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Effective time-independent description of optical lattices with periodic driving
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For a periodically driven quantum system, an effective time-independent Hamiltonian is derived with an
eigenenergy spectrum, which in the regime of large driving frequencies approximates the quasienergies of the
corresponding Floquet Hamiltonian. The effective Hamiltonian is evaluated for the case of optical lattice models
in the tight-binding regime subjected to strong periodic driving. Three scenarios are considered: a periodically
shifted one-dimensional (1D) lattice, a two-dimensional (2D) square lattice with inversely phased temporal
modulation of the well depths of adjacent lattice sites, and a 2D lattice subjected to an array of microscopic rotors
commensurate with its plaquette structure. In the 1D scenario, the rescaling of the tunneling energy, previously
considered by Eckardt et al. [Phys. Rev. Lett. 95, 260404 (2005)] is reproduced. The 2D lattice with well-depth
modulation turns out as a generalization of the 1D case. In the 2D case with staggered rotation, the expression
previously found in the case of weak driving by Lim et al. [Phys. Rev. Lett. 100, 130402 (2008)] is generalized,
such that its interpretation in terms of an artificial staggered magnetic field can be extended into the regime of
strong driving.
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I. INTRODUCTION

Optical lattices are artificial crystalline structures of matter
prepared by subjecting ultracold neutral atomic gases to spa-
tially periodic light-shift potentials arising in the interference
patterns of multiple laser beams [1]. Quantum degenerate
atomic samples arranged in optical lattices allow the study
of tailored quantum many-body lattice models in a well-
controlled experimental environment [2]. While a wealth of
lattice geometries are naturally available, a variety of entirely
new configurations and tuning options arises if in addition
periodic driving is applied. Periodic shaking of a lattice, for
example, permits one to tune the effective tunneling strength
(even to negative values) [3,4], which was recently used
to drive a quantum phase transition between a superfluid
and a Mott insulator [5]. Suitably tailored periodic driving
schemes allow the implementation of new building blocks
for simulating electronic matter, such as the effect of the
Lorentz force acting upon the electronic charge in magnetic
fields [6–8]. This extends the scope of optical lattice models
to include intriguing aspects of electronic matter, such as
quantum Hall physics.

A common approach in the analysis of periodically driven
quantum systems is to search for a time-independent effective
Hamiltonian with an energy spectrum approximating the
quasienergies of the Floquet Hamiltonian of the system [9–11].
The accomplishment of this task typically requires that one
be restricted to specific classes of driving operators. In this
article, an effective Hamiltonian is derived for an arbitrary
driving operator in the regime of large driving frequencies.
This effective Hamiltonian is evaluated for various driven
optical lattice models. The lattices are assumed to operate in
the tight-binding regime described by Hubbard Hamiltonians
[12,13] with additional external modulation. First, a period-
ically shifted one-dimensional (1D) lattice is considered. In
the regime of strong driving, in accordance with previous
work by Eckardt et al. [3], a renormalization of the hopping
amplitude J is obtained, which permits us to tune J even to
negative values, a scenario realized in a recent experiment [4].
In nonbipartite lattice geometries, the selective adjustment

of negative hopping amplitudes along certain directions of
tunneling allows us to simulate effects of frustrated magnetism
[14]. Tuning of the energy associated with tunneling is a
generic option in driven optical lattice models, not easily
realizable in solid-state lattices. Second, a two-dimensional
(2D) square lattice with inversely phased temporal modulation
of the well depth of adjacent lattice sites is considered, and a
similar rescaling of the hopping amplitude J is found. As a
third example, yet unexplored in the regime of strong driving,
a 2D square lattice is considered, which is subjected to an
array of microscopic rotors commensurate with its plaquette
structure. In previous work, it was shown that for weak
driving this staggered rotation acts to implement the effect
of a staggered magnetic field, applying flux with alternating
sign to adjacent plaquettes [7,8]. Here, it is shown that for
strong driving, the structure of the effective Hamiltonian and
thus its interpretation in terms of a staggered magnetic field
is preserved up to nonlocal tunneling terms, which describe
negligible hopping between distant lattice sites. Similarly as
in the first example, a rescaling of the tunneling energy arises.
Our general expression of the effective Hamiltonian should
prove useful for analyzing further cases of interest.

The article is organized as follows: in Sec. II, a few relevant
elements of Floquet theory are recalled, and the connection
between the Floquet Hamiltonian of a general periodically
driven system and the corresponding time-independent effec-
tive Hamiltonian is established. The effective Hamiltonian is
expanded into a series of nested commutators. The resulting
general expression is applied to the periodically shifted 1D
optical lattice in Sec. III A, to the 2D optical lattice with
temporal modulation of the well depths in Sec. III B, and to the
2D lattice with staggered rotation in Sec. IV. Finally, the article
is closed with conclusions in Sec. V. Some straight forward
but technical calculations are deferred to the Appendix.

