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Thermodynamic instability and first-order phase transition in an ideal Bose gas
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We conduct a rigorous investigation into the thermodynamic instability of an ideal Bose gas confined in a cubic
box, without assuming a thermodynamic limit or a continuous approximation. Based on the exact expression of
the canonical partition function, we perform numerical computations up to 106 particles. We report that if the
number of particles is equal to or greater than a certain critical value, which turns out to be 7616, the ideal Bose
gas subject to the Dirichlet boundary condition reveals a thermodynamic instability. Accordingly, we demonstrate
that a system consisting of a finite number of particles can exhibit a discontinuous phase transition that features
a genuine mathematical singularity, provided we keep not volume but pressure constant. The specific number,
7616, can be regarded as a characteristic number of a “cube,” which is the geometric shape of the box.
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I. INTRODUCTION

By definition, first-order phase transitions in thermodynam-
ics feature a genuine mathematical singularity. Whether finite
systems in nature can literally exhibit such an infinity is a
long-standing controversial question [1,2].

When a thermodynamic system is composed of a defi-
nite number of particles, say N , and is in contact with a
heat reservoir, the key quantity is the canonical partition
function,

ZN (β,V ) =
∑
ψ

e−βEψ , (1)

where the sum is over all the quantum states of the N -body
system. When the energy eigenvalues depend on the volume of
the system, ZN is a function of the volume V and the temper-
ature through β = 1/(kBT ), where kB denotes the Boltzmann
constant. Provided we have the precise canonical partition
function, we may compute various physical quantities, which
include the pressure, the entropy, the internal energy, and the
specific heat per particle at constant volume as follows:

P = (1/β)∂V ln ZN, S = kB(1 − β∂β) ln ZN,
(2)

E = −∂β ln ZN, CV = (kB/N)β2∂2
β ln ZN.

In particular, since ∂2
β ln ZN = 〈(Eψ − E)2〉 is a standard

deviation squared; CV is finite and never negative. Further,
the temperature derivative of the probability for the system to
occupy a certain quantum state ψ reads

∂

∂T

∣∣∣∣
V

(e−βEψ /ZN ) = kBβ2(Eψ − E)e−βEψ /ZN. (3)

As the temperature increases from absolute zero to infinity, the
corresponding probability increases if the energy eigenvalue is
greater than the average, i.e., Eψ > E, and it starts to decrease
in the opposite case, Eψ < E.

Since the canonical partition function appears as a positive-
definite analytical function of its arguments, clearly all the
physical quantities listed in (2) and (3) should not feature any
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singularities. They may do so only in the thermodynamic limit:
the limit of N → ∞ and V → ∞ with N/V held fixed [3].

However, strictly speaking, infinite limits are hardly real-
istic and exist only in theory [1,2,4,5]. The above analysis
seems to suggest that nature does not admit a discontinuous
phase transition featuring a genuine mathematical singularity,
which is somewhat different from experiments or our daily
experiences under the standard pressure 1 atm.

In this paper we pay attention to the fact that the above
finiteness and continuity are for the cases of keeping the
volume fixed. Once we switch to an alternative constraint of
keeping the pressure constant, we demonstrate that canonical
ensembles with a finite number of physical degrees may
undergo a discontinuous phase transition.

The organization of the present paper is as follows:
Section II is devoted to a systematic analysis on the ther-
modynamic instability of a generic finite system. We explain
how canonical ensembles with a finite number of physical
degrees may exhibit a discontinuous phase transition when
we keep not volume but pressure constant. Furthermore, we
present a theorem which states that a thermodynamic system
must be unstable at low temperature near absolute zero if
the ground-state energy is volume independent. Examples
include systems with vanishing ground-state energy, such as
supersymmetric models, and ideal Bose or Boltzmann gases
under periodic or Neumann boundary conditions.

In Sec. III, as a concrete model we focus on ideal Bose gas
which is confined in a box and subject to Dirichlet boundary
conditions. Since there is no zero mode, the ground-state en-
ergy depends on the volume and our theorem is not applicable
in this case. Nevertheless, by numerical analysis we show that
the ideal Bose gas reveals a thermodynamic instability and
consequently undergoes a first-order phase transition, if the
number of particles is equal to or greater than 7616.

