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We investigate two-component ultracold fermionic atoms with attractive interactions trapped in a two-
dimensional optical lattice at zero temperature. By introducing a superfluid trial state with spatially modulated
order parameters, we perform the variational Monte Carlo simulations to treat the correlation effects beyond
mean-field treatments. It is shown that there appears a strong tendency to the formation of a density wave state in
the regions with specific values of local atom density. We then analyze two kinds of perturbations to the superfluid
state and show that a coexisting state of superfluid and density wave ordering, a sort of supersolid state, can be
stabilized. It is discussed how the trap potential and the resulting spatial modulation of the superfluid state affect
the momentum distributions and the noise correlation functions.
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I. INTRODUCTION

Optical lattice systems, where ultracold atoms are loaded
in a periodic potential, have attracted much interest since
the successful observation of the superfluid-Mott insulator
transition in bosonic atoms [1–3]. One of the great advantages
for these systems is high controllability of quantum parameters
such as the interactions between atoms, the lattice geometry,
etc., which can be easily manipulated by tuning a magnetic
field and the intensity of the lasers. In addition, the optical
lattices provide superclean systems in the sense that they do not
suffer from lattice defects and impurities, in contrast to solid-
state materials, hence providing an ideal stage for studying
intriguing quantum phases of condensed matter [4–7].

Superfluidity of fermionic atoms is one of the most fasci-
nating phenomena in this context. Recent experiments make it
possible to realize the superfluid state in an optical lattice [8],
which should certainly stimulate further systematic studies
of unconventional superfluidity in the near future. Extensive
theoretical investigations on the superfluid state of fermions in
an optical lattice have treated a wide variety of remarkable
phenomena, such as the BEC-BCS crossover [9–11], the
superfluid-Mott insulator transition [12–16], the Fulde-Ferrell-
Larkin-Ovchinnikov-type superfluid state [17–23], and the
high-temperature superfluid state in (quasi-) two-dimensional
(2D) lattices [24,25].

In such optical lattice systems, it is important to consider the
effect of a trap potential, which is inherent in the experiments
in cold atoms. In contrast to bulk systems, the density profile
thus reflects the shape of the confining potential, and therefore
the superfluid state with a nonuniform density profile should be
realized. Though the situation makes the theoretical treatments
more complicated, it provides an opportunity to explore some
novel quantum phenomena. Among others, recent theoretical
studies [26–30] have suggested that a supersolid state, where
a density wave state coexists with a superfluid state, may
be stabilized in fermionic systems due to the trap potential.
Since most of those numerical investigations of the supersolid
state are based on local approximations, it is desirable to
explore to what extent intersite correlations are relevant in
realizing the supersolid state in optical lattice systems.

In this article, we study the ground-state properties of
fermions with attractive interactions in a 2D optical lattice with
particular emphasis on the correlation effects on superfluidity.
As mentioned earlier, it is important to take into account the
effects of inhomogeneity due to the trap potential. To this end,
we first examine a mean-field state with spatially modulated
superfluid ordering by solving the Bogoliubov-de Gennes
(BdG) equations self-consistently. This state is used to prepare
a proper trial state which can incorporate the atom correlations
in a trapped system. We then perform the variational Monte
Carlo (VMC) calculation [31,32] to treat on-site and intersite
atom correlations systematically. We also investigate how
sensitive the system is to small perturbations which may
stabilize the density wave state, from which we argue a
possibility of the supersolid state. Finally we investigate two
observable quantities which should reflect the nature of the
spatially modulated superfluid state in the trap potential.

This article is organized as follows. We introduce the model
Hamiltonian in Sec. II and perform the VMC calculation to
take into account the correlation effects on superfluidity in
Sec. III. The roles of on-site as well as intersite correlations
are elucidated. We then analyze the instability toward a density
wave state and argue a possibility of the supersolid state in
Sec. IV. In Sec. V, as experimentally accessible quantities, we
show the momentum distributions and the noise correlation
functions for the superfluid state. A brief summary is given in
the last section.

