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Spin textures in condensates with large dipole moments
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We have solved numerically the ground states of a Bose-Einstein condensate in the presence of dipolar
interparticle forces using a semiclassical approach. Our motivation is to model, in particular, the spontaneous
spin textures emerging in quantum gases with large dipole moments, such as Cr or Dy condensates, or
ultracold gases consisting of polar molecules. For a pancake-shaped harmonic (optical) potential, we present
the ground-state phase diagram spanned by the strength of the nonlinear coupling and dipolar interactions. In
an elongated harmonic potential, we observe a helical spin texture. The textures calculated according to the
semiclassical model in the absence of external polarizing fields are predominantly analogous to previously
reported results for a ferromagnetic F = 1 spinor Bose-Einstein condensate, suggesting that the spin textures
arising from the dipolar forces are largely independent of the value of the quantum number F or the origin of the

dipolar interactions.
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I. INTRODUCTION

Long-range interparticle forces in a quantum system
with a large coherence length is an intriguing combination
bound to exhibit a host of fascinating phenomena. Perhaps
the most timely example of such a system is the gaseous
atomic Bose-Einstein condensate (BEC) subject to magnetic
dipole-dipole forces [1].

The dipolar interaction potential, decreasing as r ~* in terms
of the interparticle distance , dominates on length scales deter-
mined by the coherence length. Other two-body interactions
present in the system, such as induced dipolar forces (van
der Waals), weaken typically much faster (—°) and become
negligible already over distances of an average interparticle
separation. A further interesting aspect of the dipole-dipole
interaction is its anisotropy enriching the already diverse finite-
size effects in trapped ultracold atomic gases. The magnetic
dipolar interaction in condensates has been predicted to give
rise to phenomena ranging from spin textures and spontaneous
mass currents [2-4] to a roton minimum in the excitation
spectrum [5,6], linking the field into the study of liquid He II.

The realization of >>Cr condensates has provided a means of
probing dipolar effects experimentally due to the exceptionally
large magnetic moments of the atoms [7]. The ground states
of a chromium condensate have been studied extensively
[8-12]. Anisotropic deformation of an expanding chromium
condensate due to dipolar forces has been observed [13],
and dipole-induced spin relaxation in an initially polarized
2Cr has been linked to the famous Einstein-de Haas ef-
fect in ferromagnets [9,14]. Also, collapse and subsequent
d-wave symmetric explosion of dipolar condensates have been
recently studied in the case of 32Cr both experimentally and
theoretically [15]. Chromium condensates have been recently
produced through optical methods [16].

The strength of the magnetic dipolar interaction is deter-
mined by the atomic magnetic moment 1, through the cou-
pling constant g/, = uouﬁl /4m, where 1 is the permeability
of the vacuum. For example, for alkali-metal condensates
with total angular momentum quantum number F = 1, the

1050-2947/2010/81(6)/063623(8)

063623-1

PACS number(s): 03.75.Hh, 03.75.Mn, 75.10.Hk

magnetic moment is given by wy = (pgr, Where up is
the Bohr magneton and gr = 1/2 the Landé g factor. Such
systems are subject to weak dipolar interactions, e.g., g/,/8" ~
1073 for 8’Rb, where g’ = 47h?* (ag + 2a,) /3m is the mean-
field density-density coupling constant. Here ay and a, are
the s-wave scattering lengths in the channels with total spin 0
and 2, and m is the atomic mass. Nevertheless, dipolar effects
have been predicted to be observable in F = 1 alkali-metal
BECs even in the presence of a magnetic field [17], which was
recently confirmed experimentally based on a time-evolution
study of a helical spin texture [18]. It has also been proposed
that the spin echo in spinor BECs could be utilized in revealing
dipole-dipole interactions [19].

The spontaneous occurrence of novel ground-state spin
textures in the absence of external magnetic fields requires
typically stronger dipolar interactions, g;/g’ ~ 1072-10"".
Hence, the 32Cr condensates consisting of particles with
magnetic moments of 6 up, as opposed to maximal magnetic
moments of 1 g in alkali-metal gases, seem more favorable
for observing such effects. Moreover, the rare-earth-metal
element Er, with a magnetic moment of 7 1 g, has been cooled
down to uK temperatures [20]. Also, recent developments in
trapping and cooling of Dy with the largest atomic magnetic
moment of 10 up yields a promising candidate for observing
the predicted spin textures [21]. Developments in the study of
ultracold polar molecules provides a means of investigating
dipolar effects with large electric moments [22-24].