Finally, Sec. IV conveys our discussion. In particular, we
comment on the similarity between the permutation symmetry
of the identical particle indices and the gauge symmetry in
high-energy physics.

The Appendix contains our numerical verification that
ideal Bose or Boltzmann gases under periodic or Neumann
boundary conditions exhibit a thermodynamic instability at
low temperature near absolute zero.
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Although ideal Bose gas has been studied for decades
[6–10] and discussed in many textbooks [11–14], the im-
plication of the constant-pressure constraint to the canonical
ensemble of finite N has been rarely explored.1 To the best of
our knowledge the finite N effect on the canonical ensemble
has been addressed only in the case of keeping the volume
fixed, rather recently by Kleinert [17] and by Glaum, Kleinert,
and Pelster [18]. The earlier focus was typically on either grand
canonical or microcanonical ensembles, and the computations
often assumed a continuous approximation to convert discrete
sums to integrals [19,20], unless an external harmonic potential
sets the sum to be taken over a geometric series [21–30].

II. FIRST-ORDER PHASE TRANSITIONS
IN FINITE SYSTEMS

Here we explain how canonical ensembles with a finite
number of physical degrees may exhibit a discontinuous phase
transition that features a genuine mathematical singularity
when we keep not volume but pressure fixed.

Prior to rigorous analysis, a thought experiment may
provide an intuitive clue for this claim: If we fill a rigid box
with water to the full capacity and heat it, the temperature will
increase but it hardly evaporates. However, once we open the
lid, it simply boils.

Explicitly, as pressure is a function of T and V , from (2)
we have

dP = dT ∂V S + dV ∂V P. (4)

Hence under constant pressure the temperature derivative
acting on any function of β and V can be computed as

∂

∂T

∣∣∣∣
P

= −kBβ2∂β − (∂V S/∂V P ) ∂V . (5)

Note that unless explicitly specified as ∂
∂T

|P and ∂
∂T

|V ,
throughout the paper ∂β always denotes the β derivative at
fixed V and ∂V is the volume derivative at fixed β, as already
taken in (2).

In particular, the specific heat per particle under constant
pressure reads

CP = 1

N

∂

∂T

∣∣∣∣
P

(E + PV ) = CV − (∂V S)2/(kBβN∂V P ).

(6)

1The so-called constant-pressure ensemble [15,16] fixes the pres-
sure and allows the volume to fluctuate, as its partition function is
given by

YN (β,P ) =
∫

dV e−βV P ZN (β,V ).

However, just like CV = (kB/N )β2∂2
β ln ZN , the specific heat therein

is positive definite and finite:

0 < C ′
P = (kB/N )β2∂2

β ln YN < ∞.

As we are interested in the precise change of the volume without
allowing any fluctuation of it, in the present paper we focus on the
standard canonical ensemble.

We pay attention to the denominator here which is essentially
the volume derivative of the pressure,

∂V P = β〈(∂V Eψ − 〈∂V Eψ 〉)2 〉 − 〈
∂2
V Eψ

〉
. (7)

This quantity possesses an indefinite sign. If ∂V P < 0, the sys-
tem is stable: it resists against the change of external pressure
by adjusting its volume. On the other hand, the opposite case,
∂V P � 0, characterizes the first-order phase transition, as the
volume at the phase transition is not single valued [11]. Clearly
from (5), when ∂V P = 0, a singularity develops and every
physical quantity should change discontinuously. Moreover,
when ∂V P crosses the vanishing line, CP can be negative. To
the best of our knowledge, all the known systems revealing
negative specific heat do not keep the volume constant, such
as in astrophysics [31,32], melting transitions [33,34], and in
real experiments [35,36].

We emphasize that from (5) the only way for a finite
canonical ensemble under constant pressure to reveal singular-
ities is through ∂V P = 0 (i.e., the sign of the thermodynamic
instability).

We close this section by presenting a sufficient, yet
unnecessary, condition for the thermodynamic instability.

Theorem. At low temperature near absolute zero, a thermo-
dynamic system is unstable (i.e., ∂V P > 0) if the ground-state
energy is volume independent.

