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Ground states of spin-2 condensates in an external magnetic field
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The possible ground states of spin-2 Bose-Einstein condensates in an external magnetic field are obtained
analytically and classified systematically according to the population of the condensed atoms at the hyperfine
sublevels. It is shown that the atoms can populate simultaneously at four hyperfine sublevels in a weak magnetic
field with only the linear Zeeman energy, in contrast to that in a stronger magnetic field with the quadratic Zeeman
energy, where condensed atoms can at most populate at three hyperfine sublevels in the ground states. Any spin
configuration we obtained will give a closed subspace in the order parameter space of the condensates.
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I. INTRODUCTION

Recently, spinor Bose-Einstein condensates (BECs) have
received much attention in both experimental [1–4] and
theoretical studies [5–8]. Spinor BECs have internal degrees
of freedom because of the hyperfine spin of the atoms, which
liberate a rich variety of phenomena such as spin domains and
textures.

The ground states of spinor condensates in an external
magnetic field are an interesting problem because of the
constraint of both the atom number and total spin conservation.
For the spin-1 condensates, the mean-field ground states were
investigated in the pioneering work of Refs. [2,5,6] and became
a hot topic later [9–11]. For the spin-2 condensates in a weak
magnetic field with only the linear Zeeman energy, the mean-
field ground states were first studied in Refs. [12,13]. The phase
diagram was divided into three parts: the ferromagnetic, the
polar, and the cyclic phases. The cyclic phase is absent for the
spin-1 condensates and has drawn increasing attention. Many
phenomena were found in this phase such as stable fractional
vortices [14], vortex lattice transition [15], long-range order,
kinks and roughening transition [16], and so on.

In Refs. [12,13], only some possible ground states of the
spin-2 condensates in a weak magnetic field were given for
the cyclic phase. But until now, the systematical classification
of the cyclic ground-state configurations have been absent to
our knowledge, and in this article, we will obtain analytically
and classified systematically the possible ground-state spin
structure according to the population of the condensed atoms
at the hyperfine sublevels. Very recently, the ground states
of spin-2 condensates in a stronger magnetic field with
the quadratic Zeeman energy were obtained and classified
according to the determinant of the coefficient matrix [17,18].
In this article, we will obtain these states in a simple way
according to the atom population and classified systematically
in terms of the singlet pair amplitude. It is shown that
the condensed atoms can populate simultaneously at four
hyperfine sublevels in the weak magnetic field where the linear
Zeeman energy dominates, while atoms can at most populate
at three hyperfine sublevels in a stronger magnetic field with
the quadratic Zeeman energy.
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The article is organized as follows: In Sec. II, we introduce
the model of spin-2 condensates in an external magnetic field.
In Sec. III, the possible ground states in a weak magnetic field
with only the linear Zeeman energy are shown. The effects
of the quadratic Zeeman energy are analyzed in Sec. IV.
Finally, we give conclusions and some remarks on our results
in Sec. V. In the appendix, the possible ground states of the
cyclic phase with only the linear Zeeman energy term are
derived analytically in detail according to the population of
the atoms.

II. THE MODEL

The effective low-energy Hamiltonian of a spin-f Bose gas
was derived by Ho [5]. For spin-2, it reads [12]

Ĥ =
∫

dr
{
ψ̂†

a

[
−h̄2∇2

2M
+ Vtrap

]
ψ̂a + 1

2
c0ψ̂

†
aψ̂

†
bψ̂bψ̂a

}

+ 1

2

∫
dr{c1[ψ̂†

a
′ (�F)a′

b
′ ψ̂b

′ ] · [ψ̂†
a (�F)abψ̂b]

+ c2[ψ̂a
′ (A)a′

b
′ ψ̂b

′ ]†[ψ̂a(A)abψ̂b]}, (1)

where ψ̂a (a = −2, . . . ,2) is the hyperfine atomic field
operator, Vtrap is the trap potential, and repeated indices sum-
mate; c0 = (4g2 + 3g4)/7, c1 = (g4 − g2)/7, and c2 = (7g0 −
10g2 + 3g4)/35, where gF = 4πh̄2aF /M (F = 0, 2, 4), with
aF being the s-scattering lengths in the total spin F channel
and M being the atomic mass. �F is the spin-2 matrix [13]. A is
associated with the singlet pair amplitude [12], and the matrix
element (A)ab = (−1)aδa+b,0.

