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We investigate the low-energy excitations of the spherically and axially trapped atomic Bose-Einstein
condensate coupled to a molecular Bose gas by coherent Raman transitions. We apply the sum-rule approach
of many-body response theory to derive the low-lying collective excitation frequencies of the hybrid atom-
molecular system. The atomic and molecular ground-state densities obtained in Gross-Pitaevskii and modified
Gross-Pitaevskii (including the higher order Lee-Huang-Yang term in interatomic interaction) approaches are
used to find out the individual energy components and hence the excitation frequencies. We obtain different
excitation energies for different angular momenta and study their characteristic dependence on the effective
Raman detuning, the scattering length for atom-atom interaction, and the intensities of the coupling lasers.
We show that the inclusion of the higher-order nonlinear interatomic interaction in modified Gross-Pitaevskii
approach introduces significant corrections to the ground-state properties and the excitation frequencies both for
axially and spherically trapped coupled 87Rb condensate system with the increase in the s-wave scattering length
(for peak gas-parameter �10−3). It has been shown that the excitation frequencies decrease with the increase in the
effective Raman detuning as well as the s-wave scattering length, whereas excitation frequencies increase with the
increase in the atom-molecular coupling strength. The frequencies in modified Gross-Pitaevskii approximation
exhibit an upward trend after a certain value of scattering length and also largely deviate from the Gross-Pitaevskii
results with the increase in s-wave scattering length. The strong dependence of excitation frequencies on the laser
intensities used for Raman transitions manifests the role of atom-molecular coupling strength on the control of
collective excitations. The collective excitation frequencies for the hybrid atom-molecular BEC differ significantly
from the excitation frequencies of a pure atomic BEC system when the atom-to-molecule conversion efficiency
increases due to the decrease in the effective Raman detuning and increase in the atom-molecule coupling
strength.
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I. INTRODUCTION

Producing ultracold molecules from the atoms in a Bose-
Einstein condensate (BEC) gives a new dimension to the
emerging science of BECs [1–3]. Conversion of atomic BECs
to a molecular BEC in the process of both magnetic Feshbach
resonance and photoassociation generates a coherence in
the coupled atomic-molecular condensates and this becomes
evident in the dynamics of the system [4–9] as shown in
theoretical studies. Using coupled Gross-Pitaevskii- (GP) type
equations the dynamic properties of the molecular condensate
coupled with the atomic BEC via Raman photoassociation
have been studied [6,7]. Theoretical investigations of the
effects of modified GP (MGP) theory on the coherent dy-
namics of the coupled system and on the atom-to-molecule
conversion efficiency have been already discussed [8] in the
large-gas-parameter region. The dependence of the atom-
molecule coherence and the atom-to-molecule conversion
efficiency on the intensities of the coupling lasers has also
been demonstrated [9]. It is also expected that for large
values of gas parameter the changes due to higher-order
nonlinearity (in modified GP approach) will be reflected in
the frequencies of collective oscillations of the system. In
the past, the collective excitations of a BEC in a dilute
atomic gas have been observed experimentally [10–13] and
the Gross-Pitaevskii (GP) equation has been used to describe
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the dynamic process of the low-lying collective excitations
of the trapped atomic Bose gas [14–16]. The intensive study
of the behavior of elementary excitations of a BEC has
been done previously at zero and finite temperature [17–20].
The first corrections (Lee-Huang-Yang term) to the collective
frequencies and excitation spectrum of the atomic Bose gas
have been considered earlier [21,22]. Although the corrections
are small (∼1%) in case of weakly interacting gas [21],
they might be visible experimentally where the accuracy
of measurements is much higher [11]. Corrections to the
collective excitation frequencies of spherically and axially
trapped atomic BEC due to the higher order nonlinearity
have been estimated by solving GP and modified GP (MGP)
equations numerically and also analytically within modified
Thomas-Fermi approximation [23–25]. The behavior of the
collective excitation modes of the hybrid atom-molecular
system as a function of the Feshbach detuning in strong and
weak resonance limit has been studied parametrically [26]. The
main aim of this article is to study the dependence of collective
excitation frequencies of the hybrid atom-molecular system on
the effective Raman detuning and atom-molecular coupling
strength as well as on the s-wave scattering length. In addition
to this the Lee-Huang-Yang (LHY) correction term giving
rise to higher-order nonlinearity in atom-atom interaction has
been taken into account for the large gas parameter. The
effect of higher-order nonlinearity in molecule-molecule and
atom-molecule interactions has not been considered here. We
will derive the expressions for the frequencies of low-energy
collective excitations of the atom-molecular system coupled by
two-photon Raman photoassociation using sum-rule approach
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of many-body response theory [27,28] and investigate the
dependence of the excitation frequencies as a function of the
effective Raman detuning, the scattering length of atom-atom
interactions, and the intensities of the coupling lasers in GP and
MGP approaches. Previously the sum-rule approach has been
used to derive the different modes of excitation spectrum of
interacting atomic Bose gases [23,24,29–32]. In this study the
stationary state densities of atoms and molecules for the axially
and spherically trapped hybrid system have been calculated
by solving the static GP and MGP equations numerically,
the knowledge of which is required to obtain the excitation
frequencies in sum-rule approach. It is well known that the
higher-order nonlinear effect becomes prominent when the
peak gas-parameter xpk � 10−3 (xpk = npka

3, where npk is
the peak density of the system and a is the s-wave scattering
length). In this work we have found that MGP and GP results
differ significantly for large values of s-wave scattering length
(for xpk � 10−3). Furthermore, this study also demonstrates
the significant difference between the excitation frequencies
for the hybrid atom-molecular condensates and the frequencies
for a pure atomic BEC when the effective Raman detuning
decreases and the atom-molecular coupling strength increases.

