
PHYSICAL REVIEW A 81, 063629 (2010)
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The quest for quantum degenerate Fermi gases interacting through the anisotropic and long-range dipole-dipole
interaction is an exciting and fast developing branch within the cold-atom research program. Recent experimental
progress in trapping, cooling, and controlling polar molecules with large electric dipole moments has, therefore,
motivated much theoretical effort. In a recent letter, we have briefly discussed the application of a variational
time-dependent Hartree-Fock approach to study theoretically both the static and the dynamic properties of such a
system in a cylinder-symmetric harmonic trap. We focused on the hydrodynamic regime, where collisions ensure
the equilibrium locally. Here we present a detailed theory extended to encompass the general case of a harmonic
trap geometry without any symmetry. After deriving the equations of motion for the gas, we explore their static
solutions to investigate key properties like the aspect ratios in both real and momentum space as well as the stability
diagram. We find that, despite the lack of symmetry of the trap, the momentum distribution remains cylinder
symmetric. The equations of motion are then used to study the low-lying hydrodynamic excitations, where, apart
from the quadrupole and monopole modes, the radial quadrupole mode is also investigated. Furthermore, we
study the time-of-flight dynamics as it represents an important diagnostic tool for quantum gases. We find that the
real-space aspect ratios are inverted during the expansion, while that in momentum space becomes asymptotically
unity. In addition, anisotropic features of the dipole-dipole interaction are discussed in detail. These results could
be particularly useful for future investigations of strongly dipolar heteronuclear polar molecules deep in the
quantum degenerate regime.
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I. INTRODUCTION

Since the achievement of Bose-Einstein condensation
(BEC) with a sample of 52Cr atoms [1], the interest in dipolar
quantum gases has strongly increased [2,3]. Recently, the
progress toward quantum degenerate polar molecules has
pushed this interest even further because they possess electric
dipole moments of the order of 1 debye (D) and, therefore, are
potential candidates to make dipolar effects more accessible
to experiments [4–7].

Concerning dipolar bosonic particles, the field is relatively
well understood and has seen a robust development with a
remarkable quantitative agreement between experiment and
theory. The starting point was the construction of a pseu-
dopotential by Yi and You [8]. In the Thomas-Fermi regime,
where the kinetic energy can be neglected in comparison with
the interaction energy, exact solutions of the Gross-Pitaevskii
equation have been found for axially symmetric harmonic
traps [9,10]. Further generalizations to triaxially anisotropic
traps even provided the first clear experimental signature of the
dipole-dipole interaction (DDI) in the data for the expansion
dynamics [11,12]. In the meantime, collisional control of
chromium has been fully demonstrated by using Feshbach
resonances to increase the relative importance of the DDI with
respect to the contact interaction. As a result, strong dipolar
effects have been observed in Bose-Einstein condensates
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(BECs) like the suppression of the characteristic inversion
of the aspect ratio during the expansion [13]. In addition, the
trap configuration could be manipulated to stabilize a purely
dipolar BEC [14], and a new type of “Bose-nova” experiment
beautifully revealed a d-wave symmetry in a dipolar BEC
[15]. Besides that, the anisotropic nature of the DDI is
predicted to shift the Bose-Einstein condensation temperature
in a characteristic way [16,17] and, considering spinorial
degrees of freedom, might provide an atomic realization of
the Einstein-de Haas effect [18].

In view of fermionic dipolar quantum gases, amazing
predictions have been made. In the case of homogeneous gases,
interesting properties like zero sound [19,20], Berezinskii-
Kosterlitz-Thouless phase transition [21], and nematic phases
[22,23] have been considered, while studies of trapped dipolar
gases focus on anisotropic superfluidity in three dimensions
[24], fractional quantum Hall states [25], and Wigner crystal-
lization in rotating two-dimensional systems [26].

From the experimental point of view there are different
possibilities of realizing dipolar Fermi gases. One of them
is to use atoms which have large permanent magnetic dipole
moments m, such as the 53Cr isotope of chromium, which has
a dipole moment of 6 Bohr magnetons (µB) and has already
been magneto-optically trapped [27] or the 173Yb isotope of
ytterbium, which has m = 3µB in the 3P2 state and has already
been cooled down to quantum degeneracy [28]. In addition,
recent developments in laser cooling of the 66Dy isotope of
dysprosium, with a magnetic dipole moment of the order
m ∼ 10µB, promises to increase the variety of highly magnetic
atomic gases in the quantum degenerate regime [29]. A further
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exciting possibility is displayed by samples of heteronuclear
polar molecules. For them, prospects for collisional control
through applied electric fields [30] indicate that dipolar gases
could be explored all the way from the weak- (collisionless) to
the strong-interaction (hydrodynamic) regime, since this may
lead to interaction strengths changing by orders of magnitude
depending on the applied electric field [31]. This is in close
analogy to the use of Feshbach resonances to tune the contact
interaction to unitarity as has been carried out with success
to observe hydrodynamic behavior in the normal phase of
atomic Fermi gases [32]. Experimentally this is very promising
and, recently, 4 × 104 fermionic 40K87Rb molecules with an
electric dipole moment of about 0.5 D have been brought
close to quantum degeneracy by using stimulated Raman
adiabatic passage to efficiently convert the molecules into
the rovibrational ground state [5]. After that, further progress
toward probing quantum degeneracy has been made, by
bringing this system into the hyperfine ground state as well [6].
In the meantime, KRb samples at the temperature T = 1.4TF,
where TF is the Fermi temperature, have become available, in
which thermodynamic measurements led to observation of the
anisotropy characteristic of the DDI [7].

The first theoretical investigations of such a system were
carried out under the assumption of a Gaussian density profile,
which is able to capture some of the important features such
as the aspect ratio, but misses the correct weak-interaction,
collisionless limit [33,34]. On top of that, other approaches
have been pursued, including [21,35,36] or neglecting [37] the
possibility of a deformation of the momentum distribution.
However, quantum degenerate heteronuclear polar molecules
possess strong dipolar interactions which might lead to a
collisional regime combined with an anisotropic momentum
distribution. For this reason, we have recently developed
a complete theory for normal dipolar Fermi gases in the
hydrodynamic regime in the presence of a cylinder-symmetric
harmonic trap [38]. In the present paper, we extend our theory
to the general case of a triaxial trap, which allows us to study
important aspects of the physics of dipolar Fermi gases such
as the radial quadrupole excitation as well as to sort out the
anisotropic effects of the DDI.

In the following we treat one-component fermionic dipolar
quantum gases semianalytically and tacitly assume that the
gas is in the hydrodynamic regime. By adapting a variational
time-dependent Hartree-Fock method, which was originally
developed to study nuclear hydrodynamics [39,40], we are
able to obtain a complete description of strongly interacting
normal dipolar Fermi gases which encompasses their static
as well as dynamic properties. The paper is organized as
follows. In Sec. II, we outline the variational formalism of
hydrodynamics applied throughout the paper. In Sec. III, we
derive the action governing the dynamics of the system in
the case of three different trapping frequencies and extremize
it with respect to the widths in spatial and momentum
distributions, obtaining, thus, the corresponding equations
of motion. Section IV provides the dimensionless variables
which make the physical interpretation of the results more
enlightening. Then, in Sec. V, we derive the equilibrium
properties such as the momentum and real space aspect ratios
as functions of the dipolar strength and the trap anisotropies.
Section VI is devoted to the low-lying excitations, where

we study the oscillations around the equilibrium. Following
that, we address in Sec. VII time-of-flight experiments which
represent another fundamental issue in cold-atom physics. In
Sec. VIII we present the conclusion, where the main results are
summarized and further studies of this system are discussed.

II. HYDRODYNAMIC FORMULATION OF
HARTREE-FOCK THEORY

Consider a gas containing N harmonically trapped
fermionic particles of mass M possessing either electric
or magnetic dipole moments, which are polarized in the
z direction. The Hamilton operator of such a quantum many-
particle system is given by

H =
N∑

i=1

[
−h̄2∇2

xi

2M
+ Utr(xi)

]
+ 1

2

N∑
i �=j

Vint(xi − xj ). (1)

The first term represents the kinetic energy, which turns out to
be negligible for Bose systems in the Thomas-Fermi regime
but is important for Fermi systems, since it provides stability
against collapse. In general, the trapping potential is harmonic
and reads

Utr(x) = M

2

(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)
, (2)

where ωx , ωy , and ωz are different trapping frequencies.
The last term in Eq. (1) takes care of the interaction
and Vint(xi − xj ) denotes the two-body interaction potential
between particles located at xi and xj .