II. MODEL

We study the ground-state properties of ultracold fermionic
atoms with attractive interactions in a 2D optical lattice.
Here we consider a system of the mixture of two-component
fermions with equivalent hopping matrices. Experimentally,
the situation has been realized by using the fermionic isotopes
of ytterbium (171Yb and 173Yb) [33] or two accessible hy-
perfine levels of 40K with |F,mF 〉 = |9/2,−9/2〉,|9/2,−7/2〉
[34], where F and mF are the total atomic angular momentum
and its magnetic quantum number, respectively. We specify
the two different internal degrees of freedom by pseudospin
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indices σ =↑, ↓ and consider the following Hubbard model
in order to describe the ultracold atoms in an optical lattice
[35,36],

H = −t
∑
〈i,j〉σ

(c†iσ cjσ + H.c.) +
∑
iσ

(Vi − µ)niσ

−U
∑

i

ni↑ni↓, (1)

where c
†
iσ (ciσ ) is the creation (annihilation) operator of a

fermion with spin σ at site i and ni = ∑
i niσ = ∑

iσ c
†
iσ ciσ

is the number operator. t and U (>0) are the hopping
matrix between the nearest-neighbor sites and the on-site
attractive interaction, which are experimentally controllable
by tuning the intensity of the laser and by making use of the
Feshbach resonance techniques [37]. Vi is a harmonic trap
potential imposed on the lattice, which causes inhomogeneous
properties of the system.

In this study, we consider a 2D square lattice system with
L × L sites and fix the total number of atoms as N↑ = N↓,
where Nσ = ∑

i niσ . The harmonic trap potential at site i =
(x,y) (0 � x,y � L − 1) is given as

Vi=(x,y) = 2V0

L(L − 2)

⎧⎨
⎩

∑
ξ=x,y

(
ξ − L − 1

2

)2

− 1

2

⎫⎬
⎭ , (2)

where Vi = 0 at four sites around the center of the system,
Vi = V0 at the corners and we use t as the energy unit. We
properly set the system size L and the chemical potential µ so
as to conserve the number of atoms under the condition that
the atom density is almost zero at the edges of the system.
Therefore, in our calculations, we do not find any unphysical
properties which originate from the boundary condition. In
the following, we investigate the superfluid properties of
fermionic atoms at zero temperature. To take into account
the correlation effects in the trap potential, we make use of the
BdG equations and introduce a proper trial state for the VMC
simulations.

III. PROPERTIES OF SUPERFLUID STATE

For fermionic atoms with attractive interactions, the
isotropic Cooper pairs should be formed between atoms with
opposite spins. Therefore, the ground state expected in our
system is a spatially modulated superfluid state with an s-wave-
like symmetry. A number of theoretical studies have already
been done for the systems with considerable success. However,
most of them are based on the mean-field approximations
or the local density approximations (LDAs), and thus the
correlation effects in trapped systems have not been considered
sufficiently. Therefore, in this section, we perform the VMC
calculation to take into account the correlations effects. In
particular, this method is not based on the LDA, so that the
spatially extended correlation effects in trapped systems can
be easily treated. Here we introduce the following trial state to
investigate the spatially modulated superfluid state:

|�〉 = exp

[ ∑
i

αini↑ni↓ + α′ ∑
i

Q̂i

]
|�{�i}〉, (3)

where, |�{�i}〉 is a mean-field state with site-dependent pair
potentials �i , which is explicitly given in what follows. Here
{αi} are a set of the site-dependent Gutzwiller variational
parameters [32], which take into account the on-site correlation
effects. α′ is the so-called spinon-spinon binding parameter
[38] which can incorporate intersite correlations, where Q̂i =∑

σ ŝiσ

∏
τ (1 − ŝi+τ σ̄ ), ŝiσ = niσ (1 − niσ̄ ), and τ runs over

all the nearest neighbors. These kinds of correlations may
be particularly important if several different ordered states
compete with each other. In the present case, when the atom
density satisfies a specific condition, the superfluid state and
the density wave state can be almost degenerate, so that the
correlation effects should play a vital role to determine the
ground state properties, as will be shown below.

Before proceeding to the discussion on correlation ef-
fects, we first examine a spatially modulated superfluid
state at the mean-field level. In order to deal with the
site-dependent densities and the on-site pairing correlations,
we consider the following BdG equations by introducing
two kinds of mean-fields 〈niσ 〉 = 〈c†iσ ciσ 〉 and �i = 〈ci↓ci↑〉.
The interaction term in the Hamiltonian (1) is then de-
coupled as Uni↑ni↓ → U (〈ni↓〉ni↑ + 〈ni↑〉ni↓ + �ic