The article is organized as follows. In subsection II A we
first define our model and give the time-independent coupled
GP and MGP equations of motion to describe the stationary
state of the system neglecting the effect of particle loss. In
subsection II B the frequencies of collective oscillations have
been derived in the sum-rule approach in terms of static
densities obtained from coupled GP and MGP equations given
in subsection II A. In Sec. III, we give the results for low-energy
excitation frequencies as a function of the effective Raman
detuning, the atom-atom scattering length, and the intensities
of coupling lasers. Finally, we conclude in Sec. IV.

II. THEORY

A. Stationary states

Figure 1 sketches the process of Raman photoassociation
in which the atomic BEC ground state (|a〉) with total energy
2E1 [described by potential Vg(R)] is coupled to a group
of excited molecular states (|v〉) [each with energy Ev in a
potential Ve(R)] by a laser field with intensity I1 and frequency

2E1

E2

Ev

ωL1

ωL2

δ

∆

|

|v

|g

FIG. 1. Diagrammatic representation of Raman photoassociation.

ωL1 . The excited molecules are then coupled to a condensed
molecular ground state (|g〉) of energy E2 by another laser
field with intensity I2 and frequency ωL2 . The process of
Raman coupling becomes resonant when the two-photon
Raman detuning δ = (2E1 − E2)/h̄ − (ωL2 − ωL1 ) is zero.
Two laser fields Ei = E0icos(ωit)(i = 1,2) couple the ground
state with the electronically excited state with Rabi frequencies
�i = |di · E0i |/h̄, where di is the molecular electric dipole
matrix elements for free-bound and bound-bound transitions,
respectively. The free-bound (�1) and bound-bound (�2)
Rabi frequencies depend on the laser intensities I1 and I2,
respectively: �i ∝ √

Ii . The atom-molecular Raman coupling
(χ ∝ �1�2) creates a molecular condensate component in the
presence of an atomic condensate and is given by the equation

χ

h̄
= −�1�2

2
√

2

∑
v

I1,vI2,v

�v

, (1)

where Ij,v are the free-bound (j = 1) and bound-bound
(j = 2) Franck-Condon factors. The relevant detunings are
defined as

�v = (Ev − 2E1)/h̄ − ωL1 , �(1)
v = (Ev − 2E1)/h̄ − ωL2 ,

and

�(2)
v = (Ev − E2)/h̄ − ωL1 . (2)

For this hybrid atom-molecular system of N bosons with
atomic mass m the energy functional can be written as

E[na,nm] =
∫

d�r
[

h̄2

2m
| �∇

√
na(�r)|2 + Ua(�r)na(�r)

+ ξ (na)na(�r) + h̄2

4m
| �∇

√
nm(�r)|2

+Um(�r)nm(�r) + λm

2
n2

m(�r) + λamna(�r)nm(�r)

+ εnm(�r) + χna(�r)
√

nm(�r)

]
, (3)

where the perturbative expansion of ξ (na) in terms of naa
3 is

given as

ξ (na) = λa

2
na

[
1 + 128

15
√

π
(naa

3)1/2

]
, (4)

where na(�r) and nm(�r) are the atomic and molecular densities
of the system, respectively. λa = 4πh̄2a/m; a is the s-wave
scattering length for atom-atom interactions. The first term
in the above expansion [Eq. (4)] represents the energy of
Bose gas within mean-field GP theory calculated by Bogoli-
ubov [33]. The second term was obtained by Lee, Huang,
Yang (LHY) [34] using a hard sphere model for interatomic
potential. λa , λm, and λam represent the strengths of atom-
atom, molecule-molecule, and atom-molecule interactions,
respectively. We assume here λm = λam = λa [8]. The LHY
correction term to the Bogoliubov mean-field prediction has
been considered only in atom-atom interaction strength but
not in the atom-molecule and molecule-molecule interactions.
This is an approximation and it is expected that it can be
applied when the percentage of molecular formation is not so
large. However, to get the exact energy functional, including
the higher-order nonlinear term in the atom-molecule and
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molecule-molecule interactions, a more sophisticated many-
body theory is required. ε is a parameter to characterize the
effective Raman detuning for a two-photon resonance such
that ε = −h̄(δ + β2 − 2β1) = −h̄δ1. δ1 is the effective Raman
deuning and β1 and β2 are atomic and molecular light shift
terms which are given as

β1 =
∑
i=1,2

(
�A

i

)2

4Di

(5)

and

β2 =
∑

v

[
(�2)2

4�v

+ (�1)2

4�
(2)
v

]
|I2,v|2, (6)

where Di = ω0 − ωi are the detunings of lasers from the
resonance frequency ω0 of the atomic transition between
the dissociation limits of the ground and excited potentials.
�A

1 and �A
2 are the atomic Rabi frequencies for two lasers.