At very low temperatures, the Pauli exclusion principle
prohibits s-wave scattering for identical Fermi particles, and
long-range interactions, such as the dipole-dipole interaction

Vdd(x) = Cdd

4π |x|3
(

1 − 3
z2

|x|2
)

, (3)

become important. In the case of magnetic dipoles m, the DDI
is characterized by Cdd = µ0m

2, where µ0 is the magnetic
permeability in a vacuum, whereas for electric moments we
have Cdd = 4πd2 with the electric dipole moment d expressed
in debyes. For most Fermi gases which have been realized
so far, Vdd is rather irrelevant and polarization leads to a
degenerate noninteracting gas. For polar molecules, however,
this is no longer valid: moderate electric fields induce dipole
moments which render the DDI (3) a prominent contribution
to the Hamiltonian in Eq. (1).

A. Center-of-mass expansion

In the usual formulation, hydrodynamic studies of degener-
ate Fermi gases are based on closed equations for the particle
density ρ(x,t) and the velocity field v(x,t). The dynamic
properties of this system are determined by solving the
continuity equation and the Euler equation. This set of coupled
equations can be obtained from the Boltzmann equation for the
phase-space distribution [41] or by expanding the equation of
motion for the one-body density matrix around the center of
mass [42]. Let us explore further the last possibility in order
to illustrate some aspects of the method which we apply in the
following.
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Consider the action governing an N -fermion system

A =
∫ t2

t1

dt〈�|ih̄ ∂

∂t
− H |�〉, (4)

where |�〉 denotes a Slater determinant built out of one-particle
orbitals ψi(x,t) denoted by

�(x1, . . . , xN ; t) = SD[ψi(x,t)], (5)

with the energy-level index i taking the values 1 � i � N .
By extremizing (4) with respect to the functions ψi(x,t)

and ψ∗
i (x,t), one obtains the Hartree-Fock equations for the

one-particle orbitals ψ∗
i (x,t) and ψi(x,t). Combining them

yields the equation of motion [43]

ih̄
∂ρ(x,x′; t)

∂t
=

[−h̄2

2M

(∇2
x − ∇2

x′
) + Utr(x) − Utr(x′)

]
ρ(x,x′; t)

+ [�D(x,t) − �D(x′,t)]ρ(x,x′; t)

+
∫

d3r[�E(x,r; t)ρ(r,x′; t)

−�E(r,x′; t)ρ(x,r; t)] (6)

for the one-body density matrix

ρ(x,x′; t) =
N∏

i=2

∫
d3xi�

∗(x′,x2, . . . ,xN ; t)�(x,x2, . . . ,xN ; t),

=
N∑

i=1

ψi(x,t)ψ∗
i (x,t). (7)

Here, the direct Hartree term, to which only the diagonal
density matrix contributes, reads

�D(x,t) =
∫

d3rVint(r,x)ρ(r,t), (8)

while the Fock exchange term, which is given by

�E(x,x′; t) = −Vint(x,x′)ρ(x,x′; t), (9)

also involves off-diagonal elements of the density matrix.
In order to obtain the conservation laws corresponding to

the hydrodynamic equations, we perform an expansion around
the center-of-mass coordinate X = (x + x′)/2 in powers of the
relative coordinate s = x − x′. In zero order in s, we obtain
from Eq. (6) the continuity equation

∂ρ(x,t)

∂t
+ ∇ · j(x,t) = 0, (10)

with the particle density ρ(x,t) = ρ(x,x; t) and the current
density

j(x,t) = h̄

2Mi
(∇x − ∇x′) ρ(x,x′; t)

∣∣∣∣
x′=x

. (11)

The first order in s yields from Eq. (6) the Euler equation

M
∂ji(x,t)

∂t
= −∇xj

�0
ij (x,t) − ρ(x,t)∇xi

U (x)

− ρ(x,t)∇xi
�D(x,t) +

∫
d3x ′ρ(x,x′; t)

× ρ(x′,x; t)∇xVint(x,x′), (12)

with the noninteracting kinetic stress tensor

�0
ij (x,t) = − h̄2

M

(∇x − ∇x′ )i
2

(∇x − ∇x′ )j
2

ρ(x,x′; t)
∣∣∣∣
x′=x

.

(13)

Introducing the velocity field v(x,t) = j(x,t)/ρ(x,t) and as-
suming that the trapping potential U (x) is sufficiently smooth,
the kinetic stress tensor takes the form [42]

�0
ij (x,t) = δijP

0(x,t) + Mρ(x,t)vi(x,t)vj (x,t), (14)

where the pressure P 0(x,t) obeys some equation of state
P 0(x,t) = F (ρ(x,t)).

In the case of an irrotational flow, where the circulation
of the velocity field vanishes due to ∇ × v = 0, the Euler
equation (12) can be rewritten in the form

M
dv(x,t)

dt
= −∇

[∫ ρ(x,t)

dρ ′ F
′(ρ ′)
ρ ′ + U (x) + �D(x,t)

]

+
∫

d3x ′ ρ(x,x′; t)ρ(x′,x; t)

ρ(x,t)
∇xVint(x,x′) (15)

with the transport derivative d/dt = ∂/∂t + v · ∇. Now
the effect of the exchange term of the nonlocal interaction
potential (3) becomes clear: it breaks the conservation of the
circulation of the velocity field v(x,t) and Kelvin’s theorem
does not hold, although we consider an irrotational flow. This
obvious contradiction is a consequence of the fact that it is
a priori not possible to describe the exchange correlations in
terms of density fluctuations alone (i.e., fluctuations of the
diagonal part of the one-particle density matrix). Of course,
the true exchange correlation is a function of the density alone,
as a consequence of the Kohn theorem [44], and circulation
is conserved. Thus, due to the presence of the Fock exchange
term, the hydrodynamic treatment commonly used for dipolar
BECs [9] cannot immediately be applied to degenerate dipolar
Fermi gases. For this reason, we propose another approach
which preserves the influence of the nondiagonal part of the
one-particle density matrix [38], yet ensures the conservation
of the velocity circulation.

B. Common-phase approach

In this section we discuss the variational time-dependent
approach for a general two-particle interaction potential, which
leads to a unified formalism for elucidating the hydrodynamic
properties of normal dipolar Fermi gases.

In order to study the collective motion of the gas, we
employ a crucial approximation for the one-particle orbitals
ψi(x,t), namely that they all have the same phase:

ψi(x,t) = eiMχ(x,t)/h̄|ψi(x,t)|. (16)

This approximation was introduced before in the context
of nuclear hydrodynamics [39] and is commonly used in
hydrodynamic studies (see, for instance, Ref. [40]). The
orbitals |ψi(x,t)| are invariant under time reversion and are,
therefore, called time even.

From Eq. (16) and the definition of a time-even
Slater determinant �0(x1, . . . ,xN ; t) = SD [|ψi(x,t)|], we
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obtain

�(x1, . . . ,xN ; t) = ei M
h̄

[χ(x1,t)+···+χ(xN ,t)]�0(x1, . . . ,xN ; t).

(17)

Thus, the one-body density matrix (7) reduces to

ρ(x,x′; t) = ei M
h̄

[χ(x,t)−χ(x′,t)]ρ0(x,x′; t), (18)

where ρ0(x,x′; t) is a time-even one-body density matrix.
At this point it becomes more evident that the present
method resembles that of the collective coordinates applied
for fermions, as mentioned in Chapter 16 of Ref. [45].

Now the current density, defined in Eq. (11), becomes
j(x,t) = ρ0(x,t)∇χ (x,t), allowing for the identification of
χ (x,t) as the potential of the velocity field v(x,t).