The proof is simple once we spell the canonical partition
function as ZN = ∑

n �ne
−βEn , where En’s are the possible

energy eigenvalues and �n is the corresponding degeneracy.
By direct manipulation we may express ∂V P in the following
form:

∂V P = (1/β)∂2
V ln ZN

= (�1/�0)e−β(E1−E0)
[
β(∂V E1)2 − ∂2

V E1 + · · · ], (8)

where E0 is the volume-independent ground-state energy,
∂V E0 = 0, with the degeneracy �0; E1 is the first excited-state
energy satisfying ∂V E1 �= 0 with the degeneracy �1. The
ellipsis denotes exponentially suppressed terms for large β

or low temperature. Clearly at low temperature near absolute
zero ∂V P becomes positive. This completes our proof.

Examples include systems with vanishing ground-state
energy, such as supersymmetric models, and ideal Bose
or Boltzmann gases under periodic or Neumann boundary
conditions. The Appendix contains a numerical verification
of the latter.

III. IDEAL BOSE GAS CONFINED IN A CUBIC BOX

Based on the general analysis of the preceding section,
henceforth as a concrete model we focus on an ideal Bose gas
confined in a cubic box and subject to a Dirichlet boundary
condition. Since there is no zero mode, the ground-state energy
depends on the volume and our theorem is not applicable
in this case. Nevertheless, by numerical analysis we show
that ∂V P therein assumes positive values for some interval of
temperature if N � 7616.

A. Algebraic analysis

For noninteracting identical bosonic particle systems, more
easily computed than the canonical partition function is the
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grand canonical partition function:

Z =
∏

�n

⎛
⎝ ∞∑

j=0

(ηe−βE�n )j

⎞
⎠ =

∏
�n

(1 − ηe−βE�n )−1, (9)

where η denotes a fugacity and �n corresponds to a good
quantum number valued “vector” which uniquely specifies
every quantum state of the single particle system. Taking
logarithm and exponentiating back, we acquire an alternative
useful expression:

Z = exp

( ∞∑
k=1

λk ηk/k

)
, λk :=

∑
�n

e−kβE�n . (10)

From the power series expansion of this, Z = ∑
N ZNηN ,

one can easily read off the canonical partition function, as
previously obtained by Matsubara [37] and Feynman [38]:

ZN =
∑
ma

N∏
a=1

(λa)ma/(ma! ama ), (11)

where the sum is over all the partitions of N , given by
non-negative integers ma , a = 1,2, . . . ,N satisfying N =∑N

a=1 a ma . In particular, with λ1 = Z1 the partition as
m1 = N leads to a conventional approximation [39], or the
canonical partition function of an ideal Boltzmann gas,

ZN � (Z1)N/N !. (12)

This approximation would only be valid if all the particles
occupied distinct states, as in the case of the high-temperature
limit. Other partitions then give corrections to such underes-
timation: Compared to an ideal Boltzmann gas, an ideal Bose
gas has a higher probability that the particles will occupy the
same quantum state.

Yet, according to the Hardy-Ramanujan’s estimation,
the number of possible partitions grows exponentially like
eπ

√
2N/3/(4

√
3N ), and this would make any numerical compu-

tation practically hard for large N . Alternatively, we consider
a recurrence relation on ZN , which was derived by Landsberg
[40] and can be easily reproduced here after differentiating Z
in (10) by η: with Z0 = 1 we get for N � 1,

ZN =
(

N∑
k=1

λkZN−k

)/
N. (13)

Further, if we formally define an ∞ × ∞ triangularized matrix
� whose entries are given by

�[a,b] :=
{

λa−b/(a−1) for a > b

0 otherwise,
(14)

the above recurrence relation gets simplified,

ZN =
∞∑

n=0

�[N+1,n+1] Zn, (15)

so that it has a solution given by a particular entry of a certain
matrix,

ZN =
( ∞∑

k=0

�k

)
[N+1,1] = (I − �)−1[N+1,1]. (16)

Since �k[N+1,1] vanishes for k � N+1, the triangularized
matrix � can be effectively—and happily—truncated to its
upper left (N+1) × (N+1) finite block. Then, from the
standard recipe [41] to compute the inverse of a matrix,2

another expression of the canonical partition function follows:

ZN = det(�N )(Z1)N/N!, (17)

where �N is an almost triangularized N×N matrix of which
the entries are defined by

�N [a,b] :=

⎧⎪⎨
⎪⎩

λa−b+1/λ1 for b � a

−a/λ1 for b = a + 1

0 otherwise.