II. FLOQUET DESCRIPTION AND EFFECTIVE
HAMILTONIAN

According to Floquet’s theorem, an arbitrary Hamiltonian
H (t) with periodic time dependence [H (t) = H (t + T )]
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operating in some Hilbert space H possesses a set of T -
periodic [i.e., |un(t)〉 = |un(t + T )〉] Floquet states |un(t)〉 and
a spectrum of quasienergies En determined by the eigenvalue
equation for the Floquet Hamiltonian H(t) ≡ H (t) − ih̄ ∂

∂t

[9,15–17]

H(t)|un(t)〉 = En|un(t)〉. (1)

The states |un(t)〉e−iEnt/h̄ form a complete set of solutions
to the Schrödinger equation H(t)|ψ〉 = 0. Recall that for
each |un(t)〉 and arbitrary integer m, the state |un(t),m〉 ≡
|un(t)〉eim�t with � ≡ 2π/T is itself a Floquet state with
quasienergy En,m ≡ En + mh̄�. The solutions to Eq. (1) thus
display a Brillouin zone-like structure with respect to the time
axis with En to be chosen within the first zone [−h̄�/2,h̄�/2].
The states |un(t),m〉 with En ∈ [−h̄�/2,h̄�/2] form an
orthonormal basis in the composite Hilbert space H ⊗ HT ,
where HT is the space of T -periodic complex-valued
functions. Hence, δn,n′δm,m′ = 〈〈un(t),m|un′(t),m′〉〉T with
〈〈φ(t)|ψ(t)〉〉T ≡ 1

T

∫ T

0 dt〈φ(t)|ψ(t)〉〉T denoting the scalar
product in H ⊗ HT . Equation (1) may thus be considered
as an eigenvalue problem in the composite Hilbert space
H ⊗ HT [16].

For an arbitrary stationary orthonormal basis |n〉 of H and
an arbitrary time-periodic Hermitian operator F = F † with
F (t) = F (t + T ), one may define an orthonormal basis of the
composite Hilbert space H ⊗ HT by |n(t),m〉 = UF,m(t)|n〉
with UF,m(t) ≡ e−iF (t)+im�t and arbitrary integer m. Defining

H
(m,m′)
F ≡ U

†
F,m(t)H(t)UF,m′(t), (2)

Heff ≡ 〈
H

(0,0)
F

〉
T
, (3)

where 〈· · ·〉T denotes time averaging over the period T , it is
straight forward to verify

〈〈n(t),m|H(t)|n′(t),m′〉〉T
= δm,m′ (〈n|Heff|n′〉 + mh̄�)

+ (1 − δm,m′ )〈n|〈ei(m′−m)�tH
(0,0)
F

〉
T
|n′〉. (4)

According to Eq. (4), the matrix elements of H(t) in the basis
|n(t),m〉 of the composite space H ⊗ HT display a block
structure with diagonal (m = m′) blocks 〈n|Heff|n′〉 + mh̄�

energetically separated by multiples of h̄� and off-diagonal
(m �= m′) blocks 〈n|〈ei(m′−m)�tH

(0,0)
F 〉T |n′〉 coupling different

diagonal blocks. Following a well-known result of perturbation
theory, if

∥∥〈
ei(m′−m)�tH

(0,0)
F

〉
T

∥∥ � h̄� (5)

is satisfied for all m �= m′ with ||A|| ≡ max{|〈n|A|m〉| : n,m},
the off-diagonal couplings can be neglected, yielding the
approximation

〈〈n(t),m|H(t)|n′(t),m′〉〉T ≈ δm,m′ (〈n|Heff|n′〉 + mh̄�). (6)

Thus, within the range of validity of condition (5), and given
that the energy levels resulting from blocks with different m

do not mix, i.e., if

‖Heff‖ � h̄� (7)

holds, Eq. (6) shows that the quasienergy spectrum of H (t)
within the first Brillouin zone (m = m′ = 0) coincides with the
energy spectrum of the time-averaged effective Hamiltonian
Heff . Consequently, within the subspace associated to the first
energy band En,m=0, the time-dependent Hamiltonian H (t)
and the time-independent Hamiltonian Heff are equivalent.

The crucial task in practical applications is to identify a
suitable operator F compatible with the constraints imposed
by conditions (5) and (7). A useful recipe in this respect is
to decompose the Hamiltonian H (t) = H<(t) + H>(t) into a
weakly driven part H<(t), satisfying ||H<(t)|| � h̄�, and a
strongly driven part H>(t), and then to choose F in order to
integrate out only H>(t), i.e., h̄F (t) ≡ ∫ t

0 dsH>(s). A useful

expansion of H
(0,0)
F in terms of multiple commutators involving

F and F ′ ≡ ∂F/∂t can be derived. Defining the multiple
commutator between operators A and B of order n + 1 by
the recursion [A,B]n+1 ≡ [A,[A,B]n] and [A,B]0 ≡ B, the
practical relations

eiF ∂

∂t
e−iF = −

∞∑
n=0

in+1

(n + 1)!
[F,F ′]n,

(8)

eiF Ge−iF =
∞∑

n=0

in

n!
[F,G]n

hold for arbitrary operators F and G [18,19]. Inserting Eq. (8)
with G ≡ H (t) into Eq. (2) for m = m′ = 0 yields

H
(0,0)
F =

∞∑
n=0

in

n!

(
[F (t),H (t)]n − h̄

n + 1
[F (t),F ′(t)]n

)
.

(9)

Henceforth, the decomposition H (t) = H<(t) + H>(t) is
applied, and F (t) is chosen to satisfy h̄F ′(t) = H>(t). One
may then rewrite Eq. (9) as

H
(0,0)
F =

∞∑
n=0

in

n!

(
[F (t),H<(t)]n + n

n + 1
[F (t),H>(t)]n

)

.(10)

In the following sections, expression (10) will be applied to
several examples of driven optical lattices and conditions (5)
and (7) are inspected to determine the range of validity for
approximating H (t) by Heff .