The external magnetic field B is along the z direction, which
is taken to be the quantization axis. It introduces the Zeeman
splitting energy term [9,11,12,17]

ĤZM (B) =
∫

dr
{−p0ψ̂

†
a (Fz)abψ̂b + q0ψ̂

†
a (Fz)

2
abψ̂b

}
, (2)

where p0 and q0 measure the linear and quadratic Zeeman
effects, respectively.

If the ground state is unfragmented, the field operator
becomes a c number �a = 〈ψ̂a〉 = √

nζa , where n is the
density and ζ is a normalized spinor, ζ+ζ = ζ ∗

a ζa = 1. For
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the homogeneous condensates, the spin configuration ζ is
determined by the energy functional

ε(ζ ) = c0n
2

2
+ c1n

2

2
〈�F〉2 + c2n

2

2
|�|2 − p0n〈Fz〉 + q0n

〈
F2

z

〉
,

(3)

where � = ζ T (A)ζ = ζa(A)abζb = 2ζ2ζ−2 − 2ζ1ζ−1 + ζ 2
0 is

related to the singlet pair amplitude. In the ground state, the
magnetization of the system must be aligned with the external
field [12], implying that 〈F+〉 = 0, where F+ = Fx + iFy .
Then Eq. (3) becomes

ε(ζ ) = c0n
2

2
+ c1n

2

2
〈Fz〉2 + c2n

2

2
|�|2 − p0n〈Fz〉+ q0n

〈
F2

z

〉
.

(4)

Minimizing Eq. (4) under the constraint ζ+ζ = 1, we obtain
the stationary Gross-Pitaevskii equations of the spinor as
follows:

(4q + 2γ − λ)ζ2 + c2�ζ ∗
−2 = 0, (5)

(q + γ − λ)ζ1 − c2�ζ ∗
−1 = 0, (6)

c2�ζ ∗
0 − λζ0 = 0, (7)

(q − γ − λ)ζ−1 − c2�ζ ∗
1 = 0, (8)

(4q − 2γ − λ)ζ−2 + c2�ζ ∗
2 = 0, (9)

where p = p0/n, q = q0/n and γ = c1〈Fz〉 − p; λ = µ − c0,
and the chemical potential µ is a Lagrangian multiplier for the
normalization of the spinor.

The ground states can be obtained by solving the preceding
five equations under the constraints of no transverse magneti-
zation, namely,

〈F+〉 = 2ζ ∗
2 ζ1 +

√
6ζ ∗

1 ζ0 +
√

6ζ ∗
0 ζ−1 + 2ζ ∗

−1ζ−2 = 0, (10)

the normalization condition,

|ζ2|2 + |ζ1|2 + |ζ0|2 + |ζ−1|2 + |ζ−2|2 = 1, (11)

and the total spin conservation,

〈Fz〉 = 2|ζ2|2 − 2|ζ−2|2 + |ζ1|2 − |ζ−1|2 ≡ m. (12)

In the weak external magnetic field, the Zeeman shifts
are substantially smaller than the hyperfine splitting, and the
quadratic shifts are typically smaller than the linear shifts [11].
Thus we proceed first with only the linear Zeeman term, and
then the effects of the quadratic shifts are analyzed.

III. GROUND STATES IN THE WEAK MAGNETIC FIELD

In the absence of the quadratic Zeeman term, that is, q = 0,
the stationary Eqs. (5)–(9) can be written in a matrix form:

[c1〈Fz〉 − p](Fz)ζ − λζ + c2�(A)ζ ∗ = 0. (13)

Multiplying Eq. (13) with ζ+ from the left-hand side, we have

c1〈Fz〉2 + c2|�|2 − p〈Fz〉 − λ = 0, (14)

where �∗ = ζ+(A)ζ ∗. Multiplying Eq. (13) with ζ T (A) from
the left-hand side, we get

�(λ − c2) = 0, (15)

where we have used the relation ζ T (A)(Fz)ζ = 0 and
(A)(A) = 1.