Ua(�r) and Um(�r) are the external trapping potentials for atoms
and molecules characterized by two angular frequencies ω⊥
and ωz:

Ua(�r) = 1
2mω2

⊥
(
x2 + y2 + λ2

0z
2
)

(7)

and

Um(�r) = mω2
⊥
(
x2 + y2 + λ2

0z
2
)
, (8)

where λ0 = ωz/ω⊥ is the anisotropy parameter (λ0 = 1 corre-
sponds to spherically symmetric trap). As we neglect particle
loss, the total number of particles is a conserved quantity.∫

n(�r)d�r =
∫

[na(�r) + 2nm(�r)] d�r

=
∫

[|ψa(�r)|2 + 2|ψm(�r)|2] d�r = N, (9)

where n(�r) is the total density of the system and ψa(�r)
and ψm(�r) are the atomic and molecular condensate wave
functions, respectively. By performing the functional variation
with Lagrange multiplier µ one finds the Euler-Lagrange equa-
tions as δ(E − µN )/δψ∗

a (�r) = 0 and δ(E − µN )/δψ∗
m(�r) =

0. These equations take on the form of coupled time-
independent versions of the modified GP (MGP) equations,

µψa =
[
−h̄2∇2

2m
+ Ua(�r) + λa

(
1 + 32a3/2

3π1/2
ψa

)
ψ2

a

+ λamψ2
m

]
ψa + χψmψa (10)

2µψm =
[
−h̄2∇2

4m
+ Um(�r) + ε + λmψ2

m

+ λamψ2
a

]
ψm + χ

2
ψ2

a . (11)

In Eqs. (10) and (11), µ and 2µ play the role of atomic and
molecular chemical potential, respectively. If the LHY term is
neglected in Eq. (10) the equation for ψa reduces to the GP
equation as follows,

µaψa =
[
−h̄2∇2

2m
+ Ua(�r) + λaψ

2
a + λamψ2

m

]
ψa + χψmψa

(12)

Here the atom-atom scattering length (a) depends on the laser
intensities [6] in the following manner:

a = abg − m

4πh̄

∑
v

[
�2

1

4�v

+ �2
2

4�
(1)
v

] ∣∣I 2
1,v

∣∣, (13)

where abg is the background scattering length.
The stationary states of the hybrid atom-molecular system

can be obtained using the MGP approach [by solving coupled
Eqs. (10) and (11)] and using the GP approach [by solving
Eqs. (11) and (12)]. These time-independent coupled nonlinear
Schrödinger equations have been solved numerically by means
of imaginary time propagation method to give the stable
solutions. The details of the numerical method have been
discussed elsewhere [24]. We will show here that the effect of
LHY correction term to the mean-field atom-atom interaction
on the static properties and the collective excitation frequencies
of the hybrid system becomes important when the peak
gas-parameter of this hybrid system is large, i.e., xpk � 10−3.

The total energy per particle of the system can be
written as

E

N
= Ta + Tm + Ua + Um + Eaa1 + Eaa2 + Emm

+Eam + Ed + Ec. (14)

The kinetic energies per particle for atoms (Ta) and molecules
(Tm) are given by

Ta = T⊥,a + Tz,a = 1

N

[
h̄2

2m

∫
d�r|∂rψa(�r)|2

+ h̄2

2m

∫
d�r|∂zψa(�r)|2

]
, (15a)

Tm = T⊥,m + Tz,m = 1

N

[
h̄2

4m

∫
d�r|∂rψm(�r)|2

+ h̄2

4m

∫
d�r|∂zψm(�r)|2

]
. (15b)

Here T⊥,a and T⊥,m (Tz,a and Tz,m) are the transverse
components (z components) of kinetic energy of atoms and
molecules, respectively.

The trapping potential energies per particle for atoms (Ua)
and molecules (Um) are described by

Ua = U⊥,a + Uz,a = 1

N

[
1

2
mω2

⊥

∫
d�r(x2 + y2)|ψa(�r)|2

+ 1

2
mλ2

0ω
2
⊥

∫
d�rz2|ψa(�r)|2

]
, (16a)

Um = U⊥,m + Uz,m = 1

N

[
mω2

⊥

∫
d�r(x2 + y2)|ψm(�r)|2

+mλ2
0ω

2
⊥

∫
d�rz2|ψm(�r)|2

]
. (16b)

Here U⊥,a and U⊥,m (Uz,a and Uz,m) are the transverse
components (z components) of trap energy of atoms and
molecules, respectively.

Eaa1 , Eaa2 , Emm, and Eam are the energies per particle for
the atom-atom (in mean-field GP theory), atom-atom (due
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to the LHY term), molecule-molecule, and atom-molecule
interactions, respectively, and are given as

Eaa1 = λa

2N

∫
d�r|ψa(�r)|4, (17a)

Eaa2 = λa

2N

(
128

15

) (
a3

π

)1/2 ∫
d�r|ψa(�r)|5, (17b)

Emm = λm

2N

∫
d�r|ψm(�r)|4, (17c)

Eam = λam

N

∫
d�r|ψa(�r)|2|ψm(�r)|2. (17d)

The energy per particle due to the effective Raman detuning
(Ed ) and the coupling (Ec) between atoms and molecules are
given by

Ed = ε

N

∫
d�r|ψm(�r)|2, (18)

Ec = χ

N

∫
d�r|ψa(�r)|2ψm(�r), (19)

where λ0 = 1 corresponds to the case of spherically symmetric
trap.