III. DYNAMICAL CONTROL OF TUNNELING
IN OPTICAL LATTICES

A. Periodic shaking of 1D optical lattice

First, the periodical shaking of a 1D optical lattice is
considered, which allows us to suppress tunneling and even
simulate negative tunneling energies. This scenario has been
previously investigated theoretically in Ref. [3] and experi-
mentally in Ref. [4] and thus permits a useful test of Eq. (10).
The Hamiltonian is written as H (t) = H0 + W (t). Within
the tight-binding regime, the time-independent Hamiltonian
is the 1D Bose-Hubbard Hamiltonian H0 = −JT+ + Hint

with the tunneling operators T± ≡ ∑
〈ν,µ〉 c

†
νcµ ± c†µcν and

the onsite interaction Hint = U
2

∑
ν n̂ν(n̂ν − 1) [12,13]. The

periodic driving operator reads W (t) = 2Q cos(�t) with

063626-2



EFFECTIVE TIME-INDEPENDENT DESCRIPTION OF . . . PHYSICAL REVIEW A 81, 063626 (2010)

Q ≡ χ
∑

ν νn̂ν . Here, cν denotes the bosonic annihilation
operator at site ν, n̂ν is the corresponding particle number
operator, and 〈ν,µ〉 indicates summation over pairs of nearest-
neighbor sites. The parameters J , U , and χ quantify the
tunneling strength, the on-site repulsion energy per particle,
and the modulation strength, respectively. The operator Q acts
to introduce a constant gradient of the chemical potential and
thus a constant force χ/d, where d is the lattice constant.
Hence, the driving term W (t) represents a tilt of the lattice with
harmonic time dependence. Experimentally, W (t) is realized
by periodically shifting the 1D standing wave forming the
optical potential and transforming to the comoving frame of
reference [20].

It has been shown recently in Ref. [3] that for sufficiently
high driving frequencies, the driven system H (t) behaves
similarly as the undriven system H0, but with the tunneling
matrix element J replaced by the effective matrix element
JJ0(2χ/h̄�), where J0 denotes the Bessel function of order
zero. Notably, since J0 can take negative values, negative
values of the effective tunneling strength should become
possible, a prediction confirmed experimentally [4]. This result
is readily reproduced by means of Eq. (10). Choosing F (t) =
2Q sin(�t)/(h̄�) yields h̄F ′(t) = W (t) and [F (t),W (t)] = 0.
Equation (10) with H<(t) ≡ H0 and H>(t) ≡ W (t) thus
simplifies to

H
(0,0)
F =

∞∑
n=0

1

n!

(
2i sin(�t)

h̄�

)n

[Q,H0]n . (11)

Use of [Q,Hint] = 0 and evaluation of the commutators
[Q,T±] = χT∓ and thus [Q,T±]n = χnT(−1)n± leads to

H
(0,0)
F = Hint − J

∞∑
n=0

1

(2n)!

(
2iχ sin(�t)

h̄�

)2n

T+

− J

∞∑
n=0

1

(2n + 1)!

(
2iχ sin(�t)

h̄�

)2n+1

T−. (12)

Applying the relations

〈ei2mz sin2n(z)〉 = (−1)m(2n)!

22n(n + m)!(n − m)!
,

〈ei(2m+1)z sin2n+1(z)〉 = i
(−1)m(2n + 1)!

22n+1(n + m + 1)!(n − m)!
, (13)

〈ei2mz sin2n+1(z)〉 = 〈
ei(2m+1)z sin2n(z)

〉 = 0,

for integers n,m � 0 and (n − m)! ≡ 0 if n < m and 〈· · ·〉
denoting the average over 2π with respect to z, and making
use of the power expansion of the mth-order Bessel function

Jm(z) =
∞∑

n=0

(−1)nz2n+m

22n+mn!(m + n)!
(14)

finally yields

〈
ei2(m′−m)�tH

(0,0)
F

〉
T

= −JJ2(m′−m)

(
2χ

h̄�

)
T+ + δm′,mHint,

(15)〈
ei(2(m′−m)+1)�tH

(0,0)
F

〉
T

= JJ2(m′−m)+1

(
2χ

h̄�

)
T−,

and (setting m = m′)

Heff = −JJ0

(
2χ

h̄�

)
T+ + Hint. (16)

Equation (16) confirms the rescaling of the tunneling energy
derived in Ref. [3]. Finally, the range of applicability of Heff

remains to be discussed via inspection of Eqs. (5) and (7).
For increasing number of particles in the optical lattice,
these conditions avoiding any coupling between different
Floquet bands become increasingly hard to satisfy, because
multiple excitations (e.g., multiple particle-hole excitations
due to collisions) then may bridge increasing energy intervals.
However, as has been pointed out in Ref. [21], such higher-
order excitations yield only small couplings acting on time
scales too long to be relevant in typical experiments. Thus, it
suffices to require that the single-particle energy scaling factors
|JJm(2χ/h̄�)| and U in Eqs. (15) and (16) do not exceed
h̄�. Because Jm(z) � 1 for arbitrary integers m, a sufficient
condition for any value of the driving strength χ is J � h̄�

and U � h̄�.
In the derivation of Eq. (16), a harmonic modulation

W (t) ∝ cos(�t) has been assumed; however, other time
dependences yield a similar renormalization of the hopping
strength J . If, for example, cos(�t) is replaced by a rectangular
modulation function f (t) ≡ (−1)ν for −π/2 + νπ � ωt <

π/2 + νπ , where ν runs through all integers, the zero-order
Bessel function J0 in Eq. (16) is to be replaced by the sinc
function.