We follow the terminology of Ref. [12]. For the polar phase,
� 	= 0, that is, λ = c2, namely, the chemical potential µ =
c0 + c2. Then one has [12]

(
F2

z

)
ζ = c2

2(1 − |�|2)

[c1〈Fz〉 − p]2
ζ , (16)

showing that ζ is an eigenstate of (F2
z) with possible eigenval-

ues 0, 1, 4, denoted as P0, P1, and P, respectively:

P0: ζ T = eiα0 (0,0,1,0,0), (17)

with the total spin m = 0,

P1: ζ T =
(

0,eiα1

√
1

2
+ m

2
,0,eiα−1

√
1

2
− m

2
,0

)
, (18)

with m = p/(c1 − c2), and

P: ζ T =
(

eiα2

√
1

2
+ m

4
,0,0,0,eiα−2

√
1

2
− m

4

)
, (19)

with m = 4p/(4c1 − c2); αi are arbitrary phases. All these
states satisfy 〈F+〉 = 0 and � 	= 0.

If � = 0, Eq. (13) minus Eq. (14), multiplying with ζ from
the right-hand side, yields

[c1〈Fz〉 − p][(Fz) − 〈Fz〉]ζ = 0. (20)

For the ferromagnetic phase, (Fz)ζ = 〈Fz〉ζ, ζ is the eigenstate
of Fz, which leads to the states F2, F1, F-1, F-2, respectively:

F2: ζ T = eiα2 (1,0,0,0,0), m = 2, (21)

F1: ζ T = eiα1 (0,1,0,0,0), m = 1, (22)

F-1: ζ T = eiα−1 (0,0,0,1,0), m = −1, (23)

F-2: ζ T = eiα−2 (0,0,0,0,1), m = −2. (24)

For the cyclic phase, it is required that 〈Fz〉 = p/c1, compared
with the ferromagnetic phase. When m = ±2, ±1, some of
the cyclic states can reduce to the ferromagnetic states. From
Eq. (13), we have µ = c0.

In the appendix, we obtain analytically and classify sys-
tematically the possible cyclic ground-state configurations
according to the population of the condensed atoms at the
hyperfine sublevels. It is shown that the condensed atoms
can populate simultaneously at four hyperfine sublevels in
the weak magnetic field with only the linear Zeeman energy.

IV. GROUND STATES WITH THE QUADRATIC
ZEEMAN ENERGY

In the presence of the quadratic Zeeman term, we have to
solve the five stationary Gross-Pitaevskii equations [Eqs. (5)–
(9)], under the constraints of no transverse magnetization,
namely, Eq. (10), the normalization condition [Eq. (11)], and
the total spin [Eq. (12)]. We follow the classification principle
in the case of no quadratic Zeeman energy. For the polar states,
� = 2ζ2ζ−2 − 2ζ1ζ−1 + ζ 2

0 	= 0. To satisfy this condition and
Eq. (10), there are four possibilities: (1) ζ0 	= 0; (2) ζ1 	= 0
and ζ−1 	= 0; (3) ζ2 	= 0 and ζ−2 	= 0; or (4) ζ2 	= 0, ζ−2 	= 0,
and ζ0 	= 0:
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1. Obviously, we have the state P0, ζ T = eiα0 (0,0,1,0,0),
with the chemical potential µ = c0 + c2.

2. We have � = −2ζ1ζ−1 and two stationary equations

(q + γ − λ)ζ1 + 2c2|ζ−1|2ζ1 = 0, (25)

(q − γ − λ)ζ−1 + 2c2|ζ1|2ζ−1 = 0. (26)

The two equations and the normalization condition [Eq. (11)]
yield λ = q + c2. Then the preceding two equations give

ζ T =
(

0,eiα1

√
1

2
+ γ

2c2
,0,eiα−1

√
1

2
− γ

2c2
,0

)
. (27)

The total spin 〈Fz〉 = |ζ1|2 − |ζ−1|2 = γ

c2
= c1/c2〈Fz〉 −

p/c2, namely, m = p/(c1 − c2). Thus this state is the same
with P1, but with the different chemical potential µ =
c0 + c2 + q.

