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We apply a many-body Wentzel-Kramers-Brillouin (WKB) approach to determine the leading quantum
corrections to the semiclassical dynamics of the Josephson model, describing interacting bosons able to tunnel
between two localized states. The semiclassical dynamics is known to divide between regular oscillations and
self-trapped oscillations where the sign of the imbalance remains fixed. In both cases, the WKB wave functions
are matched to Airy functions, yielding a modified Bohr-Sommerfeld quantization condition. At the critical
energy dividing normal and self-trapped oscillations, the WKB wave functions should instead be matched to
parabolic cylinder functions, leading to a quantization formula that is not just the Bohr-Sommerfeld formula,
and recovering the known logarithmic quantum break times at this energy. This work thus provides another
illustration of the usefulness of the WKB approach in certain many-body problems.
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I. INTRODUCTION

The collective dynamics of a large number of interacting
quantum systems can often be described semiclassically, as
mean-field approximations of the dynamics of such systems
become more accurate with increasing system size. The great
progress in trapping and manipulating cold atoms and in
producing strong coupling between confined photon modes
and matter degrees of freedom have led to an increasing
variety of systems in which it becomes possible to study
many-body dynamics in isolated systems, and to investigate
the extent to which semiclassical descriptions are applicable.
In many cases, the classical dynamics can show or has
shown interesting collective oscillations; examples include
interconversion between fermionic atoms and molecules [1–3],
dynamical superradiance in coupled light-matter systems
[4,5], optomechanical oscillations [6], and the topic of this
article, Josephson oscillations between atoms trapped in
different wells [7–11].

Josephson oscillations [12] of atoms between two trapped
condensates are well described by the Hamiltonian

H = U (a†a − b†b)2 + J (a†b + b†a). (1)

The semiclassical dynamics of this system have been studied
in the context of the Lipkin-Meshkov-Glick Hamiltonian: By
introducing the quantum operators Sz = (b†b − a†a)/2, Sx =
(a†b + b†a)/2, and Sy = i(a†b − b†a)/2, the Hamiltonian
becomes

H = 4US2
z + 2JSx. (2)

The semiclassical dynamics divide into two regimes: small
regular oscillations between the wells for low energies and
self-trapped oscillations, where the imbalance remains of a
fixed sign for high energies [13]. Specifically, if we replace
the operators by c numbers, the canonical equations of motion
reduce to the single expression

Ṡz
2 = J 2N2 − E2 + (2UE − J 2)(2Sz)

2 − U 2(2Sz)
4. (3)

Here we have used conservation of energy and particle number
N2/4 = |S|2. If J 2N2 − E2 < 0 and 2UE − J 2 > 0 then

the region of allowed Sz divides into two, excluding small
population imbalances (small values of Sz). This means that
for 2NU > J , there are two classes of oscillations; those
with energies E > NJ are self-trapped oscillations [7,8,13]
where the sign of imbalance remains fixed, and those with
E < NJ where the sign of the imbalance varies periodically.
Both regimes have been observed experimentally [9,10]. The
Lipkin-Meshkov-Glick Hamiltonian, Eq. (2), has been studied
in a coherent-state representation semiclassically [14] and with
quantum corrections [15]. It has also been studied for small
numbers of particles where quantum corrections may play a
larger role [16].

Instead of the spin representation, this article maps the
Josephson problem onto a discrete Schrödinger equation. As
this is a one-dimensional problem, it can be approximately
solved by the Wentzel-Kramers-Brillouin (WKB) approach
[17]. Expanding for large system size N , the WKB wave
functions can be found for the allowed and forbidden regions
of Fock space. At the boundaries, these are matched to
exact solutions of the Schrödinger equation, which often
yields Airy functions. In such cases, the spectrum is given
by the usual Bohr-Sommerfeld quantization condition on the
actionA(En) = ∫

pdx = 2π (n + 1/2) at a particular energy
level En. Using this phase-space quantization approach, the
Josephson problem has been studied in [18,19]. One notable
feature of the validity of semiclassics for the Josephson
problem is that the quantum break times—the characteristic
time at which quantum and classical dynamics start to differ—
may grow only logarithmically, rather than algebraically,
with N when near the energy dividing self-trapped and
non-self-trapped oscillations. This has been seen both by
using a cumulant expansion [20,21] and by phase-space
quantization [22]. The existence of an associated logarithmic
divergence in the density of states has been discussed in
[23] for the related model of a single particle moving in
an infinite tight-binding lattice with an overall harmonic
trap.