B. Well-depth modulation in 2D optical lattice

Next, a 2D square optical lattice is considered, composed of
two sublattices as illustrated in Fig. 1. The difference between
the well depths of the A and the B sites is assumed to be
modulated harmonically. Experimentally, this scenario arises
if two standing light waves with wavelength λ and parallel-
oriented linear polarizations are crossed by superimposing the
two branches of a Michelson interferometer. Control of the
optical path length difference of the interferometer allows
us to adjust the difference θ between the time phases of
the two standing waves. The resulting optical potential is
V (x,y) = −V̄0|eiθ/2 sin(kx) + e−iθ/2 sin(ky)|2 [22] with k =
2π/λ. It is straight forward to implement the temporal
modulation θ = [1 + κ cos(�t)]π/2. For κ � 1, this yields

A B

A B

B

B

AA

A

FIG. 1. (Color online) Decomposition of 2D square lattice into
two sublattices indicated by A (red) and B (blue). The vectors eν ,
ν = 1,2,3,4, connect an A site to its four nearest-neighboring B
sites. The grey area denotes a λ/2 × λ/2-sized plaquette.
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an overall potential V (x,y,t) = −V̄0[sin2(kx) + sin2(ky)] −
V̄0π sin(kx) sin(ky) cos(�t) composed of a stationary 2D
square lattice with mean well depth V̄0 and the desired
harmonic modulation of the well-depth difference of A and
B sites. Within a tight-binding description in terms of a
driven Hubbard model, a calculation similar to those in
Refs. [8,13,23] yields the Hamiltonian

H (t) = −JT+ + Hint + W (t),

T± ≡
∑
r∈A

∑
ν∈1,2,3,4

arb
†
r+eν

± a†
rbr+eν

,

(17)
Hint = U/2

∑
r∈A⊕B

n̂r(n̂r − 1),

W (t) = 2Q cos �t, Q ≡ −χ

2

∑
r∈A

(n̂r − n̂r+e1 ).

Here, ar and br+eν
denote the bosonic annihilation oper-

ators at sites r and r + eν of sublattices A and B, re-
spectively. The corresponding particle number operators are
n̂r ≡ a

†
rar and n̂r+e1 ≡ b

†
r+e1

br+e1 . The four-vectors eν , ν =
1,2,3,4, connect an A site to its four nearest-neighboring
B sites, according to Fig. 1. In analogy to the previous
section, the parameters J and U quantify, respectively,
the tunneling strength and the on-site repulsion energy
per particle of the conventional Bose-Hubbard Hamiltonian
for a 2D square lattice. The modulation strength is χ =
−πκV̄0

∫
dxdy|w(x,y)|2 cos(kx) cos(ky), where w(x,y) de-

notes the Wannier function of the lowest band. Although
the definitions here refer to a 2D lattice, a close formal
analogy to the previously discussed 1D case can be observed.
In fact, with F = 2Q sin(�t)/(h̄�) and the definitions of
Eq. (17), the same commutation relations as those found in
Sec. III A are recovered, i.e., [F (t),W (t)] = 0, [Q,Hint] = 0,
and [Q,T±]n = χnT(−1)n±. Consequently, Eqs. (12), (15),
and (16) also hold for the 2D scenario of Eq. (17). As in the 1D
case, one may thus use the modulation parameter χ in order
to suppress tunneling or even adjust negative values of the
tunneling strength. Arguments analogous to those used at the
end of Sec. III A show that for any value of the driving strength
χ the time-independent effective description is justified if
J,U � h̄�.

IV. 2D OPTICAL LATTICE WITH STAGGERED ROTATION

In this section, the square optical lattice in Eq. (17) of
Sec. III B is considered, but with a geometry of the driving
term specifically designed to apply angular momentum with
alternating sign to neighboring plaquettes. It has been shown
in Refs. [23,24] that this can be experimentally realized in
a bichromatic optical lattice, produced in an optical setup
comprising two nested Michelson interferometers. This yields
an optical potential V (x,y,t) = VL(x,y) + VR(x,y,t) consist-
ing of the stationary square lattice VL(x,y) = −V̄0[sin2(kx) +
sin2(ky)] of Eq. (17) and a temporal modulation VR(x,y,t) =
κVL(x,y) cos[2S(x,y) − �t] with κ adjustable within [0,1]
and

S(x,y) ≡ tan−1{sin(kx) − sin(ky)sin(kx) + sin(ky)}, (18)

which acts as an array of microscopic rotors, each centered in
an individual plaquette. The well depth V̄0 scales linearly with
the overall intensity of the lattice beams, while κ is adjusted
via the intensity ratio of the two frequency components of the
bichromatic lattice. A description in terms of a driven Hubbard
model leads to (cf. Ref. [23])

H (t) = −JT+ + Hint + W (t),

W (t) = ξNN cos(�t) − ξMM sin(�t),
(19)

N ≡
∑
r∈A

(n̂r − n̂r+e1 ),

M ≡
∑

r∈A,ν=1−4

(−1)ν+1(a†
rbr+eν

+ H.c.).

The operators T± and Hint are the same as in
Eq. (17). The modulation strength parameters are given
by ξN = 2κV̄0

∫
dxdy|w(x,y)|2 cos(kx) cos(ky) and ξM =

κV̄0
∫
dxdyw∗(x + λ/4,y)[sin2(kx) − cos2(ky)]w(x − λ/4,y).

