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Correlations and superfluidity of a one-dimensional Bose gas in a quasiperiodic potential
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We consider the correlations and superfluid properties of a Bose gas in an external potential. Using a Bogoliubov
scheme, we obtain expressions for the correlation function and the superfluid density in an arbitrary external
potential. These expressions are applied to a one-dimensional system at zero temperature subject to a quasiperiodic
modulation. The critical parameters for the Bose glass transition are obtained using two different criteria and the
results are compared. The Lifshitz glass is seen to be the limiting case for vanishing interactions.
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I. INTRODUCTION

Research on the problem of a Bose gas in a disordered
potential gained momentum with the realization of well-
controlled disordered potentials for ultracold bosonic atoms,
which inspired a surge in theoretical and experimental ac-
tivity [1–7], and the subsequent observation of Anderson
localization by two groups [8,9]. The quest is now on to better
understand the effect of disorder on an interacting quantum
system.

The phase diagram of an interacting Bose gas subject
to a disordered potential was outlined in, for example,
Refs. [2–7,10,11]. While the exact picture of the phase diagram
depends on the employed potential, the qualitative behavior
appears to be the same for all kinds of disorder realizations. In
the absence of disorder, the gas is in a superfluid phase, which
in a two- or three-dimensional Bose system at zero temperature
is identical to a Bose-Einstein condensate (BEC) and in
one dimension is a quasicondensate with suppressed density
fluctuations and algebraically decaying correlations. Upon
raising the disordered potential, the system can enter a new
quantum phase: the Bose glass state, also called a fragmented
BEC. The Bose glass state lacks long-range phase coherence,
having exponentially decaying correlations and zero superfluid
density, but it is compressible. In the weakly interacting limit,
it has been conjectured that the Bose glass goes over into a
Lifshitz (or Anderson) glass [4,6], where the density profile
is that of a superposition of the lowest-lying single-particle
states, which are exponentially localized. Finally, a gas of
noninteracting bosons will have all the particles occupying the
lowest of the single-particle states.

Experimentally, two basic types of disordered potential
for ultracold atoms have been realized, both by optical
means: speckle and quasiperiodic. The first type of disorder
uses laser speckle, the two-dimensional diffraction pattern
of a laser beam passing through a roughened plate. Speckle
potentials for ultracold atoms were first used in Ref. [12]. A
quasiperiodic potential in one dimension is created simply by
superposing two standing waves with different wavelengths;
if the wavelengths differ by an irrational factor—the most
popular being the golden ratio—the resulting intensity is
a quasiperiodic function of the coordinate [1]. In higher
dimensions, quasiperiodic potentials can be created as the in-
terference pattern of a number of beams meeting at judiciously
chosen angles [13].

The speckle potential is intended to achieve the effect of
a one-dimensional random pattern. This situation has been
studied extensively in the literature. For a weakly interacting
(repulsive) system, Albanese and Frölich [14] showed that
the Hamiltonian admits exponentially localized solution in the
presence of arbitrarily small disorder. On the other hand, an
interacting one-dimensional (1D) Bose gas acts as a Luttinger
liquid. Using this approach, Giamarchi and Schultz [15]
showed that for a strong-enough interaction the system appears
again in a localized phase. In order to match with the known
results in the weakly interacting limit, they speculated the
existence of two localized phases. Later on, the existence of
those two sides of the glass transition were shown numerically
in Refs. [16,17].

In the quasiperiodic case the situation is less clear. While
it is established that—for no interaction—the system is
exponentially localized only when the external potential is
strong enough [18], in the presence of a repulsive interaction
the exact behavior of the localization is still not known, and
only recent results [19] show that a quasiperiodic potential
can inhibit the diffusion of a wave packet. In this kind of
potential the phase diagram has been studied by Refs. [5,6].
These works are done under the assumption that the secondary
lattice is small compared to the primary one, and the system
can be mapped into a Bose Hubbard (BH) model. However,
very little is known when the secondary lattice strength is
comparable to the primary one. In this case the BH model
cannot be used, and one has to address the problem in the
continuum. Moreover, if there exists an underlying periodic
potential to which the disorder is added, there is also a Mott
insulating phase for strong interactions if the filling is integer.
The latter feature is not discussed much in the present article
because it is not correctly described by the approximation that
we intend to use.