The virial relation that must be satisfied by the energy
components is

2[Ta + Tm] − 2[Ua + Um] + 3[Eaa1 + Emm + Eam]

+ 9
2Eaa2 + 3

2Ec = 0. (20)

B. Collective excitations: sum-rule approach

According to the sum-rule approach [27,28], the upper
bound of the lowest excitation energy is given by

h̄� =
√

m3

m1
, (21)

where mp = ∑
n |〈0|F |n〉|2(h̄�n0) is the pth order moment of

excitation energy and F is the general excitation operator for
low-energy excitations of many-body states. � is the frequency
of excitation and h̄�n0 = En − E0 is the excitation energy of
the eigenstate |n〉 of the hybrid atom-molecular system. The
moments m1 and m3 can be expressed as the expectation values
of the commutators between F and Hamiltonian H with respect
to the ground state (|0〉) as [27,28]

m1 = 1
2 〈0|[F †,[H,F ]]|0〉, (22)

m3 = 1
2 〈0|[[F †,H ],[H,[H,F ]]]|0〉. (23)

Here we are considering the collective modes characterized
by the z component of the angular-momentum index m′ = 2
and m′ = 0 which have been experimentally studied on atomic
BEC [10,11]. The collective mode m′ = 2 describes the case
in which the hybrid system expands in one direction and
simultaneously contracts in the other, maintaining its volume.
The m′ = 0 mode describes the situation in which the system
alternatively expands and contracts in the radial direction. The
system also experiences oscillations in the axial direction out
of phase with the radial motion due to the repulsive interaction.

Following Kimura et al. [30] the excitation operators to m′ = 2
and m′ = 0 mode can be given as

Fm′=2 =
∑

i

(
x2

i − y2
i

)
, (24)

Fm′=0 =
∑

i

(
x2

i + y2
i − γ z2

i

)
, (25)

where γ is a variational parameter characterizing the coupling
of monopole and quadrupole modes for the axially symmetric
trap. The value of the parameter γ can be obtained by making
the excitation energy � extremum. For spherically symmetric
trap the two modes get decoupled.

Using the energy functional given by Eq. (3) together
with the Eq. (4) and performing some tedious algebra the
expressions for the moments m1 and m3 can be obtained for
the m′ = 2 and m′ = 0 modes of excitations. For the m′ = 2
mode and in the case of the axially symmetric trap the first and
the third moments are obtained as

m1 = h̄2

m2

[
4
U⊥,a

ω2
⊥

+ U⊥,m

ω2
⊥

]
, (26)

m3 = 2
h̄4

m2
[4(T⊥,a + U⊥,a) + (T⊥,m + U⊥,m)]. (27)

By substituting Eqs. (26) and (27) in (21) we get the following:

�2
m′=2

ω2
⊥

= 2

[
4(T⊥,a + U⊥,a) + (T⊥,m + U⊥,m)

4U⊥,a + U⊥,m

]
. (28)

For a spherically symmetric trap λ0 = 1, ω⊥ = ωz = ωHO and
the excitation frequency can be written as

�2
m′=2

ω2
HO

= 2

[
4(Ta + Ua) + (Tm + Um)

4Ua + Um

]
. (29)

The frequency of m′ = 2 mode is not affected by the interaction
and coupling energies.

For m′ = 0 mode and axially symmetric trap, we obtain the
first moment m1 as

m1 = 4h̄2

m2

[
U⊥,a

ω2
⊥

+ γ 2 Uz,a

ω2
z

]
+ h̄2

m2

[
U⊥,m

ω2
⊥

+ γ 2 Uz,m

ω2
z

]
(30)

and the third moment m3 as

m3 = 8h̄4

m2

[
(T⊥,a + γ 2Tz,a) + (U⊥,a + γ 2Uz,a) + (1 − γ /2)2

×
(

Eaa1 + 9

4
Eaa2 + Eam + 1

4
Ec

)]

+ 2h̄4

m2
[(T⊥,m + γ 2Tz,m) + (U⊥,m + γ 2Uz,m)

+ (1 − γ /2)2(Emm + Eam)] (31)

and hence from Eq. (21)

�2
m′=0 =

{
8

[
(T⊥,a + γ 2Tz,a) + (U⊥,a + γ 2Uz,a)

+ (1 − γ /2)2

(
Eaa1 + 9

4
Eaa2 + Eam + 1

4
Ec

)]

063631-4



COLLECTIVE EXCITATIONS OF THE HYBRID ATOMIC- . . . PHYSICAL REVIEW A 81, 063631 (2010)

+ 2[(T⊥,m + γ 2Tz,m) + (U⊥,m + γ 2Uz,m)

+ (1 − γ /2)2(Emm + Eam)]

}/
{

4

[
U⊥,a

ω2
⊥

+ γ 2 Uz,a

ω2
z

]
+

[
U⊥,m

ω2
⊥

+ γ 2 Uz,m

ω2
z

]}
.

(32)

Minimization of �2
m′=0 with respect to γ leads to a quadratic

equation in γ . The two roots (γ±) of this equation correspond
to the maximum and minimum values of �2

m′=0.
In the case of a spherically symmetric trap (λ0 = 1) the two

roots of γ are 2 and −1, corresponding to the quadrupole and
monopole modes, respectively. The frequency corresponding
to γ = 2 is

�2
m′=0

ω2
HO

= 2

[
4(Ta + Ua) + (Tm + Um)

4Ua + Um

]
(33)

and the frequency corresponding to γ = −1 is

�2
m′=0

ω2
HO

=
{

8

[
Ta + Ua + 9

4

(
Eaa1 + 9

4
Eaa2 + Eam + 1

4
Ec

)]

+ 2

[
Tm + Um + 9

4
(Emm + Eam)

]}/
(4Ua + Um).