With these definitions the action (4) reduces to

A = −M

∫ t2

t1

dt

∫
d3x

{
χ̇ (x,t)ρ0(x,t) + ρ0(x,t)

2
[∇χ (x,t)]2

}

−
∫ t2

t1

dt〈�0|H |�0〉. (19)

The first two terms concern the dynamical properties of the
system and are shown to give rise to the time derivatives in the
equations of motion. Notice that integrating the first term by
parts shows that the common phase χ (x,t) can be seen as the
momentum conjugate to coordinate ρ0(x,t), which represents
the particle density. The second term describes the energy
associated with the movement (i.e., the flow energy [45]),
given by

Eflow(t) = M

2

∫
d3xρ0(x,t)[∇χ (x,t)]2. (20)

The last term of Eq. (19), that is, 〈�0|H |�0〉, consists in
total of three contributions:

〈�0|H |�0〉 = 〈�0|Hkin|�0〉 + 〈�0|Htr|�0〉 + 〈�0|Hint|�0〉.
(21)

The first one is the expectation value of the kinetic energy
operator with respect to |�0〉 and gives rise to the Fermi
pressure:

Ekin(t) = −h̄2

2M

∫
d3x(∇x − ∇x′) · (∇x − ∇x′)ρ0(x,x′; t)

∣∣∣∣
x′=x

.

(22)

Notice that the total kinetic energy is given by Eflow +
〈�0|Hkin|�0〉. For simplicity, the kinetic energy in the static
case, that is, 〈�0|Hkin|�0〉, is referred to as Fermi pressure or
simply kinetic energy. The second term in Eq. (21) represents
the energy of the external trapping potential:

Etr(t) =
∫

d3x ρ0(x,t)Utr(x). (23)

The interaction energy, given by the third term in Eq. (21),
contains both the direct and the exchange mean-field terms
〈�0|Hint|�0〉 = ED + EE. The direct contribution is given by

ED(t) = 1

2

∫
d3xd3x ′Vint(x,x′; t)ρ0(x,x; t)ρ0(x′,x′; t), (24)

while the exchange part reads

EE(t) = −1

2

∫
d3xd3x ′Vint(x,x′; t)ρ0(x,x′; t)ρ0(x′,x; t).

(25)

Of course, if the interaction energy 〈�0|Hint|�0〉 would be a
functional of the particle density ρ0(x,t) alone; conservation
laws corresponding to the continuity equation and the Euler
equation could be immediately derived by functionally ex-
tremizing action (19) with respect to the phase χ (x,t) and the
density ρ0(x,t), respectively. In the present case, however, one
has to extremize with respect to the full time-even one-body
density matrix ρ0(x,x′; t). It turns out that the continuity
equation remains unchanged:

∂ρ0(x,t)

∂t
= −∇ · [ρ0(x,t)v(x,t)]. (26)

The corresponding Euler equation reads, formally,

M
dv(x,t)

dt
= −∇

[∫
d3x ′ δ〈�0|H|�0〉

δρ0(x,x′; t)

]
, (27)

so the proposed approach is circulation conserving.

C. Wigner phase space

In the preceeding section we derived a set of equations
which could be applied to study the hydrodynamic excitations
of a dipolar Fermi gas. Nevertheless, Eqs. (26) and (27)
are not yet closed due to the lack of knowledge of the
nondiagonal terms of the density matrix. Therefore, we resort
to a simpler procedure: we extremize action (19) with respect
to appropriate variational quantities, which bear information
on both the diagonal as well as the nondiagonal part of the
interaction. Of course, we do lose information in this process
because our variational approach may not be as precise as the
solution of the complicated Eqs. (6), but, on the other hand,
it gives access to both the static and dynamical properties of
dipolar Fermi gases beyond the perturbative regime in a quite
simple and clear way.

In order to calculate each of the terms in action (19), we
change to the Wigner representation of the time-even one-body
density matrix, which is defined according to

ν0(x,k; t) =
∫

d3s ρ0

(
x + s

2
,x − s

2
; t

)
e−ik·s. (28)

The inverse transformation reads

ρ0(x,x′ ; t) =
∫

d3k

(2π )3
ν0

(
x + x′

2
,k; t

)
eik·(x−x′). (29)

In the Wigner representation, all quantities of interest can be
expressed in terms of the Wigner function (28). For example,
the particle density is given by

ρ0(x,t) = ρ0(x,x; t) =
∫

d3k

(2π )3
ν0(x,k; t), (30)

and the momentum distribution is obtained via

ρ0(k,t) =
∫

d3x

(2π )3
ν0(x,k; t). (31)
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With the help of these quantities, the kinetic energy (22) and
the trapping energy (23) can be written as

Ekin(t) =
∫

d3x d3k

(2π )3
ν0(x,k; t)

h̄2k2

2M
, (32)

Etr(t) =
∫

d3x d3k

(2π )3
ν0(x,k; t)Utr(x), (33)

respectively. Accordingly, the direct term in Eq. (24), which
represents the mean-field dipolar potential energy, reads

ED
dd(t) =

∫
d3x d3k d3x ′ d3k′

2(2π )6
ν0(x,k; t)

×Vdd(x − x′)ν0(x′,k′; t). (34)

This term is determined by the particle density (30) alone and
was first considered to analyze the equilibrium [33] and the
dynamical [34] properties of a cylinder-symmetric system by
adopting an isotropic momentum distribution and a Gaussian
trial particle density.

In contrast, the exchange interaction term (25), given by

EE
dd(t) = −

∫
d3X d3k d3s d3k′

2(2π )6
ν0(X,k; t)

×Vdd(s)ν0(X,k′; t)eis·(k−k′), (35)

is rather linked to the momentum distribution (31) and vanishes
if it is isotropic. The importance of this term in dipolar Fermi
gases was only recently recognized in Ref. [35], where it
was shown to lead to a deformed momentum distribution.
Following this important investigation, further effects have
been studied by taking this term into account, such as its
influence on the dynamical properties of cylindrically trapped
systems in the collisionless regime [36]. For homogeneous
gases, zero-sound dynamics [19,20] as well as quantum phase
transitions in two dimensions [21] have also been investigated
by considering this exchange contribution [Eq. (35)].

In the following we extend the static, semiclassical theory of
dipolar Fermi gases to a dynamical theory in the hydrodynamic
regime by including the Fock exchange term in a natural way.
Actually, as is clear from its derivation, this theory can also be
successfully applied to fermionic systems with other types of
long-range interactions.

III. EQUATIONS OF MOTION

In order to study the trapped dipolar Fermi gas, we adopt
for the common phase the harmonic ansatz

χ (x,t) = 1
2 [αx(t)x2 + αy(t)y2 + αz(t)z2], (36)

which can be used to capture different excitation modes by
specifying the form of the potential for the particle flow.
Furthermore, we use an ansatz for the Wigner function
which resembles that of a noninteracting Fermi gas in
the semiclassical approximation. With this we cope with
the main effect of the DDI, that the gas is stretched
in the direction of the polarization. This ansatz is a
generalization of the one presented in Ref. [35], which has

the form of the low-temperature limit of the Fermi-Dirac
distribution

ν0(x,k; t) = 

(
1 −

∑
i

x2
i

Ri(t)2
−

∑
i

k2
i

Ki(t)2

)
, (37)

where (x) denotes the Heaviside step function. According
to Eq. (37), the parameters Ri and Ki represent the largest
extension in the ith direction of the density and momen-
tum distribution, respectively; therefore, they are called the
Thomas-Fermi (TF) radius and the Fermi momentum in the
ith direction, respectively.

Now we are in a position to evaluate action (19) as a function
of the variational parameters. Introducing additionally the
chemical potential µ as the Lagrange parameter, which is
responsible for particle number conservation, the action reads

A = −
∫ t2

t1

dt
R

3
K

3

(3)(27)

{
M

2

∑
i

(
α̇iR

2
i + α2

i R
2
i + ω2

i R
2
i

)

+
∑

i

h̄2K2
i

2M
− c0K

3
[
f

(
Rx

Rz

,
Ry

Rz

)
− f

(
Kz

Kx

,
Kz

Ky

)]}

−
∫ t2

t1

dt µ(t)

(
R

3
K

3

48
− N

)
, (38)

where the overbar denotes the geometrical average, and the
constant c0 is given by

c0 = 210Cdd

(34)(5)(7)π3
≈ 0.0116Cdd. (39)

The DDI is reflected in the anisotropy function f (x,y),
which is defined as (see Fig. 1)

f (x,y) = 1 + 3xy
E(ϕ,q) − F (ϕ,q)

(1 − y2)
√

1 − x2
, (40)

where F (ϕ,q) and E(ϕ,q) are the elliptic integrals of the first
and second kind, respectively, with ϕ = arcsin

√
1 − x2 and

q2 = (1 − y2)/(1 − x2). This function has often appeared in
the literature of dipolar Bose-Einstein condensates [12,17].
Notice that f (x,y) is bounded between 1 and −2 passing
through 0 at x = y = 1. This reflects the fact that the DDI is
both partially attractive and partially repulsive, depending on
whether the dipoles are head to tail or side by side, respectively.
For polarization along the symmetry axis, therefore, the
interaction is dominantly attractive in cigar-shaped (prolate)
and repulsive in pancake-shaped (oblate) systems. We remark
that this is not the only possible way to define the anisotropic
dipolar function [35]. The motivation for our choice is
twofold. From the mathematical point of view, much is known
about function (40) due to the extensive research on dipolar
BECs. For example, a good amount of technical information
can be found in the appendix of Ref. [12]. In addition,
it is physically appealing to state that the anisotropy of
harmonically trapped, dipolar particles is determined by one
and the same function whether they are of bosonic or fermionic
nature.