†
i↑c

†
i↓ +

�∗
i ci↓ci↑ − |�i |2 + const). In terms of the Bogoliubov trans-

formation ciσ = ∑
η{uη

iσ aησ − σv
η

iσ a
†
ησ̄ }, we obtain the BdG

equations

∑
j

(
Hijσ Fij

F ∗
ji −Hjiσ̄

) (
u

η

jσ

v
η

jσ

)
= Eησ

(
u

η

iσ

v
η

iσ

)
, (4)

with

Hijσ = −tδ〈ij〉 + (Vi − µ + U 〈niσ̄ 〉)δij , (5)

Fij = U�iδij , (6)

where a†
ησ (aησ ) is the creation (annihilation) operator of a

Bogoliubov quasiparticle and δ〈ij〉 is the Kronecker δ for the
nearest-neighbor sites between i and j . The corresponding
self-consistent equations read

〈niσ 〉 =
∑

η

∣∣vη

iσ

∣∣2
, (7)

�i = −
∑

η

u
η

i v
η∗
i . (8)

Then by means of Pong’s method [39], we end up with the
following state:

|�〉 =
∏
n

(Un + Vnγ
†
n↑γ

†
n↓)|0〉 (9)

∼
[∑

n

Vn

Un

γ
†
n↑γ

†
n↓

]N/2

|0〉

=
⎡
⎣∑

ij

(∑
n

Vn

Un

φn
i φn

j

)
c
†
i↑c

†
j↓

⎤
⎦

N/2

|0〉, (10)

where |0〉 is the vacuum state and Un = χn/
√|λn|, Vn =√|λn|. γ

†
nσ = ∑

i φ
n
i c

†
iσ is a creation operator of the fermion

which contributes to a Cooper pair [39] and is expressed
by the linear combination of c

†
iσ . χn, λn are the eigenvalues
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of the normal density matrix ρij = 〈c†iσ cjσ 〉 = ∑
n vn

i v
n∗
j and

the anomalous density matrix νij = 〈ci↓cj↑〉 = −∑
n un

i v
n∗
j ,

respectively. {φn
i }(∈ R) is a set of their simultaneous eigen-

vectors and called a natural orbit. As the number of atoms
in the superfluid state |�〉 in Eq. (9) is inherently uncertain,
we here restrict our analyses in a subspace with fixed atom
numbers N↑ = N↓ = N/2.

Let us now study the ground-state properties by the VMC
simulations [40] to analyze the original Hubbard Hamiltonian
Eq. (1). Here we make use of the trial state Eq. (3) with the
variational parameters ({αi}, α′, {�i}). In order to deduce
a good trial state with a proper distribution of �i , we take
into account a mean-field solution of the BdG Eqs. (4) which
is derived from the original Hamiltonian. We wish to note
that the interaction U in the BdG equations is not necessarily
identical to the bare interaction in the original Hamiltonian,
because correlation effects cannot be incorporated sufficiently
in the BdG mean-field method. Therefore, we make use of {�i}
obtained by the BdG equations with various U in a trial state for
given U in the original Hamiltonian [32]. We also note that the
VMC method cannot be used for a large (experimental-size)
system, in comparison with other variational methods, for
example, a recent Gutzwiller variational method for a bosonic
atoms in an optical lattice with 560 000 sites [41]. In that
study, the trial wave function is described by the site-dependent
Gutzwiller factors and the wave function which is written
by the product of the local states. On the other hand, in
our method, we have introduced two types of Gutzwiller
factors, where not only on-site correlations but also intersite
correlations are taken into account. Furthermore, we have
introduced the wave function obtained from the BdG equations
with an additional variational parameter U , which is not the
simple product of local states. These enable us to describe the
spatially modulated superfluid state more precisely, although
it is much more expensive to optimize the trial ground state.
Namely, it is known that this treatment with two kinds of
Gutzwiller factors and a variational parameter for the wave
function is important in discussing ground-state properties
of the 2D repulsive Fermionic Hubbard model [42]. In the
following calculations, we set L = 20, V0 = 12, and N↑ =
N↓ = 80.