(34)

It is evident from Eqs. (29) and (33) that, in the case of
spherically symmetric trap expressions for the �m′=2 mode
and �m′=0 (γ = 2) are identical and they are independent
of atom-atom, molecule-molecule, and atom-molecule inter-
action energies and atom-molecule coupling energy. If the
calculation is restricted within the mean-field GP approxima-
tion only, then Eaa2 = 0. We have investigated the variation
of the collective excitation frequencies of an atom-molecular
hybrid system with the effective Raman detuning, the s-wave
scattering length, and the laser intensities. In this work we have
compared the collective excitation frequencies of the hybrid
atom-molecular condensates with those for a pure atomic BEC.
The excitation frequency for m′ = 0 (γ = −1) mode of a
spherically trapped and for m′ = 0 (γ+) mode for an axially
trapped atomic BEC can be obtained from the Eqs. (28) and
(29) in Ref. [24].

III. RESULTS AND DISCUSSIONS

In this calculation we have considered the atoms and
molecules of 87Rb to study the stationary state of the hybrid
atomic-molecular condensate system. The s-wave scattering
length for the rubidium atom in the absence of the light field
is abg= 100 a0 [35,36]. We have considered Raman photoas-
sociation for the formation of molecular condensate in the
ground 3�+

u state (Vg(R)) via 0−
g excited state (Ve(R)) of 87Rb2

molecule and have chosen the parameters characterizing the
coupled system as �1 = 2 × 1010 s−1,�2 = 6.324 × 109 s−1,

χ/h̄ = 7.6 × 10−7 m3/2 s−1,β1 = 2.108 × 107 s−1,β2 =
3.344 × 106 s−1,δ = 3.879 × 107 s−1, δ1 = 2.8 × 104 s−1 and
the laser-induced modified scattering length a = 5.4 nm as
given in our previous study [8]. Here the laser intensities I1 and
I2 are 159.2 and 79.6 W/cm2, respectively. For this calculation

TABLE I. Comparison between GP and MGP results for the
ground-state properties of coupled condensate system containing
5 × 105 87Rb atoms in a spherical trap with ωHO

2π
= 100 Hz. δ1 is

kept fixed at 8 × 104 s−1. χ/h̄ = 7.6 × 10−7 m3/2 s−1. Total energy
per particle (E/N ), chemical potential for atomic condensate (µa),
and the peak gas parameter (xpk) for different values of a are given.
The chemical potential for molecular condensate µm = 2µa . E/N

and µa are in the units of h̄ωHO .

a (nm) µa E/N xpk

5.4 GP 32.59 23.37 7.29(−5)
MGP 33.09 23.69 7.04(−5)

8 GP 38.55 27.63 1.84(−4)
MGP 39.46 28.20 1.74(−4)

15 GP 50.10 35.87 8.16(−4)
MGP 52.44 37.36 7.38(−4)

25 GP 61.76 44.20 2.76(−3)
MGP 66.70 47.37 2.36(−3)

we have considered the value of N = 5 × 105, the spherical
trap with frequency ωHO = 2π × 100 Hz [6,8], and the axial
trap with ω⊥ = 2π × 54 Hz and ωz = 2π × 153 Hz [1].

First, we have presented the results for ground-state prop-
erties (chemical potential, total energy per particle, and peak
gas parameter) and then the results for collective excitations of
hybrid atomic-molecular condensate of 87Rb. The dependence
of ground-state properties on the s-wave scattering length has
been studied and the results have been given in Tables I and II
for spherically and axially trapped 87Rb Bose condensates,
respectively. The variation of the s-wave scattering length
is experimentally feasible by optically induced Feshbach
resonance using one photon scheme and by using an optical
Feshbach resonance with a two-photon Raman transition in
a BEC of 87Rb [35,36]. The effective Raman detuning δ1 is
kept fixed at 8 × 104 s−1. The parameter δ1 can be adjusted by

TABLE II. Comparison between GP and MGP results for the
ground-state properties of coupled condensate system containing 5 ×
105 87Rb atoms in an axial trap with ω⊥

2π
= 54 Hz and ωz

2π
= 153 Hz. δ1

is kept fixed at 8 × 104 s−1. χ/h̄ = 7.6 × 10−7 m3/2 s−1. Total energy
per particle (E/N ), chemical potential for atomic condensate (µa),
and the peak gas parameter (xpk) for different values of a are given.
The chemical potential for molecular condensate µm = 2µa . E/N

and µa are in the units of h̄ω⊥.

a (nm) µa E/N xpk

5.4 GP 43.78 31.18 5.16(−5)
MGP 44.35 31.54 5.01(−5)

8 GP 51.72 36.85 1.32(−4)
MGP 52.77 37.52 1.26(−4)

15 GP 67.17 47.86 5.83(−4)
MGP 69.91 49.58 5.15(−4)

25 GP 82.75 59.09 2.05(−3)
MGP 88.80 62.74 1.90(−3)
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FIG. 2. The collective oscillation frequencies of the hybrid
atom-molecular system confined in a spherically symmetric trap
as functions of effective Raman detuning δ1. ωHO = 2π × 100 Hz
and a = 5.4 nm. χ/h̄ = 7.6 × 10−7 m3/2 s−1. The solid and dotted
lines represent the GP and MGP results for (a) m′ = 0 (γ = −1)
[Eq. (34)] and (b) m′ = 0 (γ = 2) (equivalent to m′ = 2) [Eqs. (29)
and (33)] modes. For comparison the GP excitation frequency for
m′ = 0 (γ = −1) mode of a pure atomic BEC is indicated by the
horizontal dashed line in Fig. 2(a) (see text).

tuning the value of ωL2 and keeping ωL1 fixed. It is found that
for both the traps chemical potentials and the total energy per
particle from GP and MGP approaches are very close to each
other for small values of s-wave scattering length a. But the
difference in GP and MGP results becomes significant for large
values of a, i.e., for xpk ∼ 10−3 or more. For these calculations
the virial relation is satisfied within the limit �8 × 10−5.