3. In the same way, we obtain the same state P, with the
different chemical potential µ = c0 + c2 + 4q.

4. In this case, we can only follow the result of Eqs. (103)–
(106) of Ref. [17].

For the ferromagnetic and cyclic states, � = 0. If all the
atoms populate at only one hyperfine sublevel, we have the
same four states F2, F1, F-1, and F-2. If the atoms populate at
two hyperfine sublevels, we have two possible configurations:
(1) ζ2 	= 0 and ζ−1 	= 0 or (2) ζ−2 	= 0 and ζ1 	= 0:

1. We have two stationary equations

(4q + 2γ − λ)ζ2 = 0, (28)

(q − γ − λ)ζ−1 = 0, (29)

namely,

λ = 4q + 2γ , (30)

λ = q − γ ; (31)

then we have λ = 2q and γ = −q = c1〈Fz〉 − p, which yield
m = p − q/c1. From the normalization [Eq. (11)] and the total
spin [Eq. (12)], we obtain the same state with only the linear
Zeeman term

ζ T = 1√
3

[
√

1 + meiθ2 ,0,0,
√

2 − meiθ−1 ,0] (32)

but with different total spin m and the chemical potential µ =
c0 + 2q.

2. In the same way, we obtain the state

ζ T = 1√
3

[0,
√

2 + meiθ1 ,0,0,
√

1 − meiθ−2 ], (33)

with m = (p + q)/c1 and µ = c0 + 2q.
If atoms populate at only three hyperfine sublevels, basing

on the analysis in the appendix, we have ζ2 	= 0, ζ−2 	= 0, and
ζ0 	= 0. Then the stationary equations reduce to

λ = 0, (34)

4q + 2γ = 0, (35)

4q − 2γ = 0, (36)

namely, µ = c0 and q = 0 = γ = c1〈Fz〉 − p, which yield
m = p/c1. Thus the state reduces to that with only the linear
Zeeman energy, namely, in the presence of the quadratic
Zeeman energy, the atoms cannot populate at the three

hyperfine sublevels in the cyclic phase. If atoms populate at
four or five hyperfine sublevels, we also have q = 0 and obtain
the same states in the absence of quadratic Zeeman energy.

Finally, we want to point out that for alkali-metal con-
densates, the linear and quadratic Zeeman energy may also
be engineered by using off-resonant microwave fields that
generate electromagnetically induced level splittings [19],
allowing essentially arbitrary experimentally prepared level
shifts for p and q [11]. If the quadratic Zeeman energy
absolutely dominates, that is, p = 0, only polar states P0, as
in Eq. (106) of Ref. [17], and the cyclic states [Eqs. (32) and
(33)] exist.

V. CONCLUSION AND REMARKS

In this article, we obtain analytically and classify systemat-
ically the possible ground states of spin-2 BECs in an external
magnetic field according to the population of the condensed
atoms at hyperfine sublevels. It is shown that the atoms can
populate simultaneously at four hyperfine sublevels in a weak
magnetic field with only the linear Zeeman energy, in contrast
to a stronger magnetic field with the quadratic Zeeman energy,
where condensed atoms can at most populate at three hyperfine
sublevels in the ground states. The properties of the spinor
condensates in a weak or stronger magnetic field should be
different. In the weak magnetic field, the linear Zeeman energy
is dominant, but in the stronger magnetic field, the quadratic
Zeeman energy dominates.

The rotational symmetry group SO(3) of the order param-
eter of the spinor condensates is reduced to SO(2) in the
presence of the external magnetic field. Any two ground states
we obtained cannot transform by spin rotation. Thus any spin
configuration we obtained will give a closed subspace in the
order parameter space of the condensates.
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APPENDIX

For all the possible states in the cyclic phase, the following
four equations must be satisfied:

〈F+〉 = 2ζ ∗
2 ζ1 +

√
6ζ ∗

1 ζ0 +
√

6ζ ∗
0 ζ−1 + 2ζ ∗

−1ζ−2 = 0, (A1)

� = 2ζ2ζ−2 − 2ζ1ζ−1 + ζ 2
0 = 0, (A2)

the normalization condition,

|ζ2|2 + |ζ1|2 + |ζ0|2 + |ζ−1|2 + |ζ−2|2 = 1, (A3)

and the total spin,

〈Fz〉 = p

c1
= 2|ζ2|2 − 2|ζ−2|2 + |ζ1|2 − |ζ−1|2 = m, (A4)

where the modulus |ζi | � 0 is a real number. This is a simple
but very important criterion in the following analysis.
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A. All atoms populate at only one hyperfine sublevel

We then obtain four possible states, F2, F1, F-1, and F-2.