In the following, we use the indices 1 and 2 to denote
a derivative with respect to the first and second argument.
Note that, whereas f (x,y) is symmetric with respect to
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FIG. 1. (Color online) Top: Anisotropy function f (x,y) from
Eq. (40), which is bounded between 1 for small values of either x or
y and −2 for large values of both arguments. Notice the symmetry
f (x,y) = f (y,x) and that f (x,y) reduces to fs(x) (black curve) in
the case of cylindrical symmetry [12,17]. Bottom: fs(x) as a function
of x. Notice that fs(x) changes its sign at x = 1.

exchanging the first and second variables, this is not the
case for the functions f1(x,y) and f2(x,y). Furthermore, in
the case of x = y, the anisotropy function f (x,y) reduces
to [9,16,46]

fs(x) = 1 + 2x2 − 3x2 �(x)

1 − x2
, (41)

together with the abbreviation

�(x) ≡
{ 1√

1−x2 tanh−1
√

1 − x2, 0 � x < 1,

1√
x2−1

tan−1
√

x2 − 1, x � 1.
(42)

Inspecting action (38), one perceives that the anisotropy
function occurs twice: the first time as a function of the TF
radii Ri , due to the direct term, and the second time as a
function of the Fermi momenta Ki , due to the exchange term.
Since f (1,1) vanishes, this term only contributes in the case
of deformed Fermi surfaces. In other words, the absence of
this term would lead immediately to a spherical momentum
distribution.

The equations of motion follow from extremizing action
(38) with respect to all variational parameters αi , Ri , and Ki

as well as the Lagrange parameter µ. The latter ensures particle

number conservation,

R
3
K

3 = 48N, (43)

and is explicitly given by

µ = 1

3

∑
i

h̄2K2
i

2M
− 21c0N

R
3

[
f

(
Rx

Rz

,
Ry

Rz

)
− f

(
Kz

Kx

,
Kz

Ky

)]
.

(44)

After some simple though tedious algebra, one obtains the
following equations for the Fermi momenta:

h̄2K2
x

2M
= 1

3

∑
i

h̄2K2
i

2M
+ 48Nc0

2RxRyRz

Kz

Kx

f1

(
Kz

Kx

,
Kz

Ky

)
,

h̄2K2
y

2M
= 1

3

∑
i

h̄2K2
i

2M
+ 48Nc0

2RxRyRz

Kz

Ky

f2

(
Kz

Kx

,
Kz

Ky

)
,

(45)
h̄2K2

z

2M
= 1

3

∑
i

h̄2K2
i

2M
− 48Nc0

2RxRyRz

Kz

Kx

f1

(
Kz

Kx

,
Kz

Ky

)

− 48Nc0

2RxRyRz

Kz

Ky

f2

(
Kz

Kx

,
Kz

Ky

)
.

These equations are clearly redundant, so we drop the third
of them. Together with the condition for particle conservation
(43), they determine the Fermi momenta Ki as functions of the
TF radii Ri , so we have three independent equations to solve
for three variables.

The equations of motion for the variational parameters αi

are simply given by

αi = Ṙi

Ri

(46)

and are used to derive the equations of motion for the TF radii:

R̈i = −ω2
i Ri +

∑
j

h̄2K2
j

3M2Ri

− 48Nc0

Mcd
Qi(R,K). (47)

Here the auxiliary functions are given by

Qx(r,k) = cd

x2yz

[
f

(
x

z
,
y

z

)
− x

z
f1

(
x

z
,
y

z

)
− f

(
kz

kx

,
kz

ky

)]
,

Qy(r,k) = cd

xy2z

[
f

(
x

z
,
y

z

)
− y

z
f2

(
x

z
,
y

z

)
− f

(
kz

kx

,
kz

kx

)]
,

Qz(r,k) = cd

xyz2

[
f

(
x

z
,
y

z

)
+ x

z
f1

(
x

z
,
y

z

)
+ y

z
f2

(
x

z
,
y

z

)

− f

(
kz

kx

,
kz

kx

)]
, (48)

where the numerical constant cd reads

cd = 2
38
3

(3
23
6 )(5)(7)π2

≈ 0.2791. (49)

The first term on the right-hand side of Eqs. (47) accounts
for the harmonic trap, the second is due to the Fermi pressure,
and the third represents the DDI contribution, which is
discussed in more detail in the next section.

Having collected the equations of motion for all the
variables, we can attempt to interpret Eqs. (43), (45), and (47)
physically. In the case of a spherically symmetric momentum
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distribution, one could neglect the exchange term and set
to zero all terms which involve f(Kz/Kx,Kz/Ky) and its
derivatives. Thus, we could solve Eqs. (43) and (45) for the
Fermi momenta and obtain

Kx = Ky = Kz = KF =
3
√

48N

R
. (50)

Inserting this result in Eqs. (47), we would then have a set
of equations of motion for the TF radii which stem from
a potential V(Rx,Ry,Rz). The problem would be reduced
to studying the movement of a fictitious particle under the
influence of this potential. Due to the presence of the Fock
term, however, it is not possible to solve Eqs. (43) and
(45) directly, so they have to be solved simultaneously with
Eqs. (47). Thus, we conclude that the exchange term modifies
the constraints in an anisotropic manner such that one has to
give up the notion of an underlying potential V(Rx,Ry,Rz).
Furthermore, it is the presence of the Fock exchange term, as
first pointed out in Ref. [35], which deforms the Fermi sphere
into an ellipsoid in the case of a cylinder-symmetric trap. As
we see below, this deformation turns out to remain ellipsoidal
for triaxial traps and plays an important role in determining
both equilibrium and dynamical properties of the system.

IV. DIMENSIONLESS VARIABLES: CYLINDRICAL
SYMMETRY OF THE MOMENTUM DISTRIBUTION

Before we explore the physical consequences of the
equations of motion for a trapped dipolar Fermi gas, let us
briefly discuss the noninteracting case, which provides us with
adequate units for the quantities of interest throughout this
work. Denoting the Fermi energy of a noninteracting trapped
Fermi gas by EF, its chemical potential takes the form

µ(0) = EF = h̄ω(6N )
1
3 , (51)

and the Fermi radii and momentum read, respectively,

R
(0)
i =

√
2EF

Mω2
i

, KF =
√

2MEF

h̄2 . (52)

This motivates us to express the TF radii Ri in units of
R

(0)
i and the Fermi momenta Ki in units of KF. Defining K̃i ≡

Ki/KF and R̃i ≡ Ri/R
(0)
i , the condition for the particle number

conservation (43) reduces to

R̃
3
K̃

3 = 1. (53)

Thus, the equations of motion for the TF radii in the
dimensionless notation are written in terms of the ratios

Ri

Rj

= R̃i

R̃j

ωj

ωi

, (54)

outlining the role played by the trap frequency ratios λx =
ωz/ωx and λy = ωz/ωy .