The results for the frequencies of collective excitations
of the hybrid atomic-molecular condensates for the modes
m′ = 2 and m′ = 0 as a function of δ1 have been shown in
Figs. 2 and 3 for spherically and axially symmetric traps,
respectively. In both the cases a remains constant at 5.4 nm.
Figures 2(a) and 2(b) present the excitation frequencies for
m′ = 0 (γ = −1) and m′ = 0 (γ = 2) mode, respectively. The
dotted lines represent results for the MGP approach while
the corresponding GP results are shown by the solid lines.
Figure 2(b) also gives the values for m′ = 2 mode which are
equal to the values for m′ = 0 (γ = 2) mode as given by
Eqs. (29) and (33). In Fig. 3 solid and dotted lines represent
GP and MGP results for the excitation frequencies for axially
symmetric trap as a function of δ1 for m′ = 2 [Fig. 3(a)],
m′ = 0 (γ+) [Fig. 3(b)] and m′ = 0 (γ−) [Fig. 3(c)] modes,
respectively. It is evident from Figs. 2 and 3 that at smaller val-
ues of δ1 GP and MGP excitation frequencies almost coincide
but the difference increases with the increase in the values
of δ1 and becomes almost constant after δ1 = 6 × 104 s−1.
The excitation frequencies for m′ = 0 (γ = −1) mode in case
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FIG. 3. The collective excitation frequencies of the hybrid atom-
molecular system confined in an axially symmetric trap as functions
of effective Raman detuning δ1. ω⊥ = 2π × 54 Hz and ωz = 2π ×
153 Hz. a = 5.4 nm and χ/h̄ = 7.6 × 10−7 m3/2 s−1. The solid
and dotted lines represent the GP and MGP results for (a) m′ = 2
[Eq. (28)], [(b) m′ = 0 (γ+) and (c) m′ = 0 (γ−)] [Eq. (32)] modes.
For comparison the GP excitation frequency for m′ = 0 (γ+) mode
of a pure atomic BEC is indicated by the horizontal dashed line in
Fig. 3(b) (see text).

of spherical trap and m′ = 0 (γ±) modes in case of axially
symmetric trap are functions of interaction energies which
include the energy due to LHY interactions (Eaa2 ). This leads
to the difference in the excitation frequencies for GP and MGP
approaches. Since in this case the s-wave scattering length is
5.4 nm, the difference is not so large [Figs. 2(a), 3(b), and 3(c)].
However, the excitation frequencies for m′ = 2 (equivalent to
m′ = 0; γ = 2) mode in case of spherical trap and m′ = 2
mode in case of axial trap are independent of the interaction
energies but depend on the trap potential, kinetic energy,
and the static density of atoms and molecules. In this case,
small difference in the excitation frequencies from GP and
MGP approaches arises because of the difference in the static
densities of atoms and molecules obtained from GP and MGP
calculations [note the change in scale form Figs. 2(a) to 2(b)
and from Figs. 3(a) to 3(b) and Figs. 3(a) to 3(c)].
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FIG. 4. The collective excitation frequencies of the hybrid atom-
molecular system confined in a spherically symmetric trap as
functions of s-wave scattering length a. ωHO = 2π × 100 Hz, δ1 =
8 × 104 s−1 and χ/h̄ = 7.6 × 10−7 m3/2 s−1. The solid and dotted
lines represent the GP and MGP results for (a) m′ = 0 (γ = −1)
[Eq. (34)] and (b) m′ = 0 (γ = 2) (equivalent to m′ = 2) [Eqs. (29)
and (33)] modes. The dashed line in Fig. 4(a) represents the GP
excitation frequency for m′ = 0 (γ = −1) mode of a pure atomic
BEC as a function of a (see text).

In order to compare the results of the excitation frequencies
for the hybrid atom-molecular system with those for a pure
atomic BEC we have calculated the GP values of m′ =
0 (γ = −1) mode for the spherically trapped and m′ = 0
(γ+) mode for the axially trapped 87Rb atomic condensate
with 5 × 105 atoms and a = 5.4 nm. The values of these
two modes are found to be 2.235 (in the unit of ωHO)
and 1.803 (in the unit of ω⊥), respectively. These have
been shown as the horizontal dashed lines in Figs. 2(a)
and 3(b) for comparison. It is to be mentioned here that the
excitation frequencies for an atomic BEC are independent
of δ1. Figures 2(a) and 3(b) clearly show that the excitation
frequencies for the hybrid atom-molecular condensates ap-
proaches the excitation frequencies for a pure atomic BEC
as detuning becomes larger and atom-to-molecule conversion
efficiency (η) is reduced. The value of η is 19% at δ1 = 2.8 ×
104 s−1, whereas it reduces to 0.4% at δ1 = 2 × 105 s−1 for the
spherically trapped hybrid condensate. Similarly the values of
η are 13% and 0.2% at δ1 = 2.8 × 104 s−1 and 2 × 105 s−1,
respectively, for the axially trapped atom-molecular coupled
system.