The aim of this article is to apply the many-body WKB
approach as discussed in Ref. [24] to the Josephson problem
of Eq. (1) and to use this to find the quantum break times
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for critical and noncritical levels. We solve the Schrödinger
equation for large system size N to next-to-leading order. The
WKB wave functions in the allowed and forbidden regions
are then matched to appropriate special functions at the
boundaries. For most energies, the appropriate special function
is the Airy function, which then recovers the Bohr-Sommerfeld
quantization condition derived in [18,19]. However, near the
critical energy separating self-trapped and non-self-trapped
oscillations, the relevant special functions are instead parabolic
cylinder functions, and these lead to a different quantization
condition that goes beyond the Bohr-Sommerfeld formula
of [18,19]. Even away from the critical level, the full
WKB analysis yields information beyond Bohr-Sommerfeld
quantization: The allowed region divides into a regime where
matching to a purely decaying Airy function is appropriate
and one where the decaying solution is also highly oscillatory.
While this behavior modifies the nature of the wave functions,
its effect on the quantization condition is only a jump in
the Maslov index. As such, it leaves the density of states
unaffected, and so it was not crucial to previous work in the
context of Bohr-Sommerfeld quantization.

The approach presented in this article has also been
used in Ref. [24] to study the Tavis-Cummings model [25],
describing, for example, the dynamics of two-level systems
coupled to photons. The many-body WKB approach gives
quantum dynamics for this model that is very similar to
the classical dynamics for most energy levels and initial
conditions. However, there are critical levels for which the
matching of the WKB wave functions becomes more complex
and gives rise to anharmonicity scaling as the logarithm of
system size [26]. In both the Tavis-Cummings model and
the Josephson model, these critical levels show logarithmic
quantum break times, analogous to the ln(h̄) quantum break
times found near unstable classical states in single-particle
quantum problems [27]. A further class of problems in which
this many-body WKB approach may be of use concerns
variations of problems such as the Josephson problem and
the Tavis-Cummings model, in which parameters are varied
as a function of time to give many-body generalizations of
Landau-Zener problems [28–33]. Many treatments of this
problem have been effectively semiclassical, and the WKB
approach may provide a method to determine whether large
quantum corrections can ever arise as a result of transitions
to and from critical levels. An approach along these lines has
been explored in [31].

The remainder of this article is arranged as follows.
Section II maps the many-body Hamiltonian to a form
amenable to solution by the WKB method and then provides
the ingredients necessary to determine this solution. These
ingredients are the WKB wave functions in the classically
allowed and forbidden regions, given in Sec. II A, and the
connection formula holding at the boundaries between these
regions, given in Sec. II B. Section III then combines these
ingredients to give the resulting quantization conditions, which
are specified in three separate ranges of energies, according to
whether one is above, near, or below the critical energy level
(the energy level dividing self-trapped and non-self-trapped
oscillations). From these quantization conditions, Sec. IV then
extracts the scaling of the quantum break time as a function of
system size and summarizes the results.

II. DISCRETE WKB APPROACH TO
JOSEPHSON EQUATION

To use the WKB approach, we need to produce a discrete
Schrödinger equation by writing the state of the system in
terms of the total number of particles N and the imbalance n:

|�〉 =
N∑

n=−N

ψn

a†(N+n)/2b†(N−n)/2

√
[(N + n)/2]![(N − n)/2]!

|�〉, (4)

where n is restricted to the same odd/even parity as N . Acting
on this state with the many-body Hamiltonian and looking
for eigenstates with energy E yields a discrete Schrödinger
equation:

(E − Un2)ψn = J

2
[
√

(N + n)(N − n + 2)ψn−2

+
√

(N + n + 2)(N − n)ψn+2]. (5)

Writing E = εJN, U = Ju/N , and z = n/N , one can
separate the system size dependence from the other parameter
dependence and write

(ε − uz2)ψ(z) = 1

2

√
(1 + z)

(
1 − z + 2

N

)
ψ

(
z − 2

N

)

+ 1

2

√
(1 − z)

(
1 + z + 2

N

)
ψ

(
z + 2

N

)
.

(6)

In these units, self-trapped states exist only if u > 1/2 and
ε > 1.