Before solving the equations of motion, we can already
obtain important information by considering the symmetries
of the total energy in the static case (i.e., with the velocity
potential χ set to zero). As a function of the variational

parameters, the energy then reads

E

NEF
= 1

8

{∑
i

(
K̃2

i + R̃2
i

) − 2εddcd

R̃
3

×
[
f

(
R̃xλx

R̃z

,
R̃yλy

R̃z

)
− f

(
K̃z

K̃x

,
K̃z

K̃y

)]}
, (55)

where the dimensionless dipolar strength εdd is given by

εdd = Cdd

4π

(
M3ω

h̄5

) 1
2

N
1
6 . (56)

Notice that εdd depends on the particle number and on the
trap frequencies. This is in contrast with the dipolar Bose
gas, where, for a system with s-wave scattering length as, the
corresponding dimensionless dipolar strength εdd is given by

εdd = CddM

12πh̄2as
. (57)

The difference between Eq. (56) and Eq. (57) has important
consequences for the behavior and the tunability of the system,
as explained in more detail below.

As a consequence of the symmetry of the anisotropy
function f (x,y) = f (y,x), the energy (55) possesses the same
symmetry with respect to the plane xOy in both K- and
R-space. On the one hand, this implies that in a cylinder-
symmetric trap, where we have λx = λy , the extrema of the
energy satisfy Rx = Ry . On the other hand, since the trap
geometry does not influence the exchange contribution to the
total energy, we conclude that the momentum distribution
of a dipolar Fermi gas remains cylinder-symmetric even in
the case of a triaxial trap geometry (i.e., one has Kx = Ky),
provided that the dipoles are aligned along the Oz direction.
Therefore, in the preceding expression, f(K̃z/K̃x,K̃z/K̃y)
can be simplified to fs(K̃z/K̃x) without loss of generality.
Furthermore, noticing the limits

lim
y→x

x
∂

∂x
f (x,y) = lim

y→x
y

∂

∂y
f (x,y) = −1 + (2 + x2)fs(x)

2(1 − x2)
,

(58)

we conclude that Eqs. (45) reduce to the single condition

K̃2
z − K̃2

x = εddC(R̃,K̃x,K̃z) (59)

with the function

C(R̃,K̃x,K̃z) = 3cd

R̃
3

[
−1 +

(
2K̃2

x + K̃2
z

)
fs(K̃z/K̃x)

2
(
K̃2

x − K̃2
z

)
]

,

(60)

which was already found in our previous work concerning the
cylinder-symmetric trap [38]. In that work, we traced Eq. (59)
back to the Fock exchange term.

We emphasize that the cylindric symmetry in momentum
space also holds in the dynamic case, since neither modulating
the trap frequencies nor turning them off affects the symmetries
of the exchange term.
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Equation (47) for the Thomas-Fermi radius in the ith
direction can, thus, be written as

1

ω2
i

d2R̃i

dt2
= −R̃i +

∑
j

K̃2
j

3R̃i

− εddQi(R̃,K̃x,K̃z), (61)

with the corresponding simplifications in the Qi functions
(48).

Equations (53), (59), and (61) describe both static and
dynamic properties of a triaxially trapped dipolar Fermi gas
in the hydrodynamic regime and represent the main result of
the present article. In what follows, we explore their solutions
in different cases of interest such as the conditions for stable
equilibrium, the low-lying oscillations around the equilibrium
positions, and the expansion of the gas after release from the
trap (i.e., the time-of-flight dynamics).

In terms of the dimensionless quantities introduced above,
the chemical potential (44) is given by

µ

EF
=

∑
i

K̃2
i

3
− 7cdεdd

8R̃

[
f

(
R̃xλx

R̃z

,
R̃yλy

R̃z

)
− fs

(
K̃z

K̃x

)]
.

(62)

This expression can also be obtained through the virial theorem
for dipolar gases [33],

Ekin − Etr + 3Eint/2 = 0, (63)

together with the scaling relation for the particle number,

Nµ = 5Ekin/3 + Etr + 2Eint. (64)

Now that we have explained in detail how our equations
of motion arise and how they are expressed in dimensionless
units, we drop the tildes and obtain a cleaner notation without
any danger of misunderstandings.

V. STATIC PROPERTIES

The static properties of a dipolar Fermi gas are obtained
from Eqs. (61) by requiring the left-hand side to vanish.
However, this only gives us the conditions for an extremal
mean-field energy. Since the dipolar interaction also contains
an attractive part, it is useful to have a criterion for deciding
whether a given state, that is, a point (R,Kx,Kz) in the
five-dimensional space of variational parameters, is stable or
unstable. To that end we turn to the total energy, given by

Eq. (55), which is minimized under the constraint R
3
K

3 = 1
due to particle number conservation. A dimensional analysis
of the energy (55) shows that the system cannot have a global
minimum for any nonvanishing εdd. This can be roughly seen
by noticing that the stabilization comes from the factor K2 ∼
R−2, whereas the dipolar interaction goes with R−3, rendering
the energy not bounded from below. Nonetheless, for weak
enough interactions, a local minimum might exist to which the
system would return after a small perturbation. The regions
satisfying this property are called stable, while inflection points
and local maxima are denoted unstable equilibrium points.
The mathematical criterion behind this classification is given
by the eigenvalues of the Hessian matrix associated with the
four effectively independent variables of the problem.
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Rz

εdd

FIG. 2. (Color online) Aspect ratio in real space Rxλx/Rz for
a cylinder-symmetric trap with λx = λy = 7,6,5,4,3,2,1 (top to
bottom). The upper branch (solid line) corresponds to a local
minimum of the total energy, while the lower branch (dotted line)
represents an extremum but not a minimum.

One of the consequences of the unboundedness of the
internal energy is that, for each value of the interaction strength
εdd for which the system presents a stable configuration, there
is also another unstable one. This can be seen by considering
the aspect ratio of the cloud, which is depicted in Fig. 2
for different values of the trap aspect ratio λx = λy = λ as
functions of εdd. Here we recognize that the stable branch
(solid line) of the real space aspect ratio starts at εdd = 0 with
Rx = Rz = 1 and extends itself until the value εcrit

dd , where
it meets the unstable branch (dotted line). For εdd > εcrit

dd , no
stationary solution for Eqs. (61) exists. The unstable branch, on
the other hand, possesses a vanishing aspect ratio for εdd = 0.
This is due to the fact that the DDI tends to stretch the sample
along the polarization direction. For a small value of εdd,
the unbounded energy solution is obtained with Rx → 0 and,
consequently, Rx/Rz → 0, although the TF radius in the axial
direction Rz remains finite. We remark that the upper branch
corresponds to a local minimum of the energy such that the
Hessian matrix has only positive eigenvalues, while the lower
one is an extremum but not a minimum, corresponding to
a Hessian matrix with at least one negative eigenvalue. The
corresponding graph for a dipolar BEC in the Thomas-Fermi
regime bears a crucial difference: unstable solutions only
become available for εdd > 1 [9]. The physical reason for this
effect is that in dipolar BECs the stabilization comes from the
contact interaction, which scales with R−3, just like the DDI.

In order to study the effect of a triaxial trap on the static
properties of a dipolar Fermi gas, we explore further the
symmetry f (x,y) = f (y,x) of the anisotropy function as
defined by Eq. (40). Due to this symmetry, we only need
to discuss the aspect ratio Rxλx/Rz since the properties of
Ryλy/Rz can be obtained by analogy. As indicated in Fig. 3,
varying λy for fixed λx clearly affects the stability of the
system. For λy > λx , stable solutions are admitted for larger
values of εdd (i.e., εcrit

dd is shifted to the right), whereas in the
case λy < λx , εcrit

dd decreases. This reflects the fact that more
oblate traps tend to allow for larger εdd because they favor
the repelling part of the interaction. Another feature worth a
remark in Fig. 3 is that reducing λy for fixed λx reduces the
value of εcrit

dd much more than it is enlarged by increasing λy .
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FIG. 3. (Color online) Aspect ratio in real space Rxλx/Rz for a
triaxial trap with λx = 5 for values of λy = 3,4,5,6,7. Notice that,
for a fixed λx , making λy larger corresponds to flattening the trap
in the direction perpendicular to the dipoles, allowing for stable
configurations for larger interaction strengths.