Since the 2D Wannier function of the lowest band of the square
lattice VL(x,y) factorizes [w(x,y) = w(x)w(y)], one obtains
the simplified expressions ξN = 2κV̄0[

∫
dx|w(x)|2 cos(kx)]2

and ξM = κV̄0
∫

dxw∗(x + λ/4) sin2(kx)w(x − λ/4). Because
w(x) is peaked around x = 0, ξN is on the order of 2κV̄0.
In contrast, ξM exhibits the same order of magnitude as J

because it involves a tunneling integral, which receives its
main contributions from the small side lobes of the Wannier
function. This is confirmed by a band structure calculation
including the first five bands as is shown in Fig. 2, where J

and |ξM | are plotted vs the lattice well depth V̄0 for κ = 0.4
and its maximum possible value κ = 1. For κ >≈ 0.4 the
value of ξM can exceed that of J for increasing V̄0, which
would lead to negative overall hopping amplitudes of H (t) for
certain fractions of the modulation cycle. This indicates that
the description in terms of the lowest band Wannier function
of the stationary lattice VL becomes questionable then.

For weak driving (ξM � h̄� and ξN � h̄�), a correspond-
ing time-averaged effective Hamiltonian Heff = −JT+ −
iK 1

2 [M,N ] with K ≡ ξNξM/(h̄�) has been introduced in
Ref. [7]. The interest in this scenario arises because this
Hamiltonian mimics the action of a staggered magnetic field

0 2 4 6 8 10

0.0

0.1

0.2

well depth ˚V0/Erec

J/
E

re
c,

 |ξ
M

|/E
re

c

J/Erec

|ξM|/Erec˚for κ =0.4

|ξM|/Erec˚for κ =˚1

FIG. 2. (Color online) Plot of J and |ξM | vs the lattice well depth
V̄0 for κ = 0.4 and κ = 1. All quantities are scaled to the recoil energy
Erec ≡ h̄2k2/2m of the photons providing the optical lattice potential.
4J is approximated by the energy width of the lowest band.
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∆ µ

FIG. 3. (Color online) Zero temperature phase diagram of the
Hamiltonian −JT+ − iK 1

2 [M,N ] + Hint within the (J,K) plane
calculated according to Ref. [7] for fixed chemical potential µ/U .
Within a rectangular region (grey) around the origin of the (J,K)
plane, a Mott insulator is formed. It is surrounded by four superfluid
phases, each with an order parameter characterized by different values
at the four lattice sites at the corners of a plaquette as indicated by
the small associated pictograms. The width of the Mott region is
�(µ/U ), where �(z) ≡ [z(2g − 1 − z) + g(g − 1)]/[4(1 + z)] for a
filling fraction g ∈ {1,2, . . .} and z ∈ [g − 1,g]. Solid (dashed) black
lines denote second (first)-order phase boundaries.

upon charged particles. The magnetic field arises from the
operator i[M,N ], which provides tunneling with imaginary
hopping amplitudes

i[M,N ] = 2i
∑

r∈A,ν=1−4

{(−1)νa†
rbr+eν

− H.c.}. (20)

Notably, for K ≈ J the magnetic flux per plaquette can
be on the order of a fundamental flux quantum, a regime
accessible in solid-state lattices only at the several 100-T
level. It has been shown in Ref. [7] that the Hamiltonian
−JT+ − iK 1

2 [M,N ] + Hint possesses a rich zero temperature
phase diagram. Depending on the tunneling parameters J and
K , four superfluid phases with distinct symmetries of the
corresponding order parameters can be formed (see Fig. 3).
Unfortunately, since ξM < J and ξN/h̄� � 1, the staggered
vortex superfluid predicted in Fig. 3 if |K| > |J | cannot be
accessed in the weak driving regime. Furthermore, since J

is positive, the entire left half-plane of the phase diagram
in Fig. 3 cannot be explored. This raises the question of
whether strong driving permits access to an extended portion
of the phase diagram or rather gives rise to entirely new
physics.

In the following, Eq. (10) is used to explore the regime
of strong driving for two different choices of the operator
F (t). First, the regime of strong driving with respect to
ξNN cos(�t) is explored, i.e., ξN � h̄� while J,U,ξM � h̄�.
The choice H<(t) ≡ −JT+ + Hint − ξMM sin(�t), H>(t) ≡
ξNN cos(�t), and F ≡ ξNN sin(�t)/h̄� yields h̄F ′ = H>(t),

[F,H>(t)] = 0, and [F,Hint] = 0. With these settings, Eq. (10)
becomes

H
(0,0)
F = Hint − J

∞∑
n=0

in

n!
sinn(�t)

(
ξN

h̄�

)n

[N,T+]n

+ ξM

∞∑
n=0

in

n!
sinn+1(�t)

(
ξN

h̄�

)n

[N,M]n . (21)

Using the relations [N,T±] = −2T∓ and [N,[N,M]] = 4M

shown in the Appendix, the multiple commutators in Eq. (21)
are calculated to be [N,T±]n = (−2)nT±(−1)n and [N,M]n =
2n−[1−(−1)n]/2[N,M][1−(−1)n]/2. Inserting these into Eq. (21) and
making use of Eqs. (13) and (14) leads to

〈
ei2m�tH

(0,0)
F

〉
T

= δm,0Hint − JJ2m

(
2ξN

h̄�

)
T+

− i
1

2
ξMK2m

(
2ξN

h̄�

)
[N,M] , (22)

and 〈
ei(2m+1)�tH

(0,0)
F

〉
T

= −JJ2m+1

(
2ξN

h̄�

)
T− + iξMK2m+1

(
2ξN

h̄�

)
M,

where Km(z),m ∈ {0,1, . . .} is defined by

Km(z) ≡ ∂

∂z

(
Jm (z) − 1 + (−1)m

2

zm

2mm!