We first show the density profiles 〈ni〉 and the pair potentials
�i in Figs. 1(a) and 1(b), respectively. When U < Uc (∼2.0),
we find that the pair potentials �i are almost zero for all the
sites, implying that the ground state is not a superfluid, but a
normal metallic state. This is in contrast to the known results
for uniform bulk systems, where the superfluid state is always
realized for any finite attractive interaction. For U > Uc, on the
other hand, the pair potentials become finite and the superfluid
state is realized. Here we can see that �i are large in the
regions with intermediate atom densities; that is, 〈ni〉 ∼ 1.0.
For sufficiently large U , a portion of atoms gather around
the center of the system, forming a band insulating region
with 〈ni〉 ∼ 2.0 and �i ∼ 0. We note here that the Gutzwiller
correlation factors {αi} play a crucial role in reducing the
effective strength of attractive interaction. Actually, we find
that the mean-field treatment overestimates the pair potentials
substantially; for example, for U = 4.0 in Fig. 1(b), we end up
with the profile of �i similar to that for U = 7.0 if we neglect
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FIG. 1. (Color online) (a) Density profiles 〈ni〉 and (b) pair
potentials �i along the y = L/2 line of the system for U = 2.0
(squares), 4.0 (circles), and 7.0 (diamonds). All the data are
obtained by the VMC method with sufficiently large samples (∼106).
Statistical errors are less than the size of the symbol for each point.

{αi}. Therefore, we can say that the Gutzwiller correlations,
which are usually neglected in the mean-field treatments, are
indispensable in discussing the stability of the superfluid state
quantitatively.

Next we investigate the intersite density correlation
functions to discuss the superfluid properties more pre-
cisely. Shown in Fig. 2(a) is the difference of the den-
sity correlations between the nearest-neighbor and the
next-nearest-neighbor sites, which is defined by �Di ≡
1
4 {∑τ {〈nini+τ 〉 − ∑

τ ′ 〈nini+τ ′ 〉}, where τ (τ ′) runs over all the
nearest (next-nearest) neighbors. In a high-density region,
this quantity is positive, indicating that the short-range
nearest-neighbor density correlations are developed due to the
localization of the atoms (band insulating region). It should be
noticed here that this quantity becomes negative around i = 4
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FIG. 2. (Color online) Difference of the density correlations �Di

(see text) along the y = L/2 line of the system for U = 2.0 (squares),
4.0 (circles), 5.0 (triangles), and 7.0 (diamonds).
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and 15 sites, implying that the density correlations between
the next-nearest-neighbor sites are larger than those between
the nearest-neighbor sites. This unusual behavior suggests
that the spatially extended correlations with an alternating
modulation of density wave with two-site periodicity are
enhanced considerably. These results are consistent with
those for the homogeneous systems, where the superfluid
and the density wave state are degenerate at half-filled
band (〈ni〉 = 1.0) [43,44]. We can see such a tendency to
density wave formation by considering only the Gutzwiller
correlations for a trial state in our analysis. As mentioned
earlier, the Gutzwiller correlations suppress the superfluidity,
and therefore the density wave correlations effectively become
enhanced. We also see that the amplitude of �Di is increased
for large U in the presence of the intersite spinon-spinon
correlations, which suggests that the intersite correlations
also support the strong density wave correlations. Here we
mention the difference with different dimensionality for the
formation of the density wave state. It is well known that
in 1D, the Peierls instability has a tendency to induce the
density wave state for any particle density. In the present
2D square lattice, however, the density wave can be realized
only when the commensurability condition is satisfied for
homogeneous systems. In our inhomogeneous case with a trap
potential, the density wave could appear in the region where
the commensurability condition is approximately satisfied, but
it is still subtle whether such a density wave state is stabilized
in the presence of superfluidity. This is a nontrivial issue we
address in this article.

Finally, we briefly comment on scaling behavior of the
region where the density wave correlations are enhanced.
As discussed earlier, it is difficult to perform directly finite
size scalings due to technical problems in our VMC method.
It has, meanwhile, been clarified by means of the real-
space dynamical mean-field theory that the profiles of the
pair potential and the particle density are well scaled [29].
Therefore, we believe that the region with the enhanced
correlations we discuss here should appear even for larger
system sizes.

Summarizing the preceding results, we can say that the
superfluid state around the regions with 〈ni〉 ∼ 1.0 has a strong
tendency to induce a density wave state with checkerboard
pattern, which may be enhanced by the correlation effects
between atoms. In our VMC analysis, however, we have not
found a real instability to such a density wave order in the
density profiles and the density structure factor (not shown).
Anyway, since such a tendency to form the coexisting state
of superfluid and checkerboard density wave, that is, a sort of
supersolid state, is enhanced, the system may be immediately
driven to the coexisting state once relevant perturbations which
stabilize a density wave state are introduced. In the next
section, we address this issue.