A. WKB wave function

For a given energy, one may divide the range of −1 < z < 1
into classically allowed and forbidden regions. These are
distinguished by oscillating versus decaying wave functions
and correspond directly to the regions of Sz = Nz in Eq. (3),
which the classical dynamics explores.

1. Allowed region

In the allowed region, the WKB ansatz has the form

ψ(z) = b(z)[C+ei(NW0+W1) + C−e−i(NW0+W1)], (7)

where W0 and W1 are the z-dependent phase terms at leading
and next-to-leading order. By substituting this into Eq. (6) and
identifying real and imaginary terms of the same order in 1/N ,
one finds the definitions

cos[2W ′
0(z)] = ε − uz2

√
1 − z2

, (8)

b(z) = [1 − z2 − (ε − uz2)2]−1/4, (9)

W ′
1(z) = ε − uz2

2(1 − z2)
√

1 − z2 − (ε − uz2)2
. (10)

[Note that the sign written for W ′
1 assumes that the solution

of Eq. (8) is taken such that sin(2W ′
0) � 0.] For this solution

to be valid, it is clearly necessary that |ε − uz2| �
√

1 − z2,
which defines the classically allowed region shown in Fig. 1.
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FIG. 1. (Color online) Boundaries between allowed and for-
bidden regions and between regions which need an extra factor of
(−1)n/2. The solid-shaded region is classically forbidden, and the
hatched region (ε < uz2) requires an extra factor of (−1)n/2 to allow
matching to the connection formula at the boundary. Plotted for
u = 1.2.

Within the classically allowed region, there is also a
division between ε > uz2, for which 0 � 2W ′

0 < π/2, and
ε < uz2, for which π/2 < 2W ′

0 � π . While this distinction
is unimportant within the allowed region, it is necessary later
to distinguish these regions so that the connection formulas
at the boundary of the allowed region can be written in terms
of smooth wave functions. If ε > uz2, then at the boundary
W ′

0 → 0, so the wave function is smooth. For ε < uz2,
W ′

0 → π/2, which indicates that NW0 = iNxπ/2, which is
rapidly varying. This rapid variation can be removed in such
cases by instead defining ψn → ψn(−1)n/2. Since only values
of n with the same parity as N exist, this corresponds to terms
having alternating signs. After this transformation, Eqs. (8)–
(10) are modified by replacing (ε − uz2) → −(ε − uz2). The
regions where this transformation is necessary are indicated in
Fig. 1 by hatching. We use the notation W̃0,W̃1 for the phases
calculated with this additional minus sign. When part of the
allowed region does require this transformation and part does
not (i.e., for 0 < ε < u), it is necessary to consider carefully
the connection between these regions; this is discussed further
in Sec. II B3.

2. Forbidden region

In the forbidden region, the wave function exponentially
decays, so the WKB ansatz becomes

ψ(z) = b(z)[C+e(N�0+�1) + C−e−(N�0+�1)]. (11)

In this case, there is no strict distinction between the terms
to be incorporated in b(z) and �1(z)—both describe the real
part at order 1/N . However, it is convenient for the connection
formulas to keep b(z) as in Eq. (9), after which �0,1 can be
identified by powers of 1/N as

cosh(2�′
0) = ε − uz2

√
1 − z2

, (12)

�′
1 = −(ε − uz2)

2(1 − z2)
√

(ε − uz2)2 − 1 + z2
. (13)
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FIG. 2. (Color online) Wave functions at various characteristic
energies, showing behavior in allowed and forbidden regions.
Background shading is as in Fig. 1. Plotted for u = 1.2.

In this case, the sign of �′
1 assumes �′

0 � 0. In the forbidden
region at small z, one always has ε > uz2 so no alternating
sign factors are needed, but in the forbidden region at large
z, a factor (−1)n/2 may be needed so that cosh(2�′

0) > 0.
The distinction between exponential decay and exponential
decay with alternating signs is clearly visible in the exact wave
functions shown in Fig. 2. In the forbidden region at small z,
one will have |C−| = |C+| (assuming that � is measured from
z = 0), since the wave functions will be either odd or even
functions of z. In the region at large z, only one of C± will be
nonzero, describing exponential decay for z → ∓∞.