)
. (23)

In particular, for m = 0, one obtains

Heff = −JJ0

(
2ξN

h̄�

)
T+ + Hint − i

1

2
ξMJ1

(
2ξN

h̄�

)
[M,N ].

(24)

Since for z � 1 (corresponding to weak driving) J1(z) ≈
z/2 = ξN/h̄�, Eq. (24) reproduces the result Heff ≈ −JT+ −
K 1

2 [M,N ] found in Refs. [7,8]. In the regime of strong driving,
the formal structure of the effective Hamiltonian is maintained,
though with rescaled tunneling energies. The scaling functions
J0(z) and K0(z) = −J1(z) illustrated in Fig. 4 (solid lines) are
bounded with maximal values smaller than unity. They exhibit
zero crossings, which permits us to suppress Jeff ≡ JJ0(z) and
Keff ≡ KK0(z) or even adjust negative values.

Upon use of the arguments discussed at the end of Sec. III A,
Eqs. (22) and (24) imply that the description in terms of Heff is

FIG. 4. (Color online) Plot of scaling functions K2m(z) for
m = 0–6 and J0(z).
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suitable if the values of the parameters J,U,ξM are constrained
by the relations JJm(z),U,ξMKm(z) � h̄�. Since Jm(z) � 1
and K2m+1(z) � 1/2 for all m = 0,1,2, . . . , it is sufficient
to require J,U,ξM,ξMK2m(z) � h̄�. Although K2m(z) is
not bounded, one may allow K2m(z) to be significantly
larger than unity without affecting the necessary condition
ξMK2m(z) � h̄�, since ξM � h̄�. This in turn permits values
of z significantly exceeding unity, i.e., within the regime of
strong driving. This is illustrated in Fig. 4, where K2m(z)
is plotted for m = 0,1,2,3,4,5,6. One recognizes that, in
the area around z ≈ 2, where |K0(z)| attains its maximum,
the values of K2m(z) with m > 0 remain well below unity,
i.e., the requirement to prevent transitions between different
Floquet bands is satisfied. In the region 2 < z < 2.5 the
effective hopping amplitude Jeff can be tuned close to zero,
while K0(z) maintains sizable values. This is the regime
of interest in experiments exploring the staggered vortex
superfluid phase of Fig. 3, where tunneling is dominated by
the staggered magnetic flux (Keff > Jeff).

Although, the rotor potential defined in the context of
Eq. (18) constrains ξM to be on the order of or smaller than
J with the consequence that ξM � h̄�, it is nevertheless
instructive to examine an alternative approach to an effective
Hamiltonian, which does not a priori presuppose small values
of ξM . This amounts to the choice H<(t) ≡ −JT+ and
H>(t) ≡ W (t). For simplicity, the interaction Hint is neglected
here. It is practical to rewrite the driving term as

W (t) = Q†ei�t + Qe−i�t ,
(25)

Q ≡ 1
2 (ξNN + iξMM).

With F = i(Q†ei�t − Qe−i�t )/h̄� and thus h̄F ′ = W , one
finds [F,W ] = 2i[Q,Q†]/h̄�, which inserted into Eq. (10)
yields

H
(0,0)
F = −J

∞∑
n=0

in

n!
[F,T+]n

− 2

h̄�

∞∑
n=0

in

n!(n + 2)
[F,[Q,Q†]]n. (26)

Evaluation of Heff requires us to calculate the multiple
commutators [F,T+]n and [F,[Q,Q†]]n.

Calculation of [F,T+]n. A calculation outlined in
the Appendix yields the commutators [M,T±] = (1 ∓
1)

∑
r∈A,ν=1−4(−1)ν+1(a†

rar+2eν
− b

†
r−eν

br+eν
). While this im-

plies that [M,T+] = 0, one notes that [M,T−] exclusively
comprises terms denoting nonlocal tunneling between distant
lattice sites. Such terms should not significantly contribute and
are henceforth neglected, and thus [M,T−] ≈ 0 is assumed. In
addition, the commutator relation [N,T±]n = (−2)nT±(−1)n ,
already applied below Eq. (21), holds. Thus, the summand
proportional to M in F = [NξN sin(�t) − MξM cos(�t)]/h̄�

cannot contribute to [F,T+]n, i.e.,

[F,T+]n =
(−2ξN

h̄�

)n

sinn(�t)T(−1)n . (27)

Calculation of [F,[Q,Q†]]n. Since [Q,Q†] =
− i

2ξNξM [N,M], multiple commutators of the
form [F,[N,M]]n have to be considered. A direct

calculation (see Appendix) yields [N,[N,M]] = 4M and
[M,[M,N ]] = 16N + ONL, where ONL denotes the nonlocal
tunneling terms specified in Eq. (A2), which are henceforth
neglected. Introducing the abbreviations S ≡ 1

2 [N,M] and
L ≡ 1

2M yields the relations

[N,L] = S,

[N,S] = 4L, (28)

[L,S] = −4L.