IV. INSTABILITY TOWARD DENSITY WAVE STATE

In this section, we introduce two kinds of perturbations
which may induce a checkerboard-type density wave state
and investigate the response by mean-field analyses. First, we
consider a staggered potential superposed on the harmonic trap
potential, Vi → Vi + (−1)i�V , which can be experimentally
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FIG. 3. (Color online) Density difference between the result for
�V = 0 and 0.02 along the y = L/2 line of the system for U = 0.0
(squares), 2.0 (circles), 4.0 (triangles), and 7.0 (diamonds).

controlled by superlattice potentials [45]. Here we set �V =
0.02, which is much smaller than the potential difference
between any adjacent sites. By solving the BdG equations (4)
self-consistently, we obtain the density distributions for �V =
0.02. Though the obtained density distributions are smooth
for small �V , we can see a notable difference in the quantity
〈ni〉�V =0.02 − 〈ni〉�V =0, which is shown in Fig. 3. Around
the lattice sites labeled as i = 4 and 15, where 〈ni〉 ∼ 1.0,
it is seen that a very small perturbation �V can give rise
to a change in the density profile, and more remarkably it is
considerably enhanced as U increases. This reflects the fact
that these regions have a tendency toward the formation of the
density wave state.

As shown in the previous section, the intersite correlations
can support the density wave correlations. Here, we address
the effect explicitly by introducing a repulsive interaction
U ′ ∑

〈ij〉 ninj (U ′ > 0) between two atoms sitting on nearest-
neighbor sites, which might be important for the atoms
having dipole-dipole interactions. It is known that the intersite
repulsive interactions favor the density wave state under the
proper condition mentioned earlier. We here discuss how the
density wave states appear in our trapped system. For this
purpose, we decouple the additional term as U ′ ∑

〈ij〉〈ni〉nj ,
and then add the term U ′δij {

∑
k δ〈ik〉〈nk〉} to Hijσ in Eq. (5).

Figure 4(a) shows the density profiles for U ′ = 0.02U . For
small interactions, the density distributions seem to be smooth,
but we can see that the density wave state indeed appears
for U > 5.0, mainly around the sites of i = 4 and 15, where
〈ni〉 ∼ 1.0 is approximately satisfied for U ′ = 0. This result
also reflects the fact that in the region with 〈ni〉 ∼ 1.0 an
instability toward the density wave state is enhanced. We have
performed similar calculations for U ′ = 0.05U . In this case,
it is found that the local densities take the values of 〈ni〉 = 0
or 2 alternately. Thus, even the small repulsive interaction U ′
can stabilize the density wave state. In addition, as seen in
Fig. 4(b), pair potentials �i have finite values in these regions,
which means that the coexisting state of superfluid and density
wave is realized there.

All the preceding results demonstrate that the spatially
modulated superfluid state at �V = U ′ = 0 has strongly
enhanced density fluctuations toward the formation of a
checkerboard density wave state in spatial regions satisfying
〈ni〉 ∼ 1.0. Such a tendency, which is enhanced by correlation
effects between atoms, is so strong that even tiny perturbations
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FIG. 4. (a) Density profiles 〈ni〉 and (b) pair potentials �i along
the y = L/2 line of the system obtained with U ′ = 0.02U .

immediately drive the system to a coexisting state with
superfluid and density wave ordering. This conclusion seems
to be consistent with the claim of Koga et al. [29], although
we have not found a real instability to the supersolid state
at �V = U ′ = 0 within the parameter range studied in this
article. There may be a possibility that such a supersolid state
can be indeed stabilized even at �V = U ′ = 0 if we consider
higher-dimensional systems. This is an interesting problem to
be explored in future work.

V. NOISE CORRELATIONS

In order to compare the present results with experiments, it
is necessary to consider the experimentally accessible quanti-
ties. We therefore discuss in this section how the preceding
characteristic features of the superfluid state are reflected
in the observable quantities. Here we examine the momen-
tum distributions 〈nQσ 〉 and the noise correlation functions
Gσσ ′(Q,Q′) [46–50], which are evaluated by |�〉 as

〈nQ↑〉 = 〈c†Q↑cQ↑〉
∝

∑
ij

eiQ·rij 〈c†i↑cj↑〉

=
∑
ij

eiQ·rij
∑
mn

φm
i φn

j 〈γ †
m↑γn↑〉

=
∑
ij

eiQ·rij
∑

n

φn
i φn

j |Vn|2, (11)