The study of alkali-metal condensates based on a quantum-
mechanical mean-field treatment predicts spin textures with
the smallest possible value for the total angular momentum
quantum number with internal degrees of freedom, namely,
F = 1. It is worthwhile to approach an analogous problem
from the other extreme limit by treating the magnetic moments
of the gas classically [2,25]. By comparing the results predicted
by the two models, one may expect that if the predictions agree,
they could be of universal character for all dipolar condensates
and independent of the particular value of the quantum number
F. In general, the quantum-mechanical order parameter has
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2F + 1 components, and the short-range interaction term
contains F + 1 independent coupling constants. Hence, it
would be very cumbersome to treat each value of F separately
with the complexity of the problem increasing along with F'.

Our semiclassical model is briefly described in Sec. II. The
order parameter is written in an alternative form compared to
previous studies [2,25] in order to simplify analysis and to
increase numerical efficiency. The main results are explained
in Sec. III: The ground states of the system in harmonic traps
of various geometries are described, and the collapse of the
spin vortex state is analyzed briefly. The spin helix state is
introduced before concluding remarks of Sec. I'V.

II. MODEL

In this section, we construct a phenomenological mean-field
model describing a trapped Bose-Einstein condensate with
local as well as nonlocal interparticle interactions. The model
is equivalent to the semiclassical approach previously studied
in [2,25], with the exception that now the order parameter field
is written in a Cartesian basis yielding a set of three Gross-
Pitaevskii type of equations leading to more efficient numerics.

The local interaction is assumed to be of the standard
s-wave form, with the coupling constant g’ = 4mh’a/m,
where a is the s-wave scattering length. Henceforth, we will
refer to its dimensionless form g = 4w Na/a,, expressed in
natural trapping units: fiw, is the unit of energy with w, being
the radial trapping frequency of the confining harmonic poten-
tial, and the radial harmonic oscillator length a, = /I /mw;, is
the unit of distance. The number of confined atoms is denoted
by N. The nonlocal interaction is the anisotropic dipole-dipole
interaction with the dimensionless coupling constant g; which
is quantified in relation to g throughout the article. Regardless
of whether the origin of the dipolar interactions is considered
to be magnetic or electric, we adopt notation and terminology
as if it were of the former. For the trapped system to be stable,
we find that for a strong enough contact interaction, the value
of g4 should not exceed ~ g /4, a value very close to the number
calculated in the F = 1 case [3].

The order parameter is taken to be a three-component
real-valued vector ¥ = (Y, ¥y, ). It is straightforward to
show that all line defects in such order-parameter space
are topologically unstable, because any closed curve on a
sphere can be continuously transformed into a point which
corresponds to a spin-polarized state [26]. Nevertheless, the
energetically stable states can have nontrivial spin textures.

In the present model, the particle density is assumed to be
related to the order parameter through n(r) = ), w,f(r) and is
normalized to unity, f drn(r) = 1. Letus make the assumption
that the system is ferromagnetic, and hence we may require
that all spins are pointing into the same direction within a small
enough region of space. With this simplification, the magnitude
of the magnetization density is related to the particle density
through

IM(r)| = un(e) = g Y_ Y@ = 3" ME®, (1)
k k

where ) is the magnetic moment of a single particle, and M}
are the components of magnetization. By squaring, we obtain
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3o MA(r) = w3, Y, wA(r)n(r), which is satisfied if we define

Mi(r) = pp ¥i(r)y/n(r), 2

relating the magnetization density to the order parameter. In
the following, we omit writing the constant w,, explicitly and
assume it to be included in the coupling constant g,;.