3. Critical level

At the critical level ε = 1, there is a bifurcation, and the
WKB wave function in the allowed region must be matched
to a different special function for z � 0. For this purpose, it is
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convenient to write ε = 1 + λ/N , where λ is small compared
to N , and to rewrite the WKB form for the allowed regime
making use of this—because the deviation of the energy from
1 is now considered as being of order 1/N , and its effect is
relegated from W0 to W1,

cos[2W ′
0(z)] = 1 − uz2

√
1 − z2

, (14)

b(z) = [z2(2u − 1 − u2z2)]−1/4, (15)

W ′
1(z) = 1 − λ + (λ − u)z2

2(1 − z2)|z|√2u − 1 − u2z2
. (16)

One can see from Eq. (16) that W1 will be logarithmically
divergent as z → 0. The form of ψ(z) for z � 0 will give
the natural cutoff to this logarithm, which will depend on
the system size N , so exactly at this critical level, the
eigenvalue spacing will depend logarithmically on the system
size, which in turn leads to logarithmic dependence of the
quantum break time on system size.

B. Connection formulas

To connect the WKB ansatz valid in the classically allowed
and classically forbidden regions, one needs the solution valid
near the boundary. If the wave function is smooth near this
point, one may expand Eq. (5) directly in powers of 1/N to
give a differential equation for the wave function. (Note that in
the WKB ansatz, there was no such assumption of smoothness,
since we did not require W ′

0 to be small.) To ensure the wave
function is smooth, a factor (−1)n/2 may be needed according
to whether the boundary is in the hatched or unhatched region
of Fig. 1, as discussed previously. Both these cases can be
considered together, by replacing (ε − uz2) → |ε − uz2| to
take account of the two possible signs. With this change, by
expanding Eq. (6) to order 1/N2, one finds

|ε − uz2|ψ =
(√

1 − z2 + 1

N
√

1 − z2

)
ψ + 2

√
1 − z2

N2

×
[
ψ ′′ − zψ ′

1 − z2
+ (· · ·)ψ

]
+ O(N−3). (17)

When considering the leading-order behavior and next-to-
leading-order behavior (i.e., classical behavior plus leading-
order quantum corrections), the order N−2 term involving
ψ may be neglected, as there are larger terms involving
ψ , whereas the terms involving ψ ′ and ψ ′′ should be kept.
Rewriting the previous equation, one has

0 = ψ ′′− z

1 − z2
ψ ′+

[
N

2(1 − z2)
+N2

2

(
1− |ε − uz2|√

1 − z2

)]
ψ.

(18)

1. Regular boundaries—Airy functions

Away from the critical level ε = 1, the boundary between
the allowed and forbidden region is given by |ε − uz2| =√

1 − z2, which has the outer (inner) solutions

z2
o,i = 1

2u2
(2uε − 1 ±

√
1 − 4uε + 4u2). (19)

Near these boundaries, we want to write Eq. (18) in terms of
distance ζ from the boundary, z = ±zo,i + ζ . Since Eq. (18)
is even under z → −z, it is clear that the equations at z =
zo,i + ζ and z = −zo,i + ζ are related by ζ → −ζ . Therefore,
considering the first of these, we may write Eq. (18) as

0 = ψ ′′ − αo,iψ
′ + [βo,i + fo,i(ζ )]ψ, (20)

with αo,i = zo,i/(1 − z2
o,i), βo,i = N/[2(1 − z2

o,i)], and

fo,i(ζ ) � N2

2

⎛
⎝1 − |ε − uz2

o,i − 2uzo,iζ |√
1 − z2

o,i − 2zo,iζ

⎞
⎠

� N2

2
zo,iζ

[
2u

(
ε − uz2

o,i

) − 1

1 − z2
o,i

]

= ∓N2

2

zo,iζ
√

1 − 4uε + 4u2

1 − z2
o,i

def= γo,iζ. (21)

In the previous equation, we have assumed that ζ is small, so
the sign of ε − uz2 does not change, and the last line has used
the form of z2

o,i in Eq. (19), with the ∓ signs corresponding
to the outer (inner) boundary. With f (ζ ) = γ ζ , the solution
Eq. (20) can be written using Airy functions:

ψ = e−αζ/2[CaAi(−γ 1/3ξ ) + CbBi(−γ 1/3ξ )], (22)

with ξ = ζ + β/γ − α2/4γ . For the boundaries at z0, we
match to a decaying solution, so Cb = 0. Since γo is negative,
the solutions are oscillatory for ζ < 0 and decaying for ζ > 0
as expected. For the inner boundaries, both exponentially
decaying and growing parts are required. Since γi is positive,
the solutions are oscillatory for ζ > 0 and growing/decaying
for ζ < 0.