Because F = pLL + pNN is linear in L and N with
pL = − 2ξM

h̄�
cos(�t), and pN = ξN

h̄�
sin(�t), the multiple com-

mutator [F,S]n is a sum of commutators [F1, . . . [Fn,S]],
where Fν,ν ∈ {1, . . . ,n} denote either of the operators pLL

or pNN . According to the operator algebra of Eq. (28), for
even n all possible combinations [Fn, . . . [F1,S]] are scalar
multiples of S, while for odd n scalar multiples of N or L can
arise. Furthermore, only those contributions [Fn, . . . [F1,S]]
are nonzero, for which, except for Fn in the case of odd n,
the Fν occur in pairs, i.e, F2ν−1 = F2ν . Summing over all
contributions yields after some algebra

[F,[Q,Q†]]2n = −iξNξM4n
(
p2

L + p2
N

)n
S,

(29)
[F,[Q,Q†]]2n+1 = −iξNξM4n+1

(
p2

L + p2
N

)m
(pNL − pLN ) ,

where n ∈ {0,1, . . .}.
With the expressions of Eqs. (27) and (29), we are now

in the position to calculate Heff by means of Eq. (26). Upon
noting that the time averages of the odd commutators yield zero
contributions, i.e., 〈[F,T+]2n+1〉T = 〈[F,[Q,Q†]]2n+1〉T = 0,
and that for arbitrary x,y ∈ R,

〈[x2 sin2(�t) + y2 cos2(�t)]n〉T

=
n∑

ν=0

(
2(n − ν)

n − ν

) (
2ν

ν

) (x

2

)2(n−ν) (y

2

)2ν

, (30)

one obtains

Heff = −J̃effT+ − iK̃eff
1

2
[M,N,]

J̃eff ≡ JJ0

(
2ξN

h̄�

)
, (31)

K̃eff ≡ KK̃0

(
2ξM

h̄�
,
ξN

h̄�

)
.

Here, J0(z) denotes the Bessel function of zero order and

K̃0(x,y) ≡
∞∑

n=0

n∑
ν=0

(−4)n

(n + 1)(2n)!

×
(

2(n − ν)

n − ν

) (
2ν

ν

)(x

2

)2(n−ν) (y

2

)2ν

. (32)

Note the symmetry relation K̃0(x,y) = K̃0(y,x). Furthermore,
K̃0(x,x) = sin(2x)/x − sin2(x)/x2 and K̃0(0,y) = J1(2y)/y.
As a consequence of the latter equation, if K̃0 is constrained to
the y axis, one recovers the case of small ξM � h̄� described
by Eq. (24). The scaling functions J0(z) and K0(x,y) illustrated
in Fig. 5 are bounded with maximal values of unity arising
at the origin. In contrast to J̃eff , K̃eff is not bounded with
respect to the driving parameters ξM and ξN since K itself
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FIG. 5. (Color online) (a) Plot of scaling functions J0(z)
(red, solid), K̃0(z,0) (blue, dashed), and K̃0(z,z) (black, dotted).
(b) Plot of scaling function K̃0(x,y). The thick red line is given by
xy = 0.2.

scales with ξMξN . In order to determine the range of ξM and
ξN for which conditions (5) and (7) hold, 〈ei(m′−m)�tH

(0,0)
F 〉T

can be readily calculated by means of Eq. (29) and variants
of Eq. (30). With the same relaxed variants of conditions (5)
and (7) used in the previous discussion, one finds that either of
the parameters ξM/h̄� and ξN/h̄� may exceed unity, as long as
their product remains well below unity. To illustrate the area of
permissible values for ξM and ξN , the thick red line in Fig. 5(b)
shows the upper boundary of the region defined by ξMξN �
0.1(h̄�)2. When passing too far into the region above this line,
one may encounter transitions between different Floquet bands
such that the description in terms of the effective Hamiltonian
Heff fails. Recall that at two points in the calculations leading
to Eq. (31), nonlocal terms were neglected, which describe
tunneling between distant lattice sites. These terms arise in
quadratic or higher order with respect to ξM/h̄�, such that in
the calculation of Eq. (24) they were a priori excluded by the
assumption ξM/h̄� � 1. Finally, if the Hubbard interaction
Hint had been accounted for in the derivation of Eq. (31), the
choice h̄F ′ = W would have led to a nonzero commutator
[F,Hint] with the consequence of nonlocal interaction terms
also scaling with ξM/h̄� to second or higher order.

V. CONCLUSIONS

In this article, a general expression for the effective
Hamiltonian of a periodically driven quantum system has
been derived and applied to various optical lattice models with

external driving, which are readily accessible in experiments.
Three scenarios have been considered: a periodically shifted
1D lattice, a 2D square lattice with anticyclic temporal
modulation of the well depths of adjacent lattice sites, and
a 2D lattice subjected to an array of microscopic rotations
commensurate with its plaquette structure. For the 1D scenario,
the rescaling of the tunneling strength previously found by
Eckardt et al. in Ref. [3] is reproduced, showing that strong
driving permits suppression of tunneling and the adjustment of
negative tunneling energies. Well-depth modulation inversely
phased for adjacent lattice sites lets us extend these effects
to a 2D scenario. In the case of the 2D square lattice with
staggered rotation, the expression previously found for weak
driving by Lim et al. in Refs. [7,8] is generalized. The
effective Hamiltonian is found to maintain its formal structure
independent of the driving strength; i.e., the interpretation
that it simulates the effect of a staggered magnetic field upon
charged particles, previously found for weak driving, extends
to the regime of strong driving. For all lattice scenarios, one
finds that the regime of strong driving differs from that of
weak driving essentially by an energy rescaling. In case of
the 2D lattice with staggered rotation, this rescaling should
permit us to extend the experimentally accessible portion of
the phase diagram. The general expression for the effective
Hamiltonian might also be useful in numerous cases of interest
not considered here.
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APPENDIX