B. Atoms populate at only two hyperfine sublevels

To satisfy Eqs. (A1) and (A2), there are only two possible
configurations: (1) ζ2 	= 0 and ζ−1 	= 0 or (2) ζ−2 	= 0 and
ζ1 	= 0.

1. We have

2|ζ2|2 − |ζ−1|2 = m, (A5)

|ζ2|2 + |ζ−1|2 = 1; (A6)

then we obtain

ζ T = 1√
3

[
√

1 + meiθ2 ,0,0,
√

2 − meiθ−1 ,0]. (A7)

This state exists only for −1 � m � 2. When m = 2, we have
the state F2, and when m = −1, we have the state F-1.

2. In the same way, we obtain

ζ T = 1√
3

[0,
√

2 + meiθ1 ,0,0,
√

1 − meiθ−2 ] (A8)

for −2 � m � 1.

C. Atoms populate at only three hyperfine sublevels

To satisfy Eq. (A2), it seems that there are two possible
configurations: (1) ζ2 = 0 and ζ−2 = 0 or (2) ζ1 = 0 and
ζ−1 = 0.

1. Equation (A1) reduces to

|ζ−1| = −|ζ1|ei(2θ0−θ1−θ−1), (A9)

namely, 2θ0 − θ1 − θ−1 = π , but Eq. (A2) reduces to

2|ζ1||ζ−1| = |ζ0|2ei(2θ0−θ1−θ−1), (A10)

namely, 2θ0 − θ1 − θ−1 = 0, which shows the impossibility of
this state.

2. Equation (A1) has been satisfied, and Eq. (A2) reduces
to

|ζ0|2 = −2|ζ2||ζ−2|ei(θ2+θ−2−2θ0), (A11)

namely, θ2 + θ−2 − 2θ0 = π , and |ζ0|2 = 2|ζ2||ζ−2|. We also
have θ−2 − θ0 = π − (θ2 − θ0).

Equation (A3) reduces to

(|ζ2| + |ζ−2|)2 = 1, (A12)

namely, |ζ2| + |ζ−2| = 1, and Eq. (A4) reduces to

|ζ2|2 − |ζ−2|2 = |ζ2| − |ζ−2| = m

2
. (A13)

We then obtain |ζ2| = 1/2(1 + m/2), |ζ−2| = 1/2(1 − m/2),
|ζ0| = 1/2

√
2 − m2/2, and

ζ T = 1

2
eiθ0

[(
1 + m

2

)
ei(θ2−θ0), 0,

√
2 − m2

2
, 0,

−
(

1 − m

2

)
e−i(θ2−θ0)

]
, (A14)

which is just as presented in Ref. [12].

D. Atoms populate at only four hyperfine sublevels

1. For ζ0 = 0, Eq. (A1) reduces to

|ζ2||ζ1| = −|ζ−1||ζ−2|ei(θ2+θ−2−θ1−θ−1), (A15)

namely, θ2 + θ−2 − θ1 − θ−1 = π , and Eq. (A2) reduces to

|ζ2||ζ−2| = |ζ1||ζ−1|e−i(θ2+θ−2−θ1−θ−1), (A16)

namely, θ2 + θ−2 − θ1 − θ−1 = 0. These two equations cannot
be satisfied simultaneously, except that (1) |ζ1| = 0 and
|ζ−2| = 0 and (2) |ζ−1| = 0 and |ζ2| = 0, which are just the
two states in Sec. II.