2. Critical boundary—parabolic cylinder functions

Near ε = 1, the inner boundary becomes an extremum
at z = 0, and the form of Eq. (18) is different from that in
Sec. II B1. To study energies near this level, we write ε =
1 + λ/N as in Sec. II A3. Since ε = 1,z = 0 never requires a
factor (−1)n/2 in the wave function, Eq. (18) can always be
written near this point as

0 = ψ ′′ − zψ ′ +
[
N

2
(1 − λ) + N2

4
(2u − 1)z2

]
ψ. (23)

To solve this equation, it is convenient to define

µ = √
2u − 1, χ = 1 − λ

2µ
. (24)

After removing a Gaussian factor ψ = ez2/4f , this can
be recognized as Weber’s equation [34]; in terms of ξ =
ze−iπ/4√Nµ one has 0 = f ′′ + (iχ − ξ 2/4)f with solutions
in terms of parabolic cylinder functions. The general solution
can be written as

ψ = ez2/4[αDiχ−1/2(e−iπ/4
√

Nµz)

+βDiχ−1/2(e3iπ/4
√

Nµz)]. (25)

The Gaussian prefactor only contributes at order 1/N , so in
matching the asymptotics of NW0,N�0 to ψ , this prefactor
can be dropped. It is clear that for z → −z, this expression
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changes as α ↔ β. The asymptotic expansion of this expres-
sion for large x given in Ref. [34] can be written

ψ =
[
α exp

(
πχ

4
+ i

π

8

)
+ β exp

(
−3πχ

4
− i

3π

8

)]

× exp

(
i
Nµz2

4
+

[
iχ − 1

2

]
ln[z

√
Nµ]

)

+ β

√
2π

[1/2 − iχ ]
exp

(
− πχ

4
+ i

π

8

)

× exp

(
−i

Nµz2

4
+

[
−iχ − 1

2

]
ln[z

√
Nµ]

)
. (26)

As noted in Sec. II A3, the phase has a logarithmic divergence
at small z, and the form of the wave function given here
provides the cutoff for the logarithm, 1/

√
Nµ, which depends

on system size.

3. Connection within allowed region

In addition to connection formulas at the boundaries of
allowed and forbidden, for energies in the range 1 < ε < u, it
is necessary to connect solutions with and without the extra
factor of (−1)n/2 in the middle of the allowed region.

In such cases, we may write

ψ =
{

[C+eiW + C−e−iW ] |z| < zs

(−1)n/2[C̃+eiW̃ + C̃−e−iW̃ ] |z| > zs

, (27)

where zs = √
ε/u is the point at which the sign of ε − uz2

changes. The question is how to relate C± to C̃± at the
boundary. To fully define the the phases W,W̃ , one must
specify the limits of integration. It is convenient to choose

W (z) =
∫ z

zi

dz[NW ′
0 + W ′

1], W̃ (z) =
∫ z

zo

dz[NW̃ ′
0 + W̃ ′

1]

(28)

and to then define the phases at zs as �Win = W (zs), �W̃out =
−W̃ (zs). To determine the connection, we focus on the phase
due to W ′

0; by expanding for z = zs + ζ , one has

cos(2W ′
0) = −2u

√
εζ√

u − ε
= − cos(2W̃ ′

0), (29)

and by integrating one has

W (zs + ζ ) = +�Win + N

(
π

4
ζ +

√
εu√

1 − ε/u

ζ 2

2

)
, (30)

W̃ (zs + ζ ) = −�W̃out + N

(
π

4
ζ −

√
εu√

1 − ε/u

ζ 2

2

)
. (31)

To match the ζ dependence near ζ = 0, one can write the
prefactor (−1)n/2 = exp[iπN (zs + ζ )/2], which gives the
matching conditions

C− = C̃+ exp

(
i�Win − i�W̃out − i

πN

2
zs

)
, (32)

and the complex conjugate for the other pair.
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FIG. 3. (Color online) Accuracy of WKB-derived quantization
condition. Each line corresponds to difference of appropriately
defined phase difference and nearest integer multiple of π , using
quantization conditions appropriate to energies below, near, and at
the critical level. Plotted for u = 1.2.