In Figs. 4(a) and 4(b) we show the behavior of the m′ = 0
(γ = −1) mode and m′ = 0 (γ = 2) (equivalent to m′ =
2 mode) mode frequencies as a function of a for the spherically
trapped system. The effective Raman detuning δ1 is kept
fixed at 8 × 104 s−1. Solid and dotted lines represent GP and
MGP results. It is found from Eq. (34) that the excitation
frequency for the m′ = 0 (γ = −1) mode is a function of all the
interaction energies. The interaction energies for atom-atom,
atom-molecule, molecule-molecule, and higher-order LHY
interactions strongly depend on s-wave scattering length (a).
It is known that the effect of the higher-order LHY term
increases with the increase in a and hence the signature
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FIG. 5. The collective excitation frequencies of the hybrid atom-
molecular system confined in an axially symmetric trap as functions
of a. ω⊥ = 2π × 54 Hz and ωz = 2π × 153 Hz. δ1 = 8 × 104 s−1

and χ/h̄ = 7.6 × 10−7 m3/2 s−1. The solid and dotted lines represent
the GP and MGP results for (a) m′ = 2 [Eq. (28)], [(b) m′ = 0 (γ+)
and (c) m′ = 0 (γ−)] [Eq. (32)] modes. The dashed line in Fig. 5(b)
represents the GP excitation frequency for m′ = 0 (γ+) mode of a
pure atomic BEC as a function of a (see text).

of higher-order nonlinear effect will be prominent on the
excitation frequencies for the m′ = 0 (γ = −1) mode with
the increase in a. This feature is evident in Fig. 4(a), where the
GP and MGP excitation frequencies for the m′ = 0 (γ = −1)
mode initially decrease as a increases, but after a = 4 nm
the MGP excitation frequency deviates significantly from the
GP frequency and increases with the increase in a. Whereas
excitation frequency for the m′ = 0 (γ = 2) mode depends
only on the kinetic energy and the trapping potential [see
Eq. (33)], the small difference between the GP and MGP
excitation frequencies for the m′ = 0 (γ = 2) mode arises due
to the difference in the static densities na and nm obtained
from GP and MGP approaches [see Fig. 4(b)]. Figures 5(a),
5(b), and 5(c) demonstrate the excitation frequencies for the
m′ = 2, m′ = 0 (γ+), and m′ = 0 (γ−) modes, respectively,
as a function of a for axial trap. As in the case of spherical trap,
the difference between GP and MGP results enhances for the
large values of a for m′ = 0 (γ±) mode but for m′ = 2 mode
the GP and MGP results almost coincide in case of axially
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FIG. 6. The collective excitation frequencies of the hybrid atom-
molecular system confined in a spherically symmetric trap as
functions of the parameter x. ωHO = 2π × 100 Hz. The solid and
dotted lines represent the GP and MGP results for (a) m′ = 0
(γ = −1) [Eq. (34)] and (b) m′ = 0 (γ = 2) (equivalent to m′ =
2) [Eqs. (29) and (33)] modes. For comparison the GP exci-
tation frequency for m′ = 0 (γ = −1) mode of a pure atomic
BEC is indicated by the horizontal dashed line in Fig. 6(a)
(see text).

trapped system. This feature arises as the interaction energies
contribute only in the m′ = 0 mode excitation frequency
[Eq. (32)] and does not contribute in the m′ = 2 mode
excitation [Eq. (28)].

We also attempt to compare here the m′ = 0 (γ = −1)
mode frequency for the spherically trapped hybrid system and
m′ = 0 (γ+) mode frequency for the cylindrically trapped
hybrid condensate with the respective modes obtained for a
pure atomic BEC. In Figs. 4(a) and 5(b) the GP excitation
frequencies for m′ = 0 (γ = −1) and m′ = 0 (γ+) modes of
an atomic condensate are plotted (dashed line) as a function
of a in the cases of spherically and axially symmetric traps,
respectively. It can be seen that for both the traps the two results
differ moderately for the smaller values of a as the value of
η is higher for smaller a. The deviations of the excitation
frequencies of the hybrid system from those of the atomic
BEC are 5% and 2.2% for a = 2 nm in case of spherical and
axial traps, respectively. The GP values of atom-to-molecule
conversion efficiency (η) are 5.3% and 2% for a = 2 nm and
25 nm, respectively, in case of spherical trap. Similarly the
GP values of η are 4% and 1.4% for a = 2 nm and 25 nm,
respectively in the case of an axial trap.

To show how the excitation frequencies of the hybrid system
depends on the atom-molecule coupling strength (χ ) we have
changed the intensities of both lasers by a factor x, keeping
the intensity ratio I2/I1 constant. Consequently, for the new
set of intensities the Rabi frequencies (�1 and �2) change
and hence the magnitude of atom-molecule coupling strength
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FIG. 7. The collective excitation frequencies of the hybrid atom-
molecular system confined in an axially symmetric trap as functions
of the parameter x. ω⊥ = 2π × 54 Hz and ωz = 2π × 153 Hz. The
solid and dotted lines represent the GP and MGP results for (a) m′ = 2
[Eq. (28)], [(b) m′ = 0 (γ+) and (c) m′ = 0 (γ−)] [Eq. (32)] modes.
For comparison the GP excitation frequency for m′ = 0 (γ+) mode
of a pure atomic BEC is indicated by the horizontal dashed line in
Fig. 7(b) (see text).