2. For ζ2 = 0, Eq. (A2) reduces to

|ζ0|2 = 2|ζ1||ζ−1|ei(θ1+θ−1−2θ0), (A17)

namely, θ1 + θ−1 − 2θ0 = 0, and

|ζ0|2 = 2|ζ1||ζ−1|. (A18)

We also have θ1 − θ0 = −(θ−1 − θ0), which reduces Eq. (A1)
to

√
6|ζ0|(|ζ1| + |ζ−1|) = −2|ζ−1||ζ−2|ei(θ−2+θ0−2θ−1), (A19)

namely, θ−2 + θ0 − 2θ−1 = π , and
√

6|ζ0|(|ζ1| + |ζ−1|) = 2|ζ−1||ζ−2|. (A20)

We also have θ−2 − θ0 = π + 2(θ−1 − θ0).
Substituting Eq. (A18) into Eq. (A3) yields

(|ζ1| + |ζ−1|)2 + |ζ−2|2 = 1. (A21)

Thus we take

|ζ−2| = cos α, |ζ1| = sin α sin2 β, |ζ−1| = sin α cos2 β,

(A22)

where sin α, cos α, sin β, cos β are all nonzero. We then obtain

|ζ0| =
√

2 sin α sin β cos β. (A23)

Substituting Eqs. (A22) and (A23) into Eq. (A20), we have
√

3 sin α sin β = cos α cos β. (A24)

Substituting Eqs. (A22) and (A23) into Eq. (A4), we have

−2 cos2 α + sin2 α(sin2 β − cos2 β) = m, (A25)

and

sin2 α = (m + 2)/(2 sin2 β + 1).

Substituting it into Eq. (A24), we have

2 sin4 β + (2m + 3) sin2 β + m + 1 = 0, (A26)

sin2 β = −(m + 1), cos2 β = m + 2,
(A27)

sin2 α = − m + 2

2m + 1
, cos2 α = 3m + 3

2m + 1
,

where the solution sin2 β = −1/2 has been omitted. Thus we
obtain
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ζ T = 1√−(2m + 1)
eiθ0

[
0,(−m − 1)

√
m + 2e−i(θ−1−θ0), (m + 2)

√−2(m + 1),

(m + 2)
√

m + 2ei(θ−1−θ0), − √−3(m + 1)e2i(θ−1−θ0)

]
(A28)

for −2 < m < −1, where the range of m can be gotten from Eq. (A27) (sin2 α, cos2 α, sin2 β, cos2 β > 0).
3. For ζ−2 = 0, in the same way, we have

ζ T = 1√
(2m − 1)

eiθ0

[
−√

3(m − 1)e2i(θ1−θ0), (2 − m)
√

2 − mei(θ1−θ0),

(2 − m)
√

2(m − 1), (m − 1)
√

2 − me−i(θ1−θ0),0

]
(A29)

for 1 < m < 2.

4. For ζ1 = 0, Eq. (A1) reduces to
√

6|ζ0| = −2|ζ−2|ei(θ−2+θ0−2θ−1), (A30)

namely, θ−2 + θ0 − 2θ−1 = π , and
√

6|ζ0| = 2|ζ−2|. (A31)

We also get θ−2 − θ0 = π + 2(θ−1 − θ0).
Equation (A2) reduces to

|ζ0|2 = −2|ζ2||ζ−2|ei(θ2+θ−2−2θ0), (A32)

namely, θ2 + θ−2 − 2θ0 = π , and

|ζ0|2 = 2|ζ2||ζ−2|. (A33)

We also have θ2 − θ0 = π − (θ−2 − θ0) = −2(θ−1 − θ0).
Equations (A31) and (A33) yield

|ζ−2| = 3|ζ2|, |ζ0| =
√

6|ζ2|. (A34)

Substituting into Eq. (A4) gives

16|ζ2|2 + |ζ−1|2 = −m, (A35)

but substituting into Eq. (A3) gives

16|ζ2|2 + |ζ−1|2 = 1, (A36)

and thus m = −1. We take

|ζ−1| = cos α, |ζ2| = 1
4 sin α, (A37)

where sin α, cos α are nonzero. Then, from Eq. (A34), we
obtain

|ζ0| =
√

6

4
sin α, |ζ−2| = 3

4
sin α. (A38)

Then, for m = −1, we have

ζ T = 1
4eiθ0 [sin αe−2i(θ−1−θ0),0,

√
6 sin α, 4 cos αei(θ−1−θ0),

− 3 sin αe2i(θ−1−θ0)]. (A39)

5. For ζ−1 = 0, similarly, we get

ζ T = 1
4eiθ0 [−3 sin αe2i(θ1−θ0), 4 cos αei(θ1−θ0),

×
√

6 sin α,0, sin αe−2i(θ1−θ0)] (A40)

for m = 1.