III. BOUNDARY MATCHING AND
QUANTIZATION CONDITIONS

By connecting the wave functions in the allowed and forbid-
den regions to the Airy or parabolic cylinder functions at the
boundaries, one can derive conditions relating the coefficients
C± in these various regions. In order to simultaneously satisfy
all the equations, it is necessary to have certain conditions
on the WKB phases; this provides quantization conditions on
the allowed energies. This section derives these quantization
conditions in the three cases: ε < 1, ε > 1, and ε = 1 + λ/N .
In all cases, the quantization condition can be reduced to a
form f (ε) = mπ , where m is an integer. Figure 3 illustrates
the accuracy of these WKB quantization methods by plotting
minm[f (εn) − mπ ], where εn is an exact eigenvalue—that is,
determining the extent to which the exact eigenvalues obey the
WKB quantization condition.

A. Below critical level

We consider separately the cases ε < 0 and 0 < ε < 1.
For ε < 0, the quantization condition is simple as the factor
(−1)n/2 is needed throughout the allowed region. Let us define
the limits of integration for W (z) such that

W̃ (z) =
∫ z

0
dz(NW̃ ′

0 + W̃ ′
1), �W̃ = W̃ (zo). (33)

Then, by expanding the equation for W̃ ′
0 [i.e., Eq. (14) with an

extra minus sign] near z = z0 + ζ and comparing the result to
the last line of Eq. (21), one can show that

1 − 2(W̃ ′
0)2 = 1 −

[
2u

(
ε − uz2

o

) − 1

1 − z2
o

]
zoζ = 1 − 2γo

N2
ζ.

(34)
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Remembering that γo < 0, integrating the expression for W̃ ′
0

gives

W̃ (zo + ζ ) = �W̃ − 2
3 |γo|1/2|ζ |3/2, (ζ < 0). (35)

In order to match ψ = (−1)n/2[C̃+ exp(iW̃ ) + C̃− exp(−iW̃ )]
to the expansion of the Airy function [34] appearing in Eq. (22),

ψ ∝ Ai[|γo|1/3(ζ + · · ·)] � sin

(
π

4
+ 2

3
|γo|1/2|ζ |3/2

)
(36)

gives the condition (C̃+/C̃−) exp(2i�W̃ ) = i. Repeating this
procedure at z = −zo + ζ , one has instead

W̃ (−zo + ζ ) = −�W̃ + 2

3
|γo|1/2|ζ |3/2, (ζ > 0), (37)

and similar matching gives (C̃+/C̃−) exp(−2i�W̃ ) = −i. By
combining these, the quantization condition is

mπ = 2�W̃ − π

2
, (38)

which is just Bohr-Sommerfeld quantization, as expected for
this simplest case.

In the range 0 < ε < 1, there are both regions with and
without factors (−1)n/2; however, since both boundaries have
this additional factor, it is possible to get away with Eq. (38),
using the integral in Eq. (33), even when cos(2W̃ ′

0) < 0. To
show that this is valid, we discuss the result of taking the
connection at z = zs into account explicitly. Using the results
of Sec. II B3 means that in the connection formulas at the outer
boundary, one should replace

C̃+ei�W → C−ei(�W̃out−�Win+πNzs/2), (39)

and for C̃− the condition is similar, but complex conjugate.
Here, the expression Win in Eq. (39) should be understood
as taking zi → 0 in the expressions following Eq. (28), since
there is no inner boundary for ε < 1. With this replacement,
the quantization condition becomes

mπ = 2

(
�W̃out − �Win + πN

2
zs

)
− π

2
. (40)

To relate the integrals �W̃out, �Win to the �W̃ of Eq. (33),
we should note two features. First, there is a term N (π/2)zs in
the difference of definitions due to the inverse cosine, which
is compensated by the last term in brackets in Eq. (40). Other
than this, one may see that the various sign factors in front
of �Win, in the relative definition of �Win versus �W̃out, and
in the order of limits of integration in Eq. (28) are such that
the remaining parts of the integrals all match so that �Win −
πNzs/2 − �W̃out = �W̃ .