Concerning the aspect ratio in momentum space, we have
studied its dependence on the dipolar strength εdd and found
an analogous behavior to the one in real space. This goes
back to the property of the function fs(x) changing sign at
x = 1, so that the minus sign in front of fs(Kz/Kx) in the
total energy partially compensates its dependence on the
reciprocal momentum aspect ratio Kz/Kx , and its behavior
with respect to εdd turns out to be analogous to one in real
space. This is explicitly shown in Fig. 4, where the aspect
ratio in momentum space Kx/Kz is plotted as a function
of εdd for λx = 5 and λy = 3,4,5,6,7. The main difference,
which appears in momentum space, is the observation that the
unstable solution converges to a finite value of the aspect ratio
as the interaction strength εdd approaches zero. This reflects
the fact that the collapse is a real-space phenomenon which is
dominated by the shrinking of the radial Thomas-Fermi radius
Rx , while the axial Thomas-Fermi radius Rz remains finite.
As the momentum-space variables are accounted for only by
constraint (53) and the condition for momentum deformation
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λy = 7

dd

FIG. 4. (Color online) Aspect ratio in momentum space Kx/Kz

for λx = 5 and λy = 3,4,5,6,7. The upper branch (solid line)
corresponds to a local minimum of the total energy, while the lower
branch (dashed line) represents an extremum but not a minimum.
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FIG. 5. (Color online) Stability diagram of a dipolar Fermi gas.
The middle (black) curve represents the cylinder-symmetric case
λy = λx , while the top (red) curve represents the case λy = 5λx and
the bottom (blue) curve represents λy = λx/5.

(59), both Kx and Kz diverge as εdd approaches zero in the
unstable branch, but their ratio is always finite.

To conclude our investigation of the static properties of a
trapped dipolar Fermi gas, we have calculated the stability
diagram for the cylinder-symmetric case λx = λy , where we
obtain similar quantitative results as in Ref. [35], and for
λx �= λy , where the lack of axial symmetry has a considerable
influence. The results are presented in a log-log plot in Fig. 5.
If we consider a situation in which λy = 5λx (red, upper
curve), we do not obtain a large variation with respect to
the cylinder-symmetric case λy = λx (black, middle curve).
On the contrary, if we take λy = λx/5, appreciable differences
can be noticed as λx increases. This can be understood if one
realizes that it is the weaker trap frequency which determines
the highest value of εdd, for which the system remains stable.
Therefore, by enlarging λy with respect to λx one obtains a
smaller difference with respect to the case λy = λx than by
reducing it, explaining the effect already anticipated in Fig. 3.
Also remarkable is the fact that, for small λ, the three curves
lie very close to each other.

VI. LOW-LYING EXCITATIONS

The low-lying excitations of a dipolar Fermi gas are studied
in this section by linearizing the equations of motion around
the equilibrium. This is done by assuming that at time t the
following ansatz is valid:

Ri(t) = Ri(0) + ηie
i�t , Ki(t) = Ki(0) + ζie

i�t , (65)

where ηi and ζi denote the small amplitudes in real and
momentum space, respectively, while � represents the fre-
quency of the oscillations. Due to the cylinder symmetry in
momentum space, there are only two independent momentum-
space amplitudes, ζx and ζz, while three independent real-space
amplitudes occur for a general three-dimensional trap.

Before we can derive a matrix equation for the amplitudes
in real space, we must obtain the values of ζi as functions of
the ηi . To that end, we expand Eqs. (53) and (59) up to first
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order in the amplitudes and get

ζi =
⎛
⎝∑

j

ηj

Rj

⎞
⎠ KiWi (66)

with the abbreviations

Wx = − K2
x + K2

z − εddKzC,Kz

4K2
z + 2K2

x − 3εddKzC,Kz

,

(67)

Wz = − 2K2
z − εddKzC,Kz

4K2
z + 2K2

x − 3εddKzC,Kz

.

To make the notation more succinct, we have introduced
the shorthand A,Kz

= ∂A (R,Kx,Kz) /∂Kz to denote a partial
derivative of the quantity A (R,Kx,Kz) with respect to Kz

evaluated at equilibrium. These results show that the presence
of the dipolar exchange term drives the momentum oscillations
anisotropically. In Fig. 6 we plot the ratio ζx/ζz as a function
of εdd for λx = λy = 7. We show also the stable branch of the
corresponding equilibrium aspect ratio in momentum space,
represented by the upper (blue) curve. In order to appreciate
the meaning of this curve, let us consider a typical experi-
mental situation with N ≈ 4 × 104 KRb molecules and trap
frequencies of (ωx,ωy,ωz) = 2π (40,40,280) Hz. By using an
external electric field and tuning the electric dipole moment to
d = 0.2 D, one obtains the dipole-interaction strength εdd ≈
0.43, which leads to an oscillation anisotropy of ζx/ζz ≈ 0.87
and an equilibrium momentum deformation of Kx/Kz ≈
0.93. More striking effects result for a stronger interaction.
Considering an electric dipole moment of d = 0.57 D yields a
larger value εdd ≈ 3.53 and, therefore, also larger anisotropies
for both the momentum oscillation ζx/ζz ≈ 0.45 and the
equilibrium momentum distribution Kx/Kz ≈ 0.64. These
results clearly exhibit the effects of the exchange term on
the low-lying oscillations and make room for a clear detection
of the DDI in ultracold degenerate Fermi gases.
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FIG. 6. (Color online) The bottom (red) curve shows the ratio
of the amplitudes ζx/ζz as a function of εdd for λx = λy = 7. For
comparison, the stable branch of the equilibrium aspect ratio in
momentum space against εdd for λx = λy = 7 is depicted by the top
(blue) curve.

Linearizing the equations for the TF radii (61), we obtain(
�2

ω2
i

− 1 − 2K2
x + K2

z

3R2
i

)
ηi

−
∑

j

(
P

RiRj

+ εddQi,Rj

)
ηj = 0, (68)

where we have introduced the shorthand

P = 2

3

K4
x + K4

z + 4K2
xK2

z − (
2K2

x + K2
z

)
εddKzC,Kz

4K2
z + 2K2

x − 3εddKzC,Kz

, (69)

which approaches the value 2/3 as εdd goes to zero.
With this the study of the low-lying oscillations in a dipolar

Fermi gas has been reduced to the eigenvalue problem (68):
the oscillation frequencies � are given by the square root
of the corresponding eigenvalues and the eigenmodes describe
the real-space motion during the oscillations.

For a noninteracting Fermi gas, this formalism recovers the
oscillation frequencies of a triaxial trap as the solutions of the
equation

3�(0)6 − 8�(0)4(
ω2

x + ω2
y + ω2

z

)
+ 20�(0)2(

ω2
xω

2
y + ω2

xω
2
z + ω2

yω
2
z

) − 48ω2
xω

2
yω

2
z = 0.

(70)

This result is in agreement with Ref. [47], where a deeper
analysis, initially devised for BECs [48], is carried out. It
is shown there that, despite the lack of an obvious spatial
symmetry, the wave equation for the hydrodynamic modes
is separable in elliptical coordinates. We remark that the
solutions of Eq. (70) reduce to the respective frequencies in
the presence of cylindrical [42] or spherical symmetries [41],
where this problem was first tackled.

In the following, we discuss separately the effects of
the DDI in cylindric and triaxial traps. The modification
introduced in Eq. (70) due to the inclusion of the DDI makes
this equation too cumbersome to be displayed here. The
same is true for the corresponding solutions. For this reason,
we provide detailed expressions for the three oscillation
frequencies only in the case of cylinder symmetry.

A. Oscillation frequencies in cylinder-symmetric traps

In the presence of cylinder symmetry, we find three
well-characterized oscillation modes: one two-dimensional
mode, the radial quadrupole, and two three-dimensional
ones, the monopole and the quadrupole modes. The first
mode we consider is the radial quadrupole mode, depicted in
Fig. 7(a). It is characterized by a vanishing amplitude in the
Oz direction, while the oscillations in Ox and Oy directions
have the same amplitude but are completely out of phase. We
find the frequency �rq to be given by

�rq = ωx

[
2 + 3cdεdd

R4
xRz

R2
xλ

2

R2
z

× 2
(
R2

z − R2
xλ

2
) − (

4R2
z + R2

xλ
2
)
fs(Rxλ/Rz)(

R2
z − R2

xλ
2
)2

]1/2

,

(71)
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FIG. 7. (Color online) Oscillation modes in the cylinder-
symmetric configuration for λ = 5. The oscillation frequencies of
the radial quadrupole �rq (bottom line, black), the monopole �+ (top
curve, blue), and the three-dimensional quadrupole mode �− (middle
line, red) are plotted as functions of the dipolar interaction strength
εdd in units of ωx . The inset shows the behavior of the corresponding
eigenmodes, characterizing (a) the radial quadrupole eigenmode,
(b) the monopole mode, and (c) the quadrupole mode.

where the TF radii Rx and Rz correspond to the static values
calculated in Sec. V.