(18)

In particular, every diagonal entry is unity so that when
λ1 → ∞, we have det(�N ) → 1 and hence the reduction
ZN → (Z1)N/N ! as in (12).

In addition to the physical quantities (2) already discussed,
by considering −β−1∂E�n lnZ = ηe−βE�n/(1 − ηe−βE�n ) as a
trick [42], we can also compute the number of particles that
occupy the ground state:

〈N0〉 =
N∑

k=1

e−kβE0ZN−k/ZN. (19)

Each term in the sum of (19) corresponds to the probability
for at least k particles to occupy the lowest state. If we denote
this probability by pk , the difference pk − pk+1 corresponds to
the probability for precisely k particles to occupy the ground
state [43,44]. This leads to an alternative derivation of (19) as
〈N0〉 = ∑N

k=1 k(pk − pk+1) = ∑N
k=1 pk where pN+1 = 0.

Henceforth, exclusively for an ideal Bose gas we focus on
N particles with mass m, confined in a box of dimension d

and length L ≡ V 1/d . Hard, impenetrable walls impose the
Dirichlet boundary condition [45]. Since we are interested
in a finite system, the periodic boundary condition which is
somewhat more popular in the literature is not suitable for
our purpose. We recall that nevertheless enforcing a periodic
or Neumann boundary condition leads to a thermodynamic
instability at low temperature near absolute zero for arbitrary
N (see Fig. 3 in the Appendix).

With positive integer valued good quantum numbers,

�n = (n1,n2, . . . ,nd ), (20)

the single-particle Boltzmann factor in (9) assumes the form

e−βE�n = q �n·�n, q := e−βπ2h̄2/(2mV 2/d ). (21)

In terms of a Jacobi ϑ function

ϑ(q) := [θ3(0,q) − 1]/2 =
∞∑

n=1

qn2
, (22)

2From det(I − �) = 1, an intermediate relation between (16) and
(17) follows:

(I − �)−1[N+1,1] = (−1)N det(�N ),

where �N is an N×N matrix whose entry �N [a,b] is given by
−λa−b+1/a for b � a, unity for b = a+1, and zero otherwise.
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we get specifically for (10)

λk(q) = [ϑ(qk)]d . (23)

After all, ZN becomes a function of only one variable q, so
that we may set

β∂β ≡ q ln q∂q, V ∂V ≡ −(2/d)q ln q∂q. (24)

This implies that all the dimensionless physical quantities,
such as CV /kB , CP /kB , 〈N0〉, etc. are also functions of
the single variable q. Consequently, it turns out that the
temperature dependence of all these dimensionless quantities
can be best analyzed if we introduce the following two
dimensionless “temperatures”:

τV := kBT (V/N )2/d [2m/(π2h̄2)] = (4/π )(leff/de Broglie)2,

(25)
τP := kBT P −2/(d+2)[2m/(π2h̄2)]d/(d+2),

where de Broglie = h̄
√

2π/(mkBT ) is the thermal de Broglie
wavelength and leff = (V/N )1/d is the average interparticle
distance. While the former in (25) is a monotonically increas-
ing function of q, the latter may not be because

−1/τV = N2/d ln q, −1/τP = ln q[(2/d)q∂q ln ZN ]2/(d+2).

(26)

Any critical value of these quantities will automatically give
us the critical temperature at an arbitrarily given volume or
pressure.

In a similar fashion, we also define a dimensionless
indicator of the thermodynamic instability, φ, as well as
dimensionless “volume” and “energy”:

φ := −(1/N )βV 2∂V P = 4C2
V

/
[d2kB(CP − CV )],

υP := (τV /τP )d/2 = (V/N )[2mP/(π2h̄2)]d/(d+2), (27)

εP := (E/N)P −2/(d+2)[2m/(π2h̄2)]d/(d+2).

Low-temperature limit. The variable q lies between zero
and one. As q → 0 we have

ZN → e−βNE0 = qNd. (28)

Hence at q = 0, the temperatures vanish τV = τP = 0, and

CV = CP = 0, φ = ∞, 〈N0〉= N, υP = (2d/N2)1/(d+2).