We see from the preceding discussion that the correlation
properties constitute a key to understanding the behavior of
the Bose gas; the superfluid properties constitute another. Both
of these can be calculated in the Bogoliubov scheme, where
the Gross-Pitaevskii equation gives the (quasi-) condensate
density and superfluid velocity and the Bogoliubov equations
yield the excitation spectrum and corrections to the density.
The Bose glass transition in a Gaussian correlated potential
was explored recently for strong interparticle potentials by
Fontanesi et al. in Ref. [7]. The Bogoliubov scheme is
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usually derived starting from the assumption that the system
is Bose-Einstein condensed and there exists a condensate
wave function �(r), defined either as the expectation value
of the bosonic field operator or as the wave function for
the single-particle mode that is occupied by a macroscopic
fraction of the particles. Clearly, this assumption would appear
to preclude the description of both quasicondensate and Bose
glass, but, as we see, it turns out that the Bogoliubov scheme
can, in fact, describe those states as well. The explanation
is that BEC is convenient, but not a necessary requirement,
for deriving the Bogoliubov equations; it suffices to make
the weaker assumption that the quantum fluctuations in
the density and gradient of the phase are small. Several
articles have presented different sketches of the derivation
of Bogoliubov theory for a quasicondensate [20–25]. In this
article we put up what we believe to be a complete, simple,
and consistent derivation of the Bogolioubov equations in a
Bose gas using a minimum of assumptions in order to be able
to analyze the quasicondensate-Bose glass transition in one
dimension. Using the same formalism we derive an expression
for the superfluid density in order to better understand the
transition.

In this work we consider the experimentally relevant case
of a 1D Bose gas in a quasiperiodic potential and examine
a wide parameter regime, allowing for a discussion of the
Bose glass transition and the conjectured Lifshitz glass. It is
important to stress that the Bogoliubov approximation has to
be used with some care in 1D systems. This problem has been
treated in detail for a uniform gas by Lieb and Liniger [26],
where it is shown that the Bogoliubov perturbation theory
agrees with the exact answer for g/n < h̄2/2 m. Moreover,
our numerical scheme is consistent only if the fluctuation
in the phase and in the density are small, and this clearly
cannot be the case upon increasing indefinitely the interaction
within the particles. For this reason, due to the intrinsic limit
of the Bogoliubov approach, we expect our results to be
reliable only for weak interaction and high density. Within
these limits, the application of the Bogoliubov recipe has been
proven to be theoretically sound, and it is known to give
the same correlation function of the Luttinger liquid theory,
as shown in Ref. [27]. We wish to compare the different
predictions for the phase transition obtained from analyzing
the behavior of the correlation function and of the superfluid
density.

As we see, our analysis suggests the existence of a
glassy phase for small interparticle interaction. The plot of
this phase appears as a series of peaks with little overlap.
According to the language used in Ref. [4], this phase is
called “fragmentd BEC,” or Bose glass; in the same reference,
the Anderson glass appears when the overlap between the
peaks is negligible. We maintain these definitions through our
article.

This article is organized as follows. In Sec. II we present
a derivation of Bogoliubov theory and in particular an
expression for a correlation function. In Sec. III, an expression
for the superfluid density is derived. Section IV presents
numerical results for the superfluid-Bose glass phase transition
in a 1D Bose gas. Finally, in Sec. V, we summarize and
conclude.

II. CORRELATION FUNCTION

Inspired by the works of Ho and Ma [22] and Xia and
Silbey [25], we use a path integral formalism, considering a
system of bosons described by the Euclidean action

S[ψ∗,ψ] =
∫

dτ dr ψ∗(r,τ )

[
− h̄ ∂τ + h̄2

2 m
∇2 − U (r)

+ µ − g

2
|ψ(r,τ )|2

]
ψ(r,τ ), (1)

where ψ is the scalar boson field. Assuming that the quantum
fluctuations of density and gradient of the phase are small, we
expand ψ as

ψ(r,τ ) = ei θ(r,τ )
√

n0(r) + δn(r,τ )

≈ ei θ(r,τ )
√

n0(r)

[
1 + 1

2

δn(r,τ )

n0(r)
− 1

8

δn2(r,τ )

n0(r)2

]
= ψ0(r,τ ) + δψ(r,τ ). (2)

The equation of motion for ψ0 is found by means of the
variational principle δS/δn∗

0 = 0, and the result is the Gross-
Pitaevskii equation for n0 [28]:

− h̄2

2 m
∇2

√
n0(r) + U (r)

√
n0(r) + gn0(r)

3
2 = µ

√
n0(r) .