The radial quadrupole mode can be experimentally excited
by adiabatically deforming the circular trap in the xOy plane
into an ellipse and suddenly switching off the deformation.
In the case of a Fermi gas with contact interaction, the
radial quadrupole mode was used to probe the transition
from the collisionless to the hydrodynamic regime throughout
the BEC-BCS crossover [49]. A similar experiment could
be thought of for a dipolar Fermi gas, where controlling
the collisions through applied electric fields would play the
role of a Feshbach resonance to tune the system all the way
from ballistic to hydrodynamic behavior in the normal phase.
Figure 7 depicts �rq as a function of εdd for λ = 5 in units of ωx .
We find that, for a given λ, the frequency �rq is quite insensitive
to changes in the interaction over the range of values in which
the gas is stable. Although we have varied the trap anisotropy
λ from 0.2 up to 20, no significant alteration of this behavior
could be detected. Figure 8 shows the dependence of �rq on
λ for εdd = 0.8 and εdd = 1.2 in units of its noninteracting
value (i.e., �(0)

rq = √
2ωx), which is directly given in Eq. (71)

by setting εdd = 0. We remark that the function in the second
line of Eq. (71) is a function of the ratio Rxλ/Rz alone, which
approaches the value −16/35 as Rxλ/Rz tends to 1, so that
no divergence arises for Rz = Rxλ. We would also like to
point out that, despite the fact that the radial quadrupole mode
is inherent to cylinder-symmetric systems, its calculation
requires that one start from a triaxial framework, which is
then specialized to axial symmetry. This is the reasonwhy
this important mode was not explored in initial studies of
dipolar Fermi gases in the hydrodynamic [38] or collisionless
regimes [36].

We now concentrate on the three-dimensional monopole
and quadrupole modes. The first, also known as the breathing
mode, is a compression mode characterized by an in-phase
oscillation in all three directions and is denoted with an
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FIG. 8. (Color online) Low-lying oscillation frequencies in units
of the corresponding noninteracting values as functions of λ for
εdd = 0.8 (dotted lines) and εdd = 1.2 (solid lines). The monopole
and quadrupole modes are displayed in dark gray (blue) and light
gray (red), respectively, while the radial quadrupole mode is shown
in black.

index +. The second, in analogy with the radial quadrupole
mode, is an out-of-phase oscillation in radial and axial direc-
tions and is denoted with an index −. In a spherical trap, these
modes are decoupled from each other, but here they are coupled
due to the cylinder symmetry of the trap. Their frequencies are
given by

�± = ωx√
2

√
Mxx + Mzz ±

√
2M2

xz + (Mxx − Mzz)2, (72)

together with the abbreviations

Mxx = 2 + 2P

R2
x

+ cdεdd

R4
xRz

[
−2R4

z + 7R2
zR

2
xλ

2 − 5R4
xλ

4(
R2

z − R2
xλ

2
)2

− 3R2
xλ

2
(
2R2

z + 3R2
xλ

2
)

2
(
R2

z − R2
xλ

2
)2 fs

(
Rxλ

Rz

)
+ 2fs

(
Kz

Kx

)]
,

Mzz

λ2
= 2 + P

R2
z

+ cdεdd

R2
xR

3
z

[
2
(
4R4

z − 5R2
zR

2
xλ

2 + R4
xλ

4
)

(
R2

z − R2
xλ

2
)2

− 3R2
z

(
3R2

z + 2R2
xλ

2
)

(
R2

z − R2
xλ

2
)2 fs

(
Rxλ

Rz

)
+ fs

(
Kz

Kx

)]
,

Mxz

2λ
= P

RxRz

+ cdεdd

R3
xR

2
z

[
−R4

z + R2
zR

2
xλ

2 − 2R4
xλ

4(
R2

z − R2
xλ

2
)2

+ 15R2
zR

2
xλ

2

2
(
R2

z − R2
xλ

2
)2 fs

(
Rxλ

Rz

)
+ fs

(
Kz

Kx

)]
.

The dependence of the mono- and quadrupole oscillation
frequencies on the DDI strength εdd for a fixed trap anisotropy
λ is shown in Fig. 7. We find that the frequencies behave
for different values of λ > 1 qualitatively like in Fig. 7,
where we have λ = 5: The monopole frequency increases
monotonically and its derivative with respect to εdd blows
up as εcrit

dd is approached. On the contrary, the frequency
of the other two modes decreases and their inclinations fall
abruptly in the neighborhood of εcrit

dd . In the case of λ < 1,
the monopole frequency changes its behavior, which ceases
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to be monotonic in εdd. It grows for small εdd, but, as the
critical interaction strength is approached, it starts decreasing
as εdd grows. The radial quadrupole and three-dimensional
quadrupole frequencies behave as functions of εdd for λ < 1
qualitatively nearly the same as for λ > 1. For specific values
of λ, though, they might cease to be monotonically decreasing.
The characteristic feature here is that, for both λ < 1 and
λ > 1, the three-dimensional quadrupole frequency vanishes
at εcrit

dd as a signal of global collapse of the gas.
How the oscillation frequencies depend on λ is shown in

Fig. 8 for εdd = 0.8 (dotted lines) and εdd = 1.2 (solid lines).
For λ < 1, the quadrupole frequency is larger in comparison
to the noninteracting case, while the contrary is true for
the monopole frequency. As λ eventually becomes larger
than 1, the monopole (quadrupole) becomes larger (smaller)
than in the absence of interactions. Concerning the radial
quadrupole frequency, it turns out to be the most insensitive
with respect to the dipolar interaction and is always smaller in
the presence of the DDI with a minimum around λ ≈ 1.74. The
behavior of the three-dimensional modes normalized by their
noninteracting values agrees qualitatively with both dipolar
BECs [9] and with dipolar Fermi gases in the collisionless
regime [36].

B. Oscillation frequencies in triaxial traps

In the most general case (i.e., in absence of cylinder
symmetry), the oscillation modes do not behave as indicated
in the inset of Fig. 7: each of the three modes becomes a
superposition of in- and out-of-phase oscillations in all three
spatial directions. For this reason, the modes are better char-
acterized by their frequencies and these are naturally mixed,
even if one looks at the cylinder-symmetric limit of the triaxial
solutions. Thus, we plot the frequencies according to their
values: dark gray (blue), black, and light gray (red) correspond
to the highest, moderate, and lowest values, respectively.
We exhibit in Fig. 9 the dependence of these frequencies
on λx for different values of λy/λx and εdd = 1.2, with
the frequencies normalized by their respective noninteracting
values. The situations λy/λx = 2, 1/2, 3, and 1/3 correspond
to Figs. 9(a)–9(d), respectively. These pictures show explicitly
that the two quadrupole-like modes, denoted by light gray (red)
and black, are now mixed. If the cylinder-symmetric situation
is considered, a level crossing becomes evident at λ ≈ 0.94,
shown in Fig. 9(e). In contrast to the bosonic case [50], the
DDI affects the value of λ at which the level crossing takes
place. For this reason, instead of a discontinuous transition
as for dipolar bosons, there is a steep continuous line in both
the radial and the three-dimensional quadrupole modes for the
trap anisotropy range 0.94 < λ < 1.