E. Atoms populate at all hyperfine sublevels

Equation (A2) reduces to

|ζ0|2 = 2|ζ1||ζ−1|ei(θ1+θ−1−2θ0) − 2|ζ2||ζ−2|ei(θ2+θ−2−2θ0),

(A41)

and we can only deal with the following three special cases:

1. θ1 + θ−1 − 2θ0 = 0, θ2 + θ−2 − 2θ0 = π , (A42)

2. θ1 + θ−1 − 2θ0 = 0, θ2 + θ−2 − 2θ0 = 0, (A43)

3. θ1 + θ−1 − 2θ0 = π , θ2 + θ−2 − 2θ0 = π . (A44)

All give the same results, and thus we take case 1 as an
example. Then we have

|ζ0|2 = 2|ζ1||ζ−1| + 2|ζ2||ζ−2|. (A45)

We also get θ−1 − θ0 = −(θ1 − θ0), θ−2 − θ0 = π − (θ2 −
θ0), and θ−2 − θ−1 = π + (θ1 − θ2).

Equation (A1) reduces to
√

6|ζ0|(|ζ1| + |ζ−1|)ei(θ0−θ1)

= 2(|ζ−1||ζ−2| − |ζ2||ζ1|)ei(θ1−θ2), (A46)

and Eq. (A3) reduces to

(|ζ2| + |ζ−2|)2 + (|ζ1| + |ζ−1|)2 = 1. (A47)

Thus we take

|ζ2| + |ζ−2| = sin α, |ζ1| + |ζ−1| = cos α, (A48)

where sin α > 0, cos α > 0. Substituting into Eq. (A4)
gives

2 sin α

m
(|ζ2| − |ζ−2|) + cos α

m
(|ζ1| − |ζ−1|) = 1, (A49)

and thus we have

|ζ2| − |ζ−2| = m

2
sin α , |ζ1| − |ζ−1| = m cos α. (A50)

From Eqs. (A48) and (A50), we obtain

|ζ2| = 1
4 (m + 2) sin α, |ζ−2| = 1

4 (2 − m) sin α,
(A51)

|ζ1| = 1
2 (m + 1) cos α, |ζ−1| = 1

2 (1 − m) cos α,

|ζ0|2 = 1
2 (1 − m2) cos2 α + 1

8 (4 − m2) sin2 α. (A52)

Substituting Eq. (A51) into Eq. (A46) yields
√

6|ζ0| = − 3
2m sin αei(2θ1−θ2−θ0). (A53)
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Thus, for m > 0, we have 2θ1 − θ2 − θ0 = π , namely, θ2 −
θ0 = −π + 2(θ1 − θ0) and for m < 0, we have 2θ1 − θ2 −

θ0 = 0, namely, θ2 − θ0 = 2(θ1 − θ0). Then it seems that we
have obtained the general form of the cyclic states:

ζ T = 1

4
eiθ0

[ −(m + 2) sin αe2i(θ1−θ0),2(m + 1) cos αei(θ1−θ0),√
8(1 − m2) cos2 α + 2(4 − m2) sin2 α,2(1 − m) cos αe−i(θ1−θ0),(2 − m) sin αe−2i(θ1−θ0)

]
(A54)

for m > 0 and

ζ T = 1

4
eiθ0

[
(m + 2) sin αe−2i(θ−1−θ0),2(m + 1) cos αe−i(θ−1−θ0),√

8(1 − m2) cos2 α + 2(4 − m2) sin2 α,2(1 − m) cos αei(θ−1−θ0), − (2 − m) sin αe2i(θ−1−θ0)

]
, (A55)

for m < 0.
But we have

√
6|ζ0| = ± 3

2m sin α, (A56)

and Eq. (A52) then yields

4(1 − m2) = 0 sin2 α, (A57)

namely, m = ±1. Thus our general solutions reduce to
Eqs. (A40) and (A39) for m = 1 and m = −1, respectively.
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