(29)

In particular, the volume reads at absolute zero,

V = [Nπ2h̄2/(mP )]d/(d+2). (30)

That is to say, despite the apparent Bose-Einstein condensation
(i.e., 〈N0〉 = N ), the volume assumes a finite value which is
not even extensive. The finiteness is essentially due to the
Heisenberg uncertainty principle: Because the particles are
localized in a finite box, the uncertainty principle forbids the
ground-state energy E0 to vanish and leads to the nontrivial
canonical partition function (28).

High-temperature limit. As q → 1, from (17) and owing to
the identity of the ϑ function by Jacobi [46]:

ϑ(e−πσ ) + 1/2 = [ϑ(e−π/σ ) + 1/2]/
√

σ , (31)

we have

ZN → (1/N !)(−π/4 ln q)Nd/2. (32)

Hence at q = 1, the temperatures diverge τV = τP = ∞, and

CV /kB = d/2, CP /kB = 1 + d/2, φ = 1,
(33)

υP /τP = 1, (τV )d/(d+2)/τP = 1, 〈N0〉 = 0.

Namely, an ideal Bose gas reduces to a classical ideal gas at
high temperature, satisfying the classic relation

PV = NkBT . (34)

B. Numerical results

Here we present our numerical results of d = 3 (i.e., cubic
box) at generic temperature. Our analysis is based on a set
of recurrence relations that enables us to perform N2-order
computations, enhanced by a parallel computing power, a
JS20 (PowerPC 970) system. Essentially we utilize (13)3 and
two other relations which can be straightforwardly obtained
from the grand canonical partition function expressed in the
form (10)

β∂βZN =
N∑

n=1

ρnλnZN−n,

(35)

β2∂2
βZN =

N∑
n=1

[
n
(
ζn + ρ2

n

)
λnZN−n + ρnλn β∂βZN−n

]
,

where we set

ρn := (β/n)∂β ln λn, ζn := (β2/n2)∂2
β ln λn. (36)

All our results agree with the asymptotic behaviors of (29)
and (33).

Constant-volume curves (Fig. 1). As expected, all the
physical quantities are smooth single-valued functions of the
temperature τV . As N grows, the specific heat CV develops
a maximum, at which 〈N0〉 drops rapidly. This behavior is
consistent with Ref. [18]. More importantly for us, while
φ decreases from infinity at τV = 0 to one at τV = ∞, it
develops a local minimum that becomes eventually negative
if N � 7616. This manifests the thermodynamic instability of
the ideal Bose gas confined in a cubic box.

Constant-pressure curves (Fig. 2). Since the thermody-
namic instability indicator φ vanishes at two points when
N � 7616, there are generically two critical temperatures,
τ ∗
P < τ ∗∗

P , which we identify as supercooling and superheating
points, respectively. As predicted from the general argument

3Since ZN can be a big number for large N , for the evaluation of
the canonical partition function itself, it is convenient to decompose
it as

ZN =
N∏

n=1
fn

and utilize a recurrence relation,

fN =
N−1∑
n=0

[
λN−n

/(
N

N−1∏
j=n+1

fj

)]
,

which is equivalent to (13).
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FIG. 1. (Color) Constant-volume curves. (a) Specific heat per
particle at constant volume, CV /kB . (b) The occupancy ratio of the
ground state, 〈N0〉/N . (c) and (d) The thermodynamic instability
indicator, φ = −(1/N )βV 2∂V P . In (a)–(c), the red, orange, green,
blue lines are respectively for N = 1, N = 10, N = 102, 104, while
(d) is for N = 7614,7615,7616,7617. The case of N= 1 (red) also
corresponds to the ideal Boltzmann gas. All the quantities are
dimensionless.

(5), all the physical quantities change discontinuously at these
points: On each physical quantity versus the temperature plane,
the constant-pressure line zigzags between the two critical
points keeping them as two turning points. Accordingly,
physical quantities are triple valued between the two points
and double valued at the points. This implies the existence
of three different phases during the phase transition, say two
“forward” phases and one “backward” phase.