(3)

This amounts to treating n0(r) as a scalar field representing the
(quasi-) condensate density and δn and θ as perturbations. In
a 3D system, and in two dimensions at zero temperature, the
condensate wave function � would in the absence of currents
be equal to the square root of the classical density,

√
n0. In

principle, one could describe a state with a current by assuming
a slowly varying phase θ0 that is also treated classically, but
we refrain from doing so for convenience.

Ignoring terms of order higher than θ2 and δn2, the action
becomes

S = S0 + S1 + S2 . (4)

Here, S0 contains only the classical density n0 and is
minimized by the equation of motion for n0, S1 must vanish
for n0 to be a stationary solution, while S2 is

S2 = 1

2

∫
dτ dr

⎡
⎣ δn(r,τ )√

2 n0(r)
i
√

2 n0(r) θ (r,τ )

⎤
⎦

∗

× S

⎡
⎣ δn(r,τ )√

2 n0(r)
i
√

2 n0(r) θ (r,τ )

⎤
⎦ , (5)

with

S =
(

− h̄2 ∇2

2 m
+ U + 3 gn0 − µ −h̄ ∂τ

−h̄ ∂τ − h̄2 ∇2

2 m
+ U + gn0 − µ

)

= −h̄∂τ σ1 +
(

H3 0

0 H1

)
, (6)
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where we have implicitly defined the scalar operators H3 and
H1. In order to find the correlators between δn and θ , we need
to find the function G that inverts S,[

−h̄∂τ σ1 +
(

H3 0

0 H1

)]
G(r,τ,r′,τ ′) = δ(r − r′). (7)

Of course, what we have derived so far is mathematically
identical to the well-known Bogoliubov theory, as we now
show. Introducing the transformation T as

T = 1√
2

(
1 1

1 −1

)
, (8)

we obtain

T L T −1 =
(

H3 0

0 H1

)
, (9)

with

L =
(

− h̄2

2 m
∇2 + U + 2 gn0 − µ n0 g

−n0 g h̄2

2 m
∇2 − U − 2 gn0 + µ

)
.

(10)

The diagonalization of L leads to the Bogoliubov equations
for the Bogoliubov amplitudes uj (r) and vj (r),

L
(

uj

vj

)
= Ej

(
uj

vj

)
. (11)

Moreover, the Green function for the action S = ih̄ ∂t + L is
already known [29] and equal to

G(r,r′,ω) = −
∑
j �=0

h̄

[
1

h̄ω − Ej

(
uj

vj

)(
u′

j

v′
j

)†

− 1

h̄ω + Ej

(
v∗

j

u∗
j

) (
v′

j
∗

u′
j
∗

)†]
. (12)

Defining χj as

χj =
⎛
⎝χ1

j

χ2
j

⎞
⎠ = T

(
uj

vj

)
=

⎛
⎜⎜⎝

δnj√
2

√
n0

i
√

2 n0 θj

⎞
⎟⎟⎠ , (13)

and correspondingly

χ̃j = T

(
v∗

j

u∗
j

)
, (14)

we can apply the transformation T to Eq. (7) and eventually
find

G(r,τ,r′,τ+)

=
∑
ωn

eiωnη

β
G(r,r,ωn)

= −
∑
j �=0

∑
ωn

eiωnη

β

[
1

ih̄ωn − Ej

χjχ
′†
j − 1

ih̄ωn + Ej

χ̃j χ̃ ′†
j

]

=
∑
j �=0

χjχ
′†
jN (Ej ) + χ̃j χ̃ ′†

j [N (Ej ) + 1]

=

⎛
⎜⎝

1
2
√

n0 n′
0

〈δnδn′〉 −
√

n′
0

n0
〈δniθ ′〉√

n0
n′

0
〈iθδn〉 2

√
n0 n′

0〈θθ ′〉

⎞
⎟⎠ , (15)

with ωn being the Matsubara frequencies, η a positive
infinitesimal, and N (Ej ) = 1/(eβ Ej − 1) the Bose-Einstein
distribution function. For convenience, we have defined the
notation

θ = θ (r,τ ),

θ ′ = θ (r′,τ+),
(16)

δn = δn(r,τ ),

δn′ = δn(r′,τ+).