B. Above critical level

Above the critical level, there can either be three or five
separate regions to consider: a forbidden region in the center
and either single allowed regions to the left and right if ε > u

or pairs of allowed regions if ε < u. We label these regions,
from left to right, as L̃, L, F, R, R̃, with the L̃, R̃ regions
having zs < |z| < zo when ε < u, and vanishing otherwise.
These labels are used both for the coefficients L̃±, R̃± and for
the phases W̃L̃, WL, �F , WR, W̃R̃ . Focusing on the right-hand
side (z > 0), it is convenient to define WR , W̃R̃ with the same

limits as W, W̃ in Eq. (28) and to define �F (z) as the integral
from 0 to z.

Consider first the case ε < u. With these definitions, the
outer boundary condition simply becomes R̃+/R̃− = i, as the
phase in this region is defined so it vanishes at zo. Using
Eq. (32), this translates to a condition

R+
R−

exp

(
i2

[
�Win − �W̃out − πN

2
zs + π

2

])
= i, (41)

where the π/2 term on the left-hand side is associated with an
overall minus sign from i → 1/i on the right-hand side.

In the case ε > u, we need only W (z), which we have
already defined as the integral from zi to z. In this case, the
phase-matching condition at the outer boundary implies

R+
R−

exp(i2�W ) = i, �W =
∫ zo

zi

dz(NW ′
0 + W ′

1). (42)

Both Eqs. (41) and Eq. (42) can be combined by the statement
(R+/R−) exp(2i�Weff) = i, with

�Weff =
{
�Win − �W̃out − πN

2 zs + π
2 ε < u

�W ε > u
. (43)

The equivalent analysis at the leftmost boundary gives
(L+/L−) exp(−2i�Weff) = −i.

The boundary at zi always involves R± rather than R̃±,
and our choice of limits means that the phase is always
measured from this boundary. Following the same logic as
led to Eq. (37), and noting that γi is positive, one has
W (zi + ζ ) = (2/3)|γi |1/2|ζ |3/2 for ζ > 0. At this boundary,
one must match both Airy functions, which gives the matching
condition

(CR,b − iCR,a)e+iπ/4

(CR,b + iCR,a)e−iπ/4
= R+

R−
, (44)

where CR,a, CR,b are the coefficients of Airy functions, as in
Eq. (22) at the right-hand (+zi) boundary. These should also
be matched to the coefficients of the growing/decaying terms
in the forbidden region. Defining ��F = 2�F (zi) =
�F (zi) − �F (−zi), one may expand �F (zi + ζ ) =
(��F /2) − (2/3)|γi |1/2|ζ |3/2 for ζ < 0. Matching this
to Airy functions yields

CR,b

CR,a

= F−e−��F /2

F+e+��F /2
. (45)

Equations (44) and (45) can be combined to eliminate the
coefficients of Airy functions, giving

F−e−��F /2 − iF+e+��F /2

F−e−��F /2 + iF+e+��F /2
= R+

R−
e−iπ/2 = e−2i�Weff . (46)

Analysis at the left-hand boundary is very similar:

F+e−��F /2 − iF−e+��F /2

F+e−��F /2 + iF−e+��F /2
= L−

L+
e−iπ/2 = e−2i�Weff . (47)

Eliminating F± from these equations then yields the quantiza-
tion condition

1 + cos(2�Weff)

1 − cos(2�Weff)
= e−2��F . (48)

Since the quantity ��F grows linearly with N , the quantum
tunneling between allowed regions is hugely suppressed.
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Taking this tunneling into account at leading order yields
cos(2�Weff) � −1 + 2 exp(−2��F ), so that

�Weff(ε) � mπ + π

2
± e−��F . (49)

Differentiating this gives an expression for the
tunneling-induced energy splitting (the inverse of
quantum tunneling time for self-trapped states): δεsplitting =
2e−��F |d�Weff/dε|−1.

C. Near critical level

Near the critical level, we replace the matching to Airy
functions and the forbidden region by matching to Eq. (26).
As in the previous section, we either have four allowed regions
or two depending on whether ε = 1 is less than or greater than
u. Just as in that case, we may write the boundary conditions
at the outer boundaries as

R+
R−

e+2i�Weff = +i,
L+
L−

e−2i�Weff = −i, (50)

with �Weff given in Eq. (49) and zi → 0 so the phase factors
vanish at the inner boundary. However, because the expression
for W1 given in Eq. (16) diverges logarithmically at the critical
level, it is necessary to slightly modify the definition of �Weff ,
so the lower limit of the integral for W ′

1 is taken to be zi = zcutoff

rather than zero to avoid the logarithmic divergence.
Expanding Eqs. (14) and (16) near z = 0 gives

1 − 2(W ′
0)2 = 1 − 1

2
(2u − 1)z2, W ′

1 = 1 − λ

2|z|√2u − 1
.