Specifically, the volume expands abruptly [Fig. 2(a)]: below
the supercooling point it is almost constant while beyond the
superheating point it follows the classical ideal-gas law (34),
which resembles the usual liquid-gas transition. At the same
time, the number of particles on the ground state drops abruptly
from the full occupancy to the total evacuation [Fig. 2(c)]. This
clearly realizes the Bose-Einstein condensation taking place
both in the momentum and in the coordinate space [47]. The
specific heat per particle under constant pressure diverges at the
critical points, and when magnified between the supercooling
and the superheating points [Fig. 2(f)], intriguingly it reveals
one negative heat capacity in addition to other two positive
ones. Because CP /kB = dεP /dτP + dυP /dτP , discontinu-
ous changes in both the internal energy and the volume simul-
taneously contribute to the divergence of the specific heat.4

Algebraically, while physical quantities are a priori single-
valued functions of q and hence τV , the origin of the

4In fact, the exponent corresponding to the singularities can be
shown to be 1/2 [48].
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FIG. 2. (Color) Constant-pressure curves. (a) The dimensionless
volume υP vs the dimensionless temperature τP . (b) τV vs τP .

(c) 〈N0〉/N vs τP . (d) The dimensionless energy εP vs τP . (e) and
(f) Specific heat per particle under constant pressure CP /kB vs
τP . Note that (a)–(e) are for N= 1 (red) (i.e., ideal Boltzmann
gas) or N= 10 (orange), 102 (green), 104 (blue). The small boxes
magnify the zigzag segments of N = 104 (blue), while (f) magnifies
(e) for N = 104 (blue). The dotted pink lines denote supercooling
and superheating points.

multivaluedness and singular behaviors can be all traced back
to the zigzagging of the isobar curve on the (τV ,τP ) plane
[Fig. 2(b)]. Namely, the isobar curves of the ideal Bose gas
zigzag on the (V,T ) plane, if N � 7616.

Our numerical results of the supercooling and the super-
heating points are listed in Table I for selected N .

By recovering all the dimensionful parameters from Table I,
we may read off the supercooling and the superheating
temperatures at arbitrary constant pressure for each value

TABLE I. Supercooling and superheating temperatures.

N τ ∗
P τ ∗∗

P

7616 1.054 369 411 3 1.054 369 411 6
104 1.052 70 1.052 77
105 1.0410 1.0424
106 1.034 1.036
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of N ,

kBTsupercool � τ ∗
P

(
π2h̄2

2m

)3/5

P 2/5,

(37)

kBTsuperheat � τ ∗∗
P

(
π2h̄2

2m

)3/5

P 2/5.

With the mass of 4He and under the pressure 1 atm, our
numerical result of N = 106 gives us the supercooling tem-
perature 1.686 K and the superheating temperature 1.689 K,
both of which are of the same order as the lambda point
2.17 K or alternatively as the boiling point 4.22 K.

IV. DISCUSSION

In summary, a finite amount of ideal Bose gas confined in
a cubic box reveals a thermodynamic instability, if N � 7616.
This implies that under the constant-pressure condition, the
ideal Bose gas may undergo a first-order phase transition
accompanied by genuine mathematical singularities. It is
characterized by both the supercooling and the superheating
points, Bose-Einstein condensation in both the momentum
and the coordinate spaces, and the very fact that all the
physical quantities become triple valued between the two
points. In particular, one of the three values of specific heat
under constant pressure is negative. While Bose-Einstein
condensation appears as a continuous phase transition when
the volume is kept constant [Fig. 1(b)], it may become a
discrete phase transition if the pressure is held fixed [Fig. 2(c)].

Ideal gas consists of featureless point particles. It is such
a simple model that the canonical partition function becomes
essentially a one-variable function, ZN (q). The assumption
of an extra internal structure of the particle (e.g., spin or a
vibrational mode), will introduce an additional dimensionful
parameter into the energy spectrum. This may generate an
additional (continuous or discontinuous) phase transition and
distinguish the Bose-Einstein condensation to the ground state
from the condensation in the coordinate space [49].

The critical number 7616 we report in this paper can
be regarded as a characteristic number of a “cube” that is
the geometric shape of the box containing the ideal Bose
gas. Boxes of different shapes (see, e.g., [50]) will have
different critical numbers. Thus, our scheme of investigating
the thermodynamic instability of an ideal Bose gas can provide
a novel algorithm to assign a characteristic number to each
geometric closed two-dimensional manifold.