Furthermore, let us define

�θ = θ ′ − θ. (17)

Using Eq. (2), the one-body correlation function becomes

〈ψ∗(r)ψ(r′)〉 = 〈
√

n0 + δne−iθ eiθ ′
√

n′
0 + δn′〉

= 〈
√

n0 + δnei �θ
√

n′
0 + δn′〉

=
√

n0n
′
0

〈
ei�θ + 1

2

δn

n0
ei�θ + 1

2
ei �θ δn′

n′
0

− 1

8

(
δn

n0

)2

ei �θ − 1

8
ei�θ

(
δn′

n′
0

)2

− 1

4

δn

n0
ei�θ δn′

n′
0

〉
. (18)

This expression can be evaluated using Wick’s theorem. To
lowest order in δn and θ , one finds [24]

〈ei �θ 〉 = e− 1
2 〈 (�θ)2〉,〈

δn

n0
ei θ

〉
= e− 1

2 〈(�θ)2〉
〈
δn

n0
i �θ

〉
,

(19)〈 (
δn

n0

)2

ei �θ

〉
≈ e− 1

2 〈(�θ)2〉
〈 (

δn

n0

)2 〉
,〈

δn

n0
ei �θ δn′

n′
0

〉
≈ e− 1

2 〈 (�θ)2〉
〈
δn

n0

δn′

n′
0

〉
,

so that, eventually, to second order [22],

〈ψ∗(r) ψ(r′)〉 =
√

n0 n′
0 e− 1

2 〈(�θ)2〉
{

1 + 1

2

(〈
δn

n0
i �θ

〉

+
〈
i �θ

δn′

n′
0

〉)
+ 1

4

〈
δn

n0

δn′

n′
0

〉

− 1

8

[〈(
δn

n0

)2 〉
+

〈 (
δn′

n′
0

)2 〉]}
. (20)

Since both δn and θ are small, the expression between
square brackets can be thought as a first-order expansion
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of an exponential. Using Eqs. (15) and (13), the following
expression is obtained:

ln g1(r,r′) = ln〈ψ∗(r) ψ(r′)〉 − ln
√

n n′

= −1

2

∑
j �=0

{∣∣∣∣ vj√
n

− v′
j√
n′

∣∣∣∣
2

+ Nj

[∣∣∣∣ uj√
n

− u′
j√
n′

∣∣∣∣
2

+
∣∣∣∣ vj√

n
− v′

j√
n′

∣∣∣∣
2]}

+ i
∑
j �=0

[
1

2
I (r,r′) + NjI (r,r′)

]
, (21)

where we used the shorthand Nj = N (Ej ). The quantity
i I (r,r′) is purely imaginary and equal to

i I (r,r′)

=
(

v∗
j√
n

v′
j√
n′ − v′∗

j√
n′

vj√
n

)
+

(
u′∗

j√
n′

uj√
n

− u∗
j√
n

u′
j√
n

)

+
(

u′∗
j√
n′

v′
j√
n′ − v′∗

j√
n′

u′
j√
n′

)
+

(
v∗

j√
n

uj√
n

− u∗
j√
n

vj√
n

)
.

(22)

If the excitation energies and the condensate wave function
are real, then the Bogoliubov amplitudes uj and vj can also
be chosen as real. The imaginary part in Eq. (22) therefore
vanishes, and the resulting expression coincides with that
found by Mora and Castin using a different formalism [24].
In particular, for the uniform case the expressions for the
Bogoliubov functions are known, leading to

ln g1 = −1

4

1

n0

∑
k �=0

[
1 − cos

(
k

2
|r − r′|

)]2

× [|vk|2 + Nk(|uk|2 + |vk|2)]. (23)

In one dimension, Eq. (21) is an expression for the
correlation in a Bose system which is ultraviolet and infrared
convergent. Even at T = 0 the sum has a finite value without
assuming a cutoff or a modification in the interparticle
potential.

III. SUPERFLUID DENSITY

According to the two-fluid model [30,31], the mass density
of a quantum fluid can be divided into a superfluid part
ρs(r) and a normal one ρn(r), the total mass current being
J (r) = ρn(r) vs(r) + ρn(r) vn(r). While the superfluid density
is in general different from the condensate density, the
superfluid velocity is the condensate velocity. In particular,
upon imposing a phase twist on the condensate wave function,
the superfluid part will be proportional to the additional kinetic
energy.