(51)

Using the definitions of χ,µ given in Eq. (24), these expres-
sions can be integrated to give

WR(L)(z) = ±Nµz2

4
± χ ln

( |z|
zcutoff

)
, (52)

for z > 0 (z < 0), respectively. If we choose zcutoff = 1/
√

Nµ,
the coefficients R±, L± can then be matched to Eq. (26) for
z > 0 (z < 0). This gives

R+ = α exp

(
χπ

4
+ i

π

8

)
+ β exp

(
−3χπ

4
− i

3π

8

)
, (53)

R− = β
√

2π


(

1
2 − iχ

) exp

(
− χπ

4
+ i

π

8

)
, (54)

L− = β exp

(
χπ

4
+ i

π

8

)
+ α exp

(
−3χπ

4
− i

3π

8

)
, (55)

L+ = α
√

2π


(

1
2 − iχ

) exp

(
− χπ

4
+ i

π

8

)
. (56)

By making use of the Weierstrass identity [34] to write
( 1

2 − iχ )( 1
2 + iχ ) = π/ cosh(χπ ), these expressions can

be combined to give the quantization condition

mπ = Arg

[ √
2π

(1/2 + iχ )
e2i�Weff + e−χπ/2

]
− π

2
. (57)

IV. CONCLUSIONS AND SCALING OF QUANTUM
BREAK TIME

We have shown how semiclassical quantization formulas
emerge from a many-body WKB approach for the Josephson
problem. We now use this to extract the quantum break time;
this time is given by the inverse of the anharmonicity of
the energy level spacing. At low and high energies, Bohr-
Sommerfeld quantization applies with small 1/N quantum
corrections. In between these two regimes, a critical level with
large quantum corrections is seen, where larger deviations
from semiclassics occur, leading to quantum break times
that scale with the logarithm of the system size. From
the quantization formulas in the various regimes, we can
straightforwardly extract the anharmonicity of the spectrum.
For perfectly regular spacing of energy levels, the dynamics
would be periodic, matching the semiclassical dynamics.
For the critical level, the energy appears in the quantization
condition only through λ = N (ε − 1) as a prefactor appearing
in W1 and through χ = (1 − λ)/2µ in the γ function in
Eq. (57). The former of these contributions can be written as

d

dλ
�Weff = −

∫ zo=µ/u

zcutoff=1/
√

N µ

dz

2z
√

µ2 − u2z2

� − 1

2µ
ln

(
2µ

√
Nµ

u

)
. (58)

This logarithmic dependence means that the level spacing
near this critical level is δε = δλ/N � π/[Nd�Weff/dλ] ∼
1/[N ln(N )], by making use of Eq. (58). If this logarithm
were large, then the solutions of Eq. (57) would require λ to
be regularly spaced. However, because of the λ dependence
in (1/2 + iχ ), there will be some anharmonicity. Since the
only parameter controlling the anharmonicity is d�Weff/dλ,
the anharmonicity of level spacing δδε = εn+1 + εn−1 − 2εn

is given by δδε = δδλ/N ∼ 1/[N ln(N )2]. In contrast, away
from the critical level, level spacing is 1/N and anharmonicity
1/N2. Thus, the quantum break time scales logarithmically
with system size near the critical level and linearly elsewhere.
This is exactly the conclusion found by considering next-to-
leading-order corrections to the quantum dynamics via a cumu-
lant expansion in Refs. [20,21] and consistent with Ref. [22].

In conclusion, we have shown how the WKB approach for
many-body systems, discussed in [24,26], can be applied to the
dynamics of the Josephson problem, illustrating that it can be
applied to another paradigmatic problem of collective quantum
dynamics. This many-body WKB approach is particularly
useful in cases where critical energy levels exist. In such
cases, the semiclassical description may be inadequate even
for mesoscopic systems with up to ∼106 particles, yet such
numbers of particles make numerical approaches to the full
quantum dynamics very expensive. As such, it provides an
ideal tool to identify cases where quantum dynamical effects
survive in mesocopic systems.
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[9] M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and

M. K. Oberthaler, Phys. Rev. Lett. 95, 010402 (2005).
[10] S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, Nature 449,

579 (2007).
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