Gσσ ′(Q,Q′) = 〈nQσ nQ′σ ′ 〉 − 〈nQσ 〉〈nQ′σ ′ 〉
= 〈c†Qσ c

†
Q′σ ′cQ′σ ′cQσ 〉

+ δQ,Q′δσ,σ ′ 〈nQσ 〉 − 〈nQσ 〉〈nQ′σ ′ 〉
∝

∑
ij i ′j ′

eiQ·rij +iQ′ ·ri′j ′
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FIG. 5. (Color online) Momentum distributions 〈nQ↑〉 (=〈nQ↓〉)
for the superfluid state along the line of Q = (0,0) → (π,π ) for U =
1.0 (squares), 2.0 (circles), 4.0 (diamonds), and 7.0 (triangles) (U ′ =
0). The depth of the trap potential is V0 = 2 (a), 6 (b), and 10 (c).
Each 〈nQ↑〉 is renormalized by 〈nQ=0〉 for U = 1.0.

×
∑

n1∼n4

φ
n1
i φ

n2
i ′ φ

n3
j ′ φ

n4
j 〈γ †

n1σ
γ
†
n2σ ′γn3σ ′γn4σ 〉

+ δQ,Q′δσ,σ ′ 〈nQσ 〉 − 〈nQσ 〉〈nQ′σ ′ 〉, (12)

where rij ≡ ri − ri . Note that in Eq. (11) we have used the
relation 〈γ †

mσγnσ ′ 〉 = δσσ ′δmn|Vn|2, which is obtained from
Eq. (9). These quantities can be observed by the time-of-flight
(TOF) imaging [47]. The momentum Q and the position x
in the TOF image obtained after ballistic expansion have a
relation Q = mx/h̄t , where m and t are the mass of atoms and
expanding time, respectively. Therefore, the density distribu-
tions in the TOF image are expected to reflect the momentum
distributions in the trap. In the following calculations, we set
L = 14 and N↑ = N↓ = 40.

We show in Fig. 5 the momentum distributions 〈nQ↑〉
(=〈nQ↓〉) for the superfluid state by varying the depth of
the trap potential. As seen in Fig. 5(a), 〈nQ↑〉 exhibits a
characteristic profile similar to the Fermi distribution for a
shallow trap and weak interactions, where the ground state is
metallic for U = 1.0 (〈ni〉 ∼ 1.3 at the center of the system and
�i ∼ 0 for all sites) and the superfluid for U = 2.0 (〈ni〉 ∼ 1.4
at the center, and �i have small finite values). As the trap
becomes deep, on the other hand, we find that the Fermi
distribution is considerably smeared even for small U [(b) and
(c)], reflecting the fact that momentum Q is not a good quantum
number anymore. In addition, the increase in the interaction
U and the coexisting density wave order [Fig. 5d] further
obscures the shape of the momentum distributions. From these
computed results, it seems not easy to clarify the characteristic
properties of spatially modulated superfluidity experimentally
only from the momentum distribution functions.

The noise correlation functions, G↑↓(Q,−Q) between the
atoms with momentum Q, spin ↑ and −Q, ↓, may be more
appropriate to characterize the superfluid state, although the
aforementioned smearing effects due to the trap potential
emerge even for this quantity, as seen in Fig. 6. Note that
the noise correlation functions are directly related to the pair
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FIG. 6. (Color online) (a–c) Noise correlation functions
G↑↓(Q,−Q) along the line of (0,0) → (π,π ) for U = 1.0 (squares),
2.0 (circles), 4.0 (diamonds), and 7.0 (triangles) (U ′ = 0). The
depth of the trap potential is V0 = 2, 6, and 10, respectively.
(d) G↑↓(Q,0) for the superfluid state U = 4.0, U ′ = 0 (diamonds)
and the supersolid state U = 5.5 (U ′ = 0.02U ) (inverted triangles).

correlations 〈c−Q↓cQ↑〉. We find that a peak structure emerges
around the Fermi surface Qx = Qy ∼ 0.4π [see also Fig. 5(a)]
for a shallow trap V0 = 2, which clearly signals the formation
of superfluidity. It is gradually smeared as the trap potential
becomes deep or as the interaction becomes large. For a
sufficiently large interaction (U = 7.0), as seen in Fig. 6(c),
G↑↓(Q,−Q) becomes almost constant for any Q. In this case,
there appears a band insulating region around the center of the
system and the superfluid state of strongly bound on-site pairs
around there. Although we have calculated the momentum
distribution function and the noise correlation function for
various momenta Q, we have not found any drastic change
in 2D contour-plot figures such as the indication of the nodal
lines. This originates from the fact that the superfluid state with
s-wave-like symmetry is realized in our system. Therefore, we
have simply presented the results only along the particular
lines in the momentum space.