It is in this sense that the superfluid density can be defined
as a response to a twist of the order parameter [32,33], by
means of rewriting Eq. (2) as

ψ(r) = ei θ(r) √n0

(
ei k0·r + 1

2

δn

n0
− 1

8

δn2

n2
0

)
, (24)

with k0 = � ê0/L, L being the length of the system in the
direction of the unit vector ê0, and � a small twist angle. For
convenience, let us take the order parameter normalized to
unity; the superfluid density—in the direction of ê0—is then
defined by the thermodynamic limit of

ρs = 2L2m2N

h̄2�2V
[F�(µ,T ) − F 0(µ,T )]

= 2m2N

h̄2k2
0V

[F�(µ,T ) − F 0(µ,T )]. (25)

The substitution (24) results in the twisted action

S� = S +
∫

drdτ
h̄2

2 m

[
k2

0 n0(r,τ ) − 2ik0δn(r,τ )∇iθ (r,τ )
]

= S + k0

∫
dτ V (τ ), (26)

where in the second line we ignored higher-order terms in
the fluctuating fields δn and θ . If the system is large enough
(L 	 1), then V (τ ) can be seen as a perturbation; moreover,
let us assume that the symmetry of the problem imposes that
the odd terms in k0 vanish in F�, since the cases with k0 and
−k0 lead to the same physical situations. The new free energy
can be computed using the linked cluster theorem (see, for
example [34])

F� = F 0 +
∞∑

n=1

1

n!

kn
0

β h̄n

∫
dτ 1...dτ n〈V (τ 1)...V (τn)〉connected

= F 0 + h̄2

2 m
k2

0 − h̄4

2 m2
k2

0
1

β

∫
dτ dτ ′[〈δn δn′〉〈∇θ ∇θ ′〉

+ 〈δn∇θ ′〉〈∇θ δn′〉] + O
(
k4

0

)
= F 0 + h̄2

2 m
k2

0
V

N
ρs + O

(
k4

0

)
. (27)

Here, the notation 〈. . .〉connected stands, as usual, for a diagram-
matic expansion where only connected diagrams are retained.
The superfluid density can be found in terms of the Green
functions (15), defining

G̃(r1,r2,r3,r4,τ,τ
′) = G11(r1,τ,r3,τ

′) G00(r2,τ,r4,τ
′)

+G10(r1,τ,r4,τ
′) G01(r2,τ,r3,τ

′),
(28)

so that, by partial integration of Eq. (27),

ρs = N

V
− lim

r1→r
lim

r2→r ′

h̄2

m β

N

V

∫
dr dr′ ∇1 ∇2

∫
dτ dτ ′G̃(r,r ′,r1,r2,τ,τ

′)

− lim
r1→r

h̄2

m β

N

V

∫
dr dr′

(∇√
n0(r′)√

n0(r′)

)
∇1

∫
dτ dτ ′G̃(r,r ′,r1,r

′,τ,τ ′)
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− lim
r2→r ′

h̄2

m β

N

V

∫
dr dr′

(∇√
n0(r)√

n0(r)

)
∇2

∫
dτ dτ ′G̃(r,r ′,r,r2,τ,τ

′)

− h̄2

m β

N

V

∫
dr dr′

(∇√
n0(r)√

n0(r)

) (∇√
n0(r′)√

n0(r′)

) ∫
dτ dτ ′G̃(r,r ′,r,r ′,τ,τ ′). (29)

The evaluation of the averaged operators is done by summing over the Matsubara frequencies in expressions like

1

β

∫ β

0
dτ

∫ β

0
dτ ′Gαβ(r1,τ,r2,τ

′) Gγδ(r3,τ,r4,τ
′)

= 1

β3

∫
dτ dτ ′ ∑

m,n

exp(i (ωn + ωm) (τ − τ ′)) Gαβ(r1,r2,ωn) Gγδ(r3,r4,ωm)

= 1

β

∑
n

Gαβ(r1,r2,ωn) Gγδ(r3,r4, − ωn)

=
∑
i �=j

[
N (Ei) + N (Ej ) + 1

Ei + Ej

χα
i (r1) χ

β

i

†
(r2)χγ

j (r3) χδ
j

†
(r4) − N (Ei) + N (Ej )

Ei − Ej

χα
i (r1) χ

β

i

†
(r2)χ̃ γ

j (r3) χ̃ δ
j
†(r4)

+ N (Ei) − N (Ej )