(χ ) also changes [see Eq. (1)]. The other relevant parameter,
e.g., atomic s-wave scattering length (a) are modified accord-
ingly [see Eq. (13)]. For x = 1 and 10, a becomes 5.4 and
6.37 nm, respectively. The value of effective two-photon
Raman detuning is kept constant at δ1 = 8 × 104 s−1. In
order to keep the parameter δ1 constant for different values of
intensities we need to change the value of two-photon Raman
detuning (δ) accordingly, e.g., δ assumes the value 0.38 ×
107 s−1 for x = 0.1 and 38.81 × 107 s−1 for x = 10 to keep δ1

fixed at 8 × 104 s−1. Figures 6 and 7 show how the low-energy
excitation frequencies increase with the parameter x in the
case of spherically and axially symmetric traps, respectively.
The dependence of excitation frequencies on x for the m′ = 0
(γ = −1) and m′ = 0 (γ = 2) modes are shown in Figs. 6(a)
and 6(b), respectively. The m′ = 2 mode is equivalent to
the m′ = 0 (γ = 2) mode in the case of a spherical trap.
Figures 7(a), 7(b), and 7(c) demonstrate the dependence of
excitation frequencies for m′ = 2, m′ = 0 (γ+), and m′ = 0
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(γ−) modes on x for axially trapped system. In both Figs. 6
and 7 the solid and dotted lines correspond to GP and MGP
results. As illustrated in these two figures, the excitation
frequencies for m′ = 0 and m′ = 2 modes increase smoothly
with the increase in laser intensities. This feature is due to the
enhancement of the atom-molecule coupling strength with the
increase in laser intensity. Since the s-wave scattering length
increases with laser intensity, the effect of the higher-order
nonlinear term (LHY) becomes prominent with the increase in
laser intensity. As a result the difference between GP and MGP
results widens for the m′ = 0 (γ = −1) mode in the case of a
spherical trap [Fig. 6(a)] and m′ = 0 (γ±) in case of axial trap
[Figs. 7(b) and 7(c)]. However, the difference is not so large
for m′ = 0 (γ = 2) in the case of a spherical trap [Fig. 6(b)]
and the m′ = 2 mode in the case of an axial trap [Fig. 7(a)]
[note the change in scale from Figs. 6(a) to 6(b), 7(a) to 7(b),
and 7(a) to 7(c)]. The small difference between GP and MGP
results for these two frequencies results from the difference
between static densities na and nm obtained in GP and MGP
approaches.

The value of the m′ = 0 (γ = −1) mode excitation fre-
quency for a spherically trapped pure atomic BEC of 5 × 105

87Rb atom is shown by a horizontal dashed line in Fig. 6(a).
Similarly, in the case of an axially symmetric trap the m′ = 0
(γ+) mode excitation frequency for a pure atomic BEC has
been shown by a horizontal dashed line in Fig. 7(b). When
the coupling strength χ is small there are no differences
between the results for a hybrid atom-molecular condensate
and a purely atomic BEC as the atom-to-molecule conversion
efficiency is negligible, e.g., η is 0.1% for x = 0.25. With the
increase in the coupling strength χ (i.e., with the increase in
the parameter x) the atom-to-molecule conversion efficiency
increases and the results for the hybrid atom-molecular and
pure atomic condensate deviate significantly. The excitation
frequencies for x = 7 for the hybrid atom-molecular system
are 2.8 and 1.4 times larger than those for atomic BEC in case
of spherical and axial traps, respectively. These deviations
of the excitation frequencies for the atom-molecule hybrid
system from those for the single atomic BEC can be considered
as the signature of atom-to-molecule conversion by Raman
photoassociation.

IV. CONCLUSIONS

In this article, we have presented the ground-state proper-
ties and collective excitations of a hybrid atomic-molecular

condensate and have studied its dependence on the detuning,
atom-molecule coupling strength and the scattering length of
atom-atom interaction. We have also demonstrated the impor-
tance of the higher-order LHY term (in MGP theory) in the
interatomic correlation energy obtained from the ground-state
energy of a Bose gas as the peak gas-parameter (xpk) becomes
�10−3. We have derived the expressions for frequencies of
low-energy excitations in the sum-rule approach, including
the higher-order nonlinear term (LHY) both for spherically
and axially trapped hybrid condensate systems. The excitation
frequencies are functions of atomic and molecular condensate
densities and the condensate densities have been obtained by
solving the time-independent coupled equations for atomic
and molecular BECs of 87Rb using imaginary time method.
We have studied the dependence of the excitation frequencies
on the effective Raman detuning, the atom-atom s-wave
scattering length, and the intensities of the lasers used for
Raman transitions both in GP and MGP approaches. It has
been shown that the excitation frequencies depend strongly on
these three parameters. Excitation frequencies decrease with
the increase in the effective detuning and the s-wave scattering
length in general. But the excitation frequencies from the MGP
approach differ significantly from the GP results with increase
in the s-wave scattering length and show an upward trend
for the modes of excitations which depend on the interaction
energies for both the traps (axial and spherical). In contrast,
the excitation frequencies increase with an increase in the
strength of the coupling lasers, manifesting the effect of atom-
molecular coupling strength on the excitation frequencies.
Since the effective s-wave scattering length increases with
laser intensity the effect of higher-order nonlinear interaction
becomes prominent with the increase in the laser intensity.
It has been shown that the difference between excitation
frequencies from GP and MGP approaches increases with the
increase in laser intensity. It has been also shown that with
the smaller values of detuning and higher values of atom-
molecular coupling strength the atom-to-molecule conversion
efficiency increases. Consequently, the collective excitation
frequencies for hybrid atom-molecule condensates are found
to exhibit significant differences from those for the pure atomic
BEC results.
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