As shown earlier, the trap potential gives rise to a smearing
effect of the noise correlation functions, which is formally
analogous to that due to the change in the attractive interaction.
For the weak coupling regime like BCS, it may be possible to
isolate the smearing effect from the interaction effect, while it
may be rather difficult in the strong coupling regime. We think
that the smearing effect due to the trap potential may not be
negligible even in experimentally accessible systems (∼100
sites for each direction), though our analysis here has been
restricted to small systems.

We now pose the same questions for the supersolid state.
We have calculated the noise correlation functions Gσσ ′(Q,0)
in proper conditions for realizing the supersolid state. Note that
Gσσ ′(Q,0) reflects both the superfluid correlation 〈cQ↓cQ′=0↑〉
and the density wave correlation 〈c†Qσ cQ′=0σ ′ 〉. Figure 6(d)
shows G↑↓(Q,0) for both the superfluid state and the supersolid
states. We can find a peak structure around Q ∼ 0 in G↑↓(Q,0)
for both states, which reflects the fact that the atoms with small
momentum Q ∼ 0 can contribute to the superfluid state as

mentioned earlier. However, we have not found any qualitative
differences which characterize the supersolid state, even if a
noticeable density wave order coexists with a superfluid order.
As suggested for trapped bosonic systems in Ref. [48], there
appears just a small peak at Q ∼ (π,π ) for a checkerboard-type
density wave state in addition to a strong peak at Q ∼ 0 in
G(Q,0). The peak is so small that the weak supersolid order is
almost indistinguishable from the superfluid order. This is also
the case for our fermionic system, so that the corresponding
peak structure, which might already be broadened due to the
effect of the trap potential in our case, may not be found in
our numerical accuracy. This suggests that naive investigations
of the noise correlation functions are not sufficient to detect
the density wave (supersolid) state. In order to overcome this
problem and to detect a signature for the density wave state,
alternative methods may be needed. As a possible candidate,
we suggest a following recombination method. First, by
deepening the lattice potential rapidly, only the density wave
order can be kept and the superfluidity is suppressed. Next by
controlling the on-site attractive interactions experimentally,
two fermions occupying the same site can be transformed into
a molecular boson. In this step, each site is occupied by a
fermion or a molecular boson. Then the density wave state
of bosons may be possibly detected as a peak in the noise
correlations.

VI. SUMMARY

We have investigated the 2D Hubbard model with a
harmonic trap potential to discuss the superfluid properties of
ultracold fermions in an optical lattice. By introducing a trial
state with spatially modulated superfluid order parameters,
we have performed the VMC calculation to examine how the
on-site as well as intersite correlations affect the nature of
superfluidity. The analysis has elucidated that the correlation
effects give rise to a tendency to the formation of a density wave
state with checkerboard pattern locally around the region with
〈ni〉 ∼ 1.0, and indicated that the density wave correlations
may be supported by the intersite correlations. Therefore, even
a small perturbation of the intersite repulsion U ′ can stabilize
the density wave state coexisting with the superfluid state.
We have explicitly confirmed this tendency by considering
two kinds of perturbations. As experimentally accessible
quantities, we have further discussed how the momentum
distributions and the noise correlation functions are affected by
the spatial variation of the superfluid state. It has been found in
the noise correlation functions that the atoms with even small
momenta Q ∼ 0, which gradually decrease with increasing
interactions, contribute to the superfluid state, the tendency of
which becomes much more significant for trapped systems.
This quantity may be utilized to analyze the characteristics
of the spatially modulated superfluid. On the other hand, the
coexisting state (supersolid state) may hardly be detected in
the noise correlation patterns. Nevertheless, it may be possibly
observed by transforming the fermionic supersolid state into
the density wave state of molecular bosons.

In this article, we have restricted our numerical calculations
for smaller systems. Although the present analysis suggests
that the effect of the trap potential is important to analyze the
physical quantities in experiments, more elaborate calculations
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for a larger system size close to experimental situations are
desirable, which should be done in a future study.
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