Ei − Ej

χ̃α
i (r1) χ̃

β

i (r2)χγ

j (r3) χδ
j
†(r4) − N (Ei) + N (Ej ) + 1

Ei + Ej

χ̃α
i (r1) χ̃

β

i
†(r2)χ̃ γ

j (r3) χ̃ δ
j
†(r4)

]

+
∑

i

2 N (Ei) + 1

2 Ei

[
χα

i (r1) χ
β

i

†
(r2)χγ

i (r3) χδ
i

†
(r4) + χ̃α

i (r1) χ̃
β

i
†(r2)χ̃ γ

i (r3) χ̃ δ
i
†(r4)

]

+β
∑

i

N (Ei) (N (Ei) + 1)
[
χ̃α

i (r1) χ̃
β

i
†(r2)χγ

i (r3) χδ
i

†
(r4) + χα

i (r1) χ
β

i

†
(r2)χ̃ γ

i (r3) χ̃ δ
i
†(r4)

]
, (30)

with χi and χ̃i defined in Eqs. (13) and (14). In particular, for
the uniform case, all the terms proportional to ∇√

n0 vanish;
moreover, since the expressions for the Bogoliubov functions
are known analytically, it is possible to see that only the last
term of (30) survives, each term of the sum between square
parentheses giving a contribution of k2/2. In one dimension
one obtains

ρs = N

V
− h̄2 N

m V

∑
k �=0

k2 ∂N (Ek)

∂Ek

, (31)

which is the well-known Landau result [31].

IV. BOSE GLASS TRANSITION

We now apply our expressions for the correlation function
and the superfluid density to a system at T = 0. The external
potential is quasiperiodic, obtained as a sum of two potentials
whose periods are incommensurate with each other,

U (x) = V1 cos

(
2 π

d
x

)
+ V2 cos

(
2 π

λd
x

)
. (32)

For our specific realization we have chosen λ to be the golden
ratio, approximated as a fraction of two consecutive Fibonacci
numbers. In the following we consider two systems with length
L = 377 d and L = 89 d; the value of λ is, respectively, λ =
377/233 and λ = 89/55.

For V2 = 0, upon increasing the value of V1, the system
ceases to be superfluid and enters a Mott insulating phase
[10,35,36]. As stated in the Introduction, this phase cannot
be seen using the Bogoliubov ansatz we employ for the
excitations, and our method should not be applied when the

physics of the system is affected by the presence of the Mott
phase. However, when the second lattice is turned on a new
quantum phase, the Bose glass, becomes possible. According
to Ref. [10], when V2 is greater than the interaction energy,
the Mott phase disappears from the phase diagram of the gas,
and the only insulating phase is the glass phase. We believe
that in this situation of strong disorder our approach can be
quantitatively correct, and for definiteness we have chosen the
weights of the two potentials to be equal (V1 = V2 = V ).

Taking d as the unit of length, the Gross-Pitaevskii equation
can be rewritten as[

−1

2

d2

dx2
+ gN |�(x)|2 + U (x)

]
�(x) = µ�(x), (33)

where the energy is measured in units of Ed = h̄2/m d2,
and the norm of the quasicondensate wave function � is
set to 1. For each value of the parameters V and g, we
have found the ground state of Eq. (33) using an imaginary
time evolution with the split-operator method, along with
periodic boundary conditions. Using the ground-state wave
function the Bogoliubov excitations are found by means of
a direct diagonalization of the Bogoliubov equations (11). In
all our calculations the Laplacian term is represented using
the Fourier transform, while the derivative in the expression
for superfluid density (29) is approximated using a finite
difference expression.

The Bogoliubov analysis is expected to be relevant for
values of the interparticle interaction g/n � 1. This means
that our work is realistic for

gn � n2; (34)
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FIG. 1. (Color online) Density profiles for some values of gn for
V = 5 Ed (top) and V = 9 Ed (bottom); gn is expressed in units of
Ed = h̄2/md2 and x in units of d . Upon decreasing the interaction
strength, the condensate breaks up in sets of spikes with little overlap.

that is, the approximation we are using starts to be meaningful
for systems that contain a few particles per site.

We first solve for the ground state in a system with L =
377 d, using a numerical grid of 3016 points. Choosing a mean
density n = N/L = 4, we show in Fig. 1 n0(x) = N |�(x)|2
for the two cases V = 5 Ed and V = 9 Ed . Upon decreasing
g, the condensate density develops dips that become more
and more pronounced. Indeed, in some regions the condensate
seems to be broken up into several pieces that hardly overlap.
As we see, this has consequences for the behavior of the
correlation function.