Apparently an ideal Bose gas has no interaction. However,
compared to an ideal Boltzmann gas, an ideal Bose gas has a
higher probability for the particles to occupy the same quantum
state, as seen from the comparison between (11) and (12).5 In
coordinate space this means that identical bosonic particles

5As a simple example, consider a two-particle system with quantum
states “up” and “down” only. The probability for the two identical
bosonic particles to occupy the same up state is 1/3 and this is higher
than that for the case of two Boltzmann particles, 1/4. Similarly,
the probability for two identical bosonic particles to occupy two
different states is 1/3, which is lower than that of the two Boltzmann
particles, 1/2.

have a tendency to gather together in comparison to ideal
Boltzmann gas. In fact, a path-integral representation of the
canonical partition function of an ideal Bose gas reveals the ex-
istence of an attractive effective potential [11].6 This provides
a physical clue to the condensation in both the momentum
and the coordinate spaces: As the temperature decreases,
the effective statistical attraction becomes dominant and the
system condensates. In this context, it is also worthwhile
to recall the similarity between the permutation symmetry
of the identical particle indices and the gauge symmetry of
the standard model in high-energy physics or matrix models
(see, e.g., [52]). Although the former is discrete while the
latter is continuous, the latter may include the former as a
subgroup. The common feature is that they both correspond to
nonphysical symmetry [53]. As a matter of fact, up to an overall
factor, the canonical partition function of identical harmonic
oscillators [21] coincides with that of a massive Yang-Mills
quantum mechanics [54], taking the form

∏N
n=1(1 − qn)−1.

Generically, for a stable matter ∂V P is negative. What we
show by taking ideal Bose gas as an exactly solvable model
is an explicit demonstration that, if there are sufficiently, yet
finitely, many identical bosonic particles, ∂V P can be positive
for at least one interval of temperature. It will be therefore
interesting and crucial to see to what extent interactions can
alter this. If not much, as in a weakly interacting system,
one first-order phase transition accompanying a discontinuous
volume change, or the liquid-gas transition itself, is likely to
occur essentially due to the identical nature of particles. In a
perturbative analysis of the interaction, ideal Bose gas provides
the “zeroth”-order contribution: For each quantum state ψ , as
the energy eigenvalue is shifted from Eψ to Eψ + �ψ , the
canonical partition function changes from ZN to ZN 〈e−β�ψ 〉.
Thus, the thermodynamic instability is modified as

φ −→ φ − (1/N)V 2∂2
V ln〈e−β�ψ 〉

= φ + (1/N)βV 2∂2
V 〈�ψ 〉 + · · · .

If the first-order correction gives a negative contribution,
∂2
V 〈�ψ 〉 � 0, the thermodynamic instability persists naturally

up to the order. In this case, the average bonding energy
between particles will also change discontinuously during the
phase transition, but this will be an accompanying side effect
rather than a key reason to drive the phase transition.

It will be experimentally challenging to find a correspond-
ing critical number for each molecule to manifest a discontin-
uous phase transition or its liquid-gas transition under constant
pressure. A criterion for the first-order phase transition is to
observe the supercooling and the superheating phenomena.
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6It is worth noting that the nontrivial volume at absolute zero due
to the Heisenberg uncertainty principle (30) suggests a statistical
repulsive interaction at low temperature. Nevertheless this is valid for
an ideal Boltzmann gas, too. For related subtle issues see, e.g., [51].
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APPENDIX: OTHER BOUNDARY CONDITIONS

Here, as an explicit demonstration of theorem (8), we
present numerical results (Fig. 3) on the ideal Boltzmann
gas (or equivalently the ideal Bose gas with N= 1) in
a cubic box under a boundary condition: Neumann or
periodic. This corresponds to taking λk(q) = [1 + ϑ(qk)]d

for the former and λk(q) = [1 + 2ϑ(q4k)]d for the latter.
Actually we only need λ1(q) and set d = 3 as for the cubic
box.

As expected, due to the existing zero mode, both boundary
conditions lead to a thermodynamic instability (i.e., ∂V P > 0
at low temperature near absolute zero).
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FIG. 3. Thermodynamic instability due to zero mode. (a) φ vs
τV under the Neumann boundary condition. (b) φ vs τV under the
periodic boundary condition.
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