The level crossing in the cylinder-symmetric case can be
seen more clearly in Fig. 10, where the frequencies are plotted
in units of ωx for εdd = 1.2. The vertical line marks the level
crossing, which takes place at λ ≈ 0.94. The inset contains
a detailed picture of the frequencies for εdd = 0. There, the
level crossing happens at λ = 1, which explains the steep lines
which show up in the spectra of the quadrupole modes in
Fig. 9(e). This shift of the level crossing can be traced back
to the Fock exchange interaction, which is absent in dipolar
Bose-Einstein condensates.
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FIG. 9. (Color online) Low-lying oscillation frequencies for
triaxial traps as functions of the trap aspect ratio λx for εdd = 1.2 and
different values of λy/λx . The frequencies are normalized by their
respective noninteracting values. The dark gray (blue), black, and
light gray (red) curves correspond to the highest, moderate, and lowest
values, respectively. (a–d) Mixing of the two quadrupole-like modes,
which go continuously over into each other; (e) a level-crossing in
the cylinder-symmetric case, which becomes apparent through an
abrupt permutation of the quadrupole modes (see Fig. 10 for more
details).
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FIG. 10. (Color online) Frequencies of the low-lying oscillations
in units of ωx in the cylinder-symmetric configuration as functions of
λ for εdd = 1.2. The frequencies are labeled in decreasing value as
dark gray (blue), black, and light gray (red). At λ ≈ 0.94 a level
crossing takes place between the two quadrupole modes. In the
absence of the interaction, the level crossing happens precisely at
λ = 1, as can be seen in the inset. This difference explains the steep
curves in Fig. 9(e) for 0.94 < λ < 1.
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VII. TIME-OF-FLIGHT EXPANSION

Time-of-flight (TOF) expansion experiments are a key
diagnostic tool in the field of ultracold quantum gases. In
BECs, for example, the effects of the magnetic DDI were
observed for the first time in 52Cr by measuring the time
dependence of the aspect ratios for two different polarization
directions after release from a triaxial trap [11]. In this section,
we explore the corresponding problem for a strong dipolar
normal Fermi gas.

Dipolar effects are expected to be observed in polar
molecules due to their large electric dipole moment. Trapping
and cooling these molecules requires a strong confinement in
the polarization axes to ensure robustness against collapse.
Therefore, the suppression of the attractive part of the DDI
indicates that this system is better described by normal hy-
drodynamics. Initial estimates of the relaxation time for polar
molecules suggest that this reasoning remains valid during the
whole TOF expansion [38]. Thus, we expect the dynamics of
the dipolar Fermi gas to be described by the equations

1

ω2
i

d2Ri

dt2
=

∑
j

K2
j

3Ri

− εddQi(R,Kx,Kz), (73)

together with the conditions for number conservation (53) and
momentum deformation (60). Notice that Eq. (73) differs from
Eq. (61) only by the absent term −Ri , which is responsible
for the trapping potential. In the following, we discuss the
results obtained by solving these equations numerically, using
the static values of Sec. V for the initial conditions of the pa-
rameters Ri(0) and Ki(0) as well as Ṙi(0) = 0 and K̇i(0) = 0.

Until now, only axially symmetric traps were involved in
experimental investigations of dipolar Fermi gases. Never-
theless, we have learned from studies of dipolar BECs how
useful triaxial traps can be (for instance, in the context of
time-of-flight experiments).

Concerning the momentum space, we obtain results in
the triaxial case similar to the results for the cylinder-
symmetric one [38], where the aspect ratio Kx/Kz becomes
asymptotically unity as a result of local equilibrium in the
absence of the trap. The anisotropic aspect ratios Rxλx/Rz

and Ryλy/Rz are plotted as functions of time in Fig. 11 for
λx = 3 and λy = 5. In the upper and lower graphs we have
set εdd = 1 and εdd = 3.5, respectively, and we find that both
aspect ratios become smaller than 1 over the course of time.
Also for traps with λx < 1 or λy < 1, an inversion of the
corresponding aspect ratio takes place, but in the opposite
direction. Such an inversion is typical for the hydrodynamic
regime and was already observed for a two-component, normal
Fermi gas with strong contact interaction [32,51].

The value εdd = 3.5, chosen above, corresponds to N =
4 × 104 KRb molecules, with a dipole moment of d ≈ 0.51 D
induced by an applied electric field and with trap frequencies
characterized by ωz = 2π × 280, λx = 3, and λy = 5. Simple
arguments like the ones given in Ref. [38] show that the
hydrodynamic character of the expansion holds, at least
for ωt � 42. Given that the trapping frequencies can be
changed at will over a wide range, the prospects for observing
hydrodynamic expansion in dipolar gases of heteronuclear
molecules out of triaxial traps are quite promising.
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FIG. 11. (Color online) Aspect ratios in real and momentum
space as functions of time. The dashed curve corresponds to the
aspect ratio in momentum space Kx/Kz while the light gray (red)
and dark gray (blue) curves correspond to the real-space aspect ratios
Ryλy/Rz and Rxλx/Rz, respectively. The trap is characterized by
λx = 3 and λy = 5. The top curves correspond to εdd = 1 while the
bottom ones are for εdd = 3.5.

A further important quantity of the TOF analysis of dipolar
Fermi gases is the asymptotic values of the aspect ratios. After
the expansion, the gas becomes more and more dilute and
the interaction becomes less and less important, even in the
long-range cases. Nevertheless, studying the asymptotics in
time of the aspect ratios may still be useful because they are
approached very fast. This is particularly relevant for strong
pancake-shaped traps, where this happens just a few (ω−1)
seconds after release of the trap, as shown in Fig. 11. Although
we are aware of the inaccuracy of the hydrodynamic approach
for small dipole moments, we plot the long-time aspect ratios
in Fig. 12 for the whole εdd range. There we can identify
the tendency of the DDI to stretch the gas in the direction
of the applied field in real space, whereas the momentum
distribution remains always asymptotically spherical.

We would like to remark that the results presented here are
in overall disagreement with those obtained by Sogo et al.
in Ref. [36]. Translating their findings into our notation, the
ballistic formalism predicts an inversion of the aspect ratio only
for λ > 1. In addition, the aspect ratio in real space, Rxλ/Rz,
asymptotically approaches the one in momentum space,
Kx/Kz, for every value of λ and εdd. This disagreement stems
from the difference in nature of both approaches: while hydro-
dynamics assumes local equilibrium provided by collisions,
the ballistic approach relies on the assumption of no interaction
during the expansion. While the latter might be true for weak
interactions, the former seems to be more adequate for strongly
interacting gases like the one made out of KRb molecules.
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FIG. 12. (Color online) Asymptotic behavior in time of the aspect
ratios as function of the DDI strength εdd after release from the
trap. The dashed curve corresponds to the aspect ratio in momentum
space Kx/Kz while the light gray (red) and dark gray (blue) curves
correspond to the real-space aspect ratios Ryλy/Rz and Rxλx/Rz,
respectively.

VIII. CONCLUSION

We have studied both equilibrium and dynamical properties
of a normal dipolar Fermi gas in a triaxial harmonic trap. Using
a convenient ansatz for the Wigner phase-space function of a
normal Fermi gas at very low temperatures, we were able to
derive equations of motion which govern the momentum and
particle distributions as functions of time as the trap is shaken
or even turned off. The dynamical theory developed here
allows, as a special case, the study of equilibrium properties
starting from the aspect ratios in real and momentum space
and including the stability diagram. Apart from that, the
hydrodynamic low-lying excitations were investigated and a
level crossing was found in the spectrum, which corresponds
to the spherically symmetric limit of a cylinder-symmetric
trap. In the case of a triaxial trap with an external field along
one of the axes, momentum oscillations were found to be
two-dimensional and in phase, just as for cylinder-symmetric

configurations. In addition, we also considered the expansion
of the gas after release from the trap by solving the equations
of motion in the absence of the harmonic trap. We found
that the characteristic inversion of the aspect ratio over the
course of time after release from the trap is also present for
dipolar fermions and that the fast experimental development
of ultracold heteronuclear KRb molecules makes them quite
promising candidates for observing these effects.

We would like to remark that the theory presented here fills
an important empty space in the study of normal, strong dipolar
Fermi gases. Namely, it is applicable in the hydrodynamic
regime, where collisions provide local equilibrium. Although
the prospects for achieving this regime with heteronuclear
molecules are quite exciting, a further gap remains to be filled:
due to the possibility of continuously tuning the interaction
strength through an applied electric field, a theory capable of
interpolating between the collisionless theory of Ref. [36] and
the present hydrodynamic one might be needed in a certain
range of the parameter space.

A couple of applications of the present hydrodynamic
theory for dipolar Fermi gases could be thought of which
would be useful to provide a deeper understanding of these
systems. Studying the scissors mode, for example, could shed
light on the detection of anisotropic superfluidity. The response
of the system to a rotational field −�L is a further interesting
possibility, which allows the moment of inertia of a dipolar
gas to be investigated relative to different axes.
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