Using the same mean density n = N/L = 4, Fig. 2 plots
the exponent of the correlation function

ln g1(0,x) = ln 〈ψ(0) ψ(x) 〉 − 1/2 ln n0(0)n0(x). (35)

While for higher gn the values of ln g1 follow a logarithmic
behavior (insets in Fig. 2), leading to a power-law decay in the
correlation function, for lower gn the function shows a linear
fall, therefore giving an exponential decay. Since our system
is finite, the transition to a different decay behavior is gradual,
but as a quantitative measure we record the point where a
linear fit for ln g1 gives a smaller sum of the residuals than a
logarithmic fit. The solid line in Fig. 3 shows the critical value
of V as a function of the interaction strength, according to an
interpolation of ln g1 between x = 10 d and x = 150 d.

The change in the decay behavior becomes evident at the
values of g when the quasicondensate seems to be broken
up into a set of spikes with little overlap. In this situation
the lowest-energy excited modes have a phase flip character,
since it costs little energy to change the relative phase of two
barely overlapping zones; the energy of the lowest excitation
decreases upon decreasing g. Eventually, this value becomes
so low that reaches the limit of our numerical precision
(∼10−15 Ed ). At this point, we may say that the condensate
has become completely disjointed. This boundary is indicated
by the dashed line in Fig. 3. It is seen that it occurs close

0 50 100 150 200 250 300 350
−3

−2

−1

0

x

ln
 g

1

0 50 100 150 200 250 300 350
−3

−2

−1

0

x

ln
 g

1

10
1

10
2

10
1

10
2

FIG. 2. (Color online) Exponent of the correlation function (35)
for the same values of gn as in Fig 1, for V = 5 Ed (top) and V = 9 Ed

(bottom); gn is expressed in units of Ed = h̄2/m d2 and x in units of
d . The insets show the same plot with a log scale on the horizontal
axis. In the main panels it is seen that for lower gn the values of
ln g1 (35) follow a linear behavior. For higher gn the plot appears to
depend logarithmically on x.

to the Bose glass transition, but it does not coincide with the
transition found using the other criteria. In the lower left corner
of the phase diagram, for small values of the interparticle
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FIG. 3. (Color online) Phase diagram of the Bose glass transition.
The open circles correspond to a state with nonvanishing superfluid
component, while for the red dots the system has only a normal
part. The solid line indicates when the linear interpolation of ln g1

[Eq. (35)] gives a smaller error than a logarithmic fit; that is, at the left
side of the solid line the correlation function decays exponentially.
The dashed line indicates the point at which the smallest excitation
energies cannot be resolved numerically. The inset shows the sum
of the residuals of the fits (in arbitrary units) as a function of gn,
for V = 9 Ed : the triangles refer to a linear regression, the diamonds
to a logarithmic interpolation. V and gn are expressed in units of
Ed = h̄2/m d2.
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potential, detecting the transition can be numerically challeng-
ing, since at the point where the correlation function changes
its behavior the excitation spectrum is already at the boundaries
of the numerical precision.

Figure 3 also shows when the superfluid density, as given by
Eq. (29), drops to zero (red points). Apparently, the superfluid
formula systematically overestimates the critical interaction
strength for the transition to an exponential decay. Indeed,
Eq. (29) gives the superfluid density only in the thermody-
namic limit and it might be that the finite size of the system
is part of the explanation for the disagreement. However,
we believe there is another reason for this discrepancy: the
way we applied the phase twist to the condensate part in
Eq. (24). For a nonuniform system, a phase twist in the
boundary conditions should give a velocity that depends on
the coordinate as a function of the condensate density in each
point. The corrections to (29) should be more relevant for small
g, when the variations in density are bigger.

The interpretation of the phase diagram in Fig. 3 is the
following: at the left side of the line there is an exponentially
decaying correlation function, along with a vanishing super-
fluidity; we believe that at this point our Bogoliubov scheme
detects the Bose glass phase, as described in Sec. I. The Bose
glass phase is seen to disappear completely below a finite
value for the disorder strength V (approximately V = 3), in
contrast to the findings of Ref. [7]. This is the main difference
with the results of Fontanesi et al. Besides finite size effects,
this behavior seems to be characteristic of the quasiperiodic
potential. As stated in Sec. I, for vanishing interaction
the system is localized only when the external potential
strength is higher than a critical value. When a repulsive
interaction is considered, this property survives in the glassy
phase.

