
SMA becomes invalid, and found that phase transition among
different spin components can occur in the ground state which
leads to spin-domain structure. All these effects can be readily
tested in experiments. The cavity-spinor condensate system
thus provides a platform for the study of cavity nonlinear
optics and the properties of spinor condensates.
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APPENDIX: DERIVATION OF M

Inserting ψα = (
√

ns
α + δψα) exp(−iµs

αt − iθ s
α) and α =

αs + δα into Eqs. (1a) and (1b) where αs is the steady-state
value of Eq. (2) corresponding to the equilibrium solutions
(ns

α,θs
α), in the homogeneous case (VT = 0), keeping terms up

to first order in δψα and δα, we obtain

ih̄δψ̇± = [−h̄2∇2/2ma − µs
± + U0|αs |2 + 2(c0 + c2)ns

±
+ (c0 + c2)ns

0 + (c0 − c2)ns
∓
]
δψ±

+ [
(c0 + c2)ns

± + c2n
s
0 exp(−iθ s)

]
δψ∗

±

+ (c0 + c2)
√

ns
0n

s±(δψ0 + δψ∗
0 )

+ (c0 − c2)
√

ns−ns+(δψ∓ + δψ∗
∓)

+ 2c2

√
ns

0n
s∓δψ0 exp(−iθ s)

+U0

√
ns±(αsδα∗ + αs∗δα), (A1)

ih̄δψ̇0 = [−h̄2∇2/2ma −µs
0 + (c0 + c2)(ns

+ + ns
−) + 2c0n

s
0

]
× δψ0 + c0n

s
0δψ

∗
0 + (c0 + c2)

[√
ns+ns

0(δψ+ + δψ∗
+)

+
√

ns−ns
0(δψ− + δψ∗

−)
] + 2c2

(√
ns+ns−δψ∗

0

+
√

ns+ns
0δψ− +

√
ns−ns

0δψ+
)

exp(iθ s), (A2)

and

δα = − iU0V αs

κ − i[δc − U0(Ns+ + Ns−)]

[√
ns+(δψ+ + δψ∗

+)

+√
ns−(δψ− + δψ∗

−)
]
, (A3)

where V = N/n is the volume of the condensate and the use
of Eq. (2) has been made in arriving at Eq. (A3). Finally, by
combining Eqs. (A1), (A2), and (A3), we can construct matrix
M in a straightforward way.
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