The following calculations are carried out for bosons, i.e.,
[ar,a

†
r′ ] = [br,b

†
r′ ] = δr,r′ , while all other possible commuta-

tors are zero. Similar calculations yield analog results for
fermions. The following definitions are used

R ≡
∑
r∈A

∑
ν∈1,2,3,4

arb
†
r+eν

,

S ≡
∑
r∈A

∑
ν∈1,2,3,4

(−1)ν+1arb
†
r+eν

,

(A1)
NA ≡

∑
r∈A

a†
rar, NB ≡

∑
r∈B

b†rbr,

T± ≡ R ± R†, M ≡ S + S†, N ≡ NA − NB.

Calculation of [M,T±]. With the definitions of Eq. (A1)
and [R,S] = [R†,S†] = 0, it follows that [M,T±] =
[S†,R] ∓ [S†,R]†. One obtains five kinds of contributions to
[S†,R]: (1) hopping terms connecting nearest-neighbor A sites
[(−1)ν+1a

†
rbr+eν

,ar+eν+eµ
b
†
r+eν

] = (−1)ν+1a
†
rar+eν+eµ

with
odd ν + µ; (2) hopping terms connecting nearest-neighbor
B sites [(−1)ν+1a

†
rbr+eν

,arb
†
r+eµ

] = −(−1)ν+1b
†
r+eµ

br+eν
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with odd ν + µ; (3) hopping terms connecting
next-nearest-neighbor A sites [(−1)ν+1a

†
rbr+eν

,ar+2eν
b
†
r+eν

] =
(−1)ν+1a

†
rar+2eν

; (4) hopping terms connecting
next-nearest-neighbor B sites [(−1)ν+1a

†
rbr+eν

,arb
†
r−eν

] =
(−1)ν+1b

†
r−eν

br+eν
; and (5) on-site terms [(−1)ν+1a

†
rbr+eν

,

arb
†
r+eν

] = (−1)ν+1(a†
rar − b

†
r+eν

br+eν
). Only the terms of

type (3) or (4) can yield nonzero contributions, if the sum
r ∈ A and ν ∈ 1,2,3,4 is carried out, leading to [S†,R] =∑

r∈A,ν = 1−4(−1)ν+1(a†
rar + 2eν

− b
†
rbr + 2eν

). Observing that
[S†,R]† = [S†,R], one finally obtains [M,T±] = (1 ∓ 1)∑

r∈A,ν=1−4(−1)ν+1(a†
rar+2eν

− b
†
rbr+2eν

).
Calculation of [N,T±]. With the definitions of

Eq. (A1), one calculates [NA,T±] = [NA,R] ∓ [NA,R]†.
With [NA,R] = ∑

r∈A,ν=1−4[a†
rar,arb

†
r+eν

] = −R, one ob-
tains [NA,T±] = −T∓. A similar calculation gives [NB,T±] =
T± and thus [N,T±] = −2T∓.

Calculation of [N,[M,N ]]. Using the definitions
of Eq. (A1), one calculates [M,N ] = 2(S − S†). With
[NA,[M,N ]] = 2([NA,S] + [NA,S]†) and [NA,S] =∑

r∈A,ν=1−4(−1)ν+1[a†
rar,arb

†
r+eν

] = −S, one obtains
[NA,[M,N ]] = −2M . An analog calculation yields
[NB,[M,N ]] = 2M and thus [N,[M,N ]] = −4M .

Calculation of [M,[M,N ]]. With [M,N ] =
2(S − S†), one gets [M,[M,N ]] = 4[S†,S]. Five
kinds of contributions to [S†,S] arise: (1)
hopping terms connecting nearest-neighbor A sites
[(−1)ν+1a

†
rbr+eν

,(−1)µ+1ar+eν+eµ
b
†
r+eν

] = −a
†
rar+eν+eµ

with
odd ν + µ; (2) hopping terms connecting nearest-neighbor B
sites [(−1)ν+1a

†
rbr+eν

,(−1)µ+1arb
†
r+eµ

] = b
†
r+eµ

br+eν
with odd

ν + µ; (3) hopping terms connecting next-nearest-neighbor
A sites [(−1)ν+1a

†
rbr+eν

,(−1)ν+1ar+2eν
b
†
r+eν

] = a
†
rar+2eν

;
(4) hopping terms connecting next-nearest-neighbor B
sites [(−1)ν+1a

†
rbr+eν

,(−1)ν+1arb
†
r−eν

] = − b
†
r−eν

br+eν
; and

(5) on-site terms [(−1)ν+1a
†
rbr+eν

,(−1)ν+1arb
†
r+eν

] =
a
†
rar − b

†
r+eν

br+eν
. Suming up over all r ∈ A and

ν,µ ∈ 1,2,3,4 in compliance with the constraint of odd
ν + µ for type (1) and (2) terms yields

[M,[M,N ]]

= 16N + 4
∑
r∈A

ν,µ∈1,2,3,4
|ν−µ|�=2

a†
rar+eν+eµ

− b†rbr+eν+eµ
. (A2)

The first term 16N results from the summation of the on-site
contributions in type (5), while all other contributions of types
(1)–(4) are collected in the sum of the nonlocal tunneling
terms.
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