In Fig. 4, we show the behavior of ρs in an enlarged
phase diagram. Because of the computational burden, this
phase diagram was calculated for a smaller system with
L = 89 d and a grid of 1424 points, and therefore the Bose
glass boundary is slightly shifted compared to that in Fig. 3.
Monte Carlo simulations [16,17] have previously shown a
re-entrant phase transition upon increasing g. While we do
not see this re-entrance, the behavior of the superfluidity is
suggestive, as it shows a nonmonotonous dependence of the
normal phase with respect to the interaction and the external
potential strength. Indeed, for a quasiperiodic potential Ref. [5]
shows that the re-entrant phase is limited to a small portion of
the phase space, and it is compatible with a superfluid phase
that extends to higher interaction strengths. Within the limit
of the Bogoliubov approximation, our work agrees with this
conclusion.

Finally, Fig. 5 and the inset of Fig. 4 show the inverse
participation ratio of the quasicondensate wave function �,

P = 1

L

[
∫

dx|�(x)|2]2∫
dx|�(x)|4 , (36)

for the cases L = 377 d and L = 89 d. Since the computation
of P is much faster than the diagonalization of the Bogoliubov
equations, Fig. 5 presents the behavior of the system for a finer
resolution in the values of gn and V than Fig. 3. As we can see,
the plots do not show any distinct transition. The glassy phase
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FIG. 4. (Color online) Surface plot of the superfluid density (29)
(normalized to the total density n) as a function of V and gn, for
L = 89 d . The dashed line is the boundary that we estimate for the
validity of our numerical calculations (see text). The inset shows
the inverse participation ratio P (36) of the quasicondensate wave
function. Both V and gn are measured in units of Ed = h̄2/m d2.

does not appear to be related to a radical change in the density
profile. Moreover, as stated in Sec. I, a new phase, the Lifshitz
glass, has been conjectured to exist for weak interparticle
potential, where the peaks in the density profile do not overlap.
We argue that such a phase should have a distinctive signal in
the quantity P . However, the plots of the inverse participation
ratio show only a smooth decrease. We conclude that—within
our approximation—the Lifshitz glass does not seem to exist
as a phase in its own right, but only as the limit of vanishing
interaction.
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FIG. 5. (Color online) Inverse participation ratio P (36) for L =
377 d as a function of gn, for some values of the external potential
strength V . The inset shows a surface plot of P as a function of V

and gn. All the energies are measured in units of Ed = h̄2/m d2.
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V. CONCLUSIONS

Using a path integral formalism, we have obtained—
within the Bogoliubov approximation—expressions for
the correlation function and the superfluid density in a
Bose gas for an arbitrary external potential at zero or finite
temperature. Applying these expressions to a 1D system at
T = 0, a quasiperiodic external potential was seen to cause a
transition to a phase where the correlation decays exponen-
tially and the superfluid density vanishes. We believe this is
the Bose glass phase. A comparison with the experiment of
Fallani et al. [1] is not straightforward, because they
employed a quasiperiodic potential with different relative
weights [i.e., V1 �= V2 in Eq. (32)], and the proximity
to the Mott insulating phase in the experiment makes
the Bogoliubov approximation questionable. However, they
spotted signs of a Bose glass transition when the peak
height of the external potential varies between 2V ≈ 16 Ed

and 2V ≈ 18 Ed , with gn ≈ 1 Ed , which is where the
transition takes place in our study for the bigger system
(L = 377 d).

We have not found a perfect match between the results
for the superfluid density and the correlation behavior for the

location of the Bose glass transition. We would like to point
out that the formula for the superfluid density (29) assumes
that the velocity vs of the condensate does not depend on the
position, and in this sense it is an approximation even within
the Bogoliubov approach. For this reason we plan to improve
the expression for ρs in the future.

Finally, we notice that our expression for the correlation
function and the superfluid density are valid also at a finite
temperature, and they can be used to study the Bose glass
transition for T �= 0. This relevant issue will be considered in
a future work.

Note added in proof. A recently published article by
Fontanesi, Wouters and Savona [PRA 81, 053603 (2010)]
extends the analysis done in Ref. [7].
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