The energy functional Ei[,¥y,¥;] can thus be written
as

Eo =/Zl//kﬁwkdr+§/n2dr+%// D(r,r')dr dr,
k

3)
where /i = —%Vz + Virap(r) is the single-particle Hamiltonian
and Vi = %(x2 + y2 + A2z?%) is the external trapping po-
tential expressed in natural trapping units. For now we will
omit external rotation and mass currents in the system, and
hence the kinetic energy is merely due to quantum pressure.
The second term in Eq. (3) describes the local mean-field
s-wave interaction with the coupling constant g, and the final
term the nonlocal dipole-dipole interaction with

D(r,r') = (M(r) - M(r') — 3[M(r) - eg][M(r') - ex]}/ R’
“4)

where R =r — 1’ is the relative coordinate and ep the unit
vector along it.

Stationary states of the condensate are obtained by differen-
tiating the energy functional with respect to the components of
the order parameter with the particle number constraint taken
into account through a Lagrange multiplier n. Differentiation
with respect to v; results in a set of three Gross-Pitaevskii
(GP) equations

N M. 1
hy; + gnyrj + g—z" [%‘/f‘j + \/;ll_j:| =uy;.  (5)

Here the functions /; are defined by

Ij(r)=/ |:Mj(r/)—3e£ZMz(r’)e]R:|/R3dr’, 6)
]

with elR being the /th component of eg. These integrals may be
further broken into convolutions. By applying the convolution
theorem, we obtain

Iir)y=F~"' [Z FIM(x)] fiy (k)} : (7)
1

where F stands for Fourier transform and fl (k) =
—%(8;; — 3kik;/k?) is the Fourier transform of f;(r) =
(85 — 3ryrj/r*)/r’. The Fourier transforms are efficiently
evaluated by using the fast Fourier transform.

From the general form of the GP equations, Eq. (5), it is
possible to conclude that the spin-polarized texture is not a
stationary state in a confined three-dimensional system in the
absence of external polarizing fields when g; # 0. Namely,
Eq. (5) is of the form Ay = b;, where b; = %"\/ﬁlj # 0,
in general. In the spin-polarized state, we may choose, say, the
z axis along the polarization, whence ¥, = v, = 0, yielding
b, = b, = 0 from the general form above. When g; # 0, this
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can be satisfied in regions of nonvanishing density only if
I, = I, = 0. Hence, the bracketed expression in Eq. (7) must
vanish identically. As f., and fzy are nonvanishing in any finite
volume d3k, continuity of v, implies M,(r) = 0, which is a
contradiction. Such a conclusion can also be drawn from the
quantum-mechanical model by following similar arguments.

Apart from the quantum pressure term in Eq. (3), the
spin model described above can be viewed as resulting from
a classical energy functional. However, the present model
can also be argued from the quantum-mechanical spin-F
model constrained within the ferromagnetic manifold [27].
With maximally aligned spins, the order parameter at a fixed
point ris of the form y = /ne'® =i e/t g=iFyB/hg=iFiy /i) 7y —
Jnel 0=V e=ifa/ho=iFsp/h |y where F, are the hyperfine
spin operators, and Fz|z) ="nF|z). The order parameter of
the classical spin model is obtained if we neglect the phase
factor ¢/®=F7) and replace the quantum-mechanical rotation
operators by the classical equivalents and the eigenstate |z)
by the unit vector pointing along the z axis. Such substitution
should be valid when quantum fluctuations of the spin operator
F become negligible. The relative fluctuations in the state |z)
are given by ((F — nF)2)/(F2) = 1/(F + 1), which vanish in
the limit of large F. Possible mass currents arising from local
spin-gauge symmetry are neglected when ¢/@=f7) is set to
unity, and the kinetic energy reduces merely to the quantum
pressure term in Eq. (3).

III. RESULTS

We have solved the ground states of the system with various
values of the coupling constants g and g;, and the aspect ratio
M. Special emphasis is given to the pancake- and cigar-shaped
systems, for which we choose A = 10 and A = 0.10-0.50,
respectively.

A. Ground states in the pancake-shaped limit

Let us first consider the case of a cylindrically symmetric
harmonic trap with strong, A = 10, confinement in the axial
(z) direction. In the presence of dipolar interactions, g4 > 0,
the magnetic moments tend to lie predominantly in the plane
perpendicular to the axial direction in order for the system to
minimize dipolar interaction energy.

For a small enough value of g;/g, the spin texture has
typically the flare structure which has been studied previously
using the semiclassical approach as well as the quantum-
mechanical mean-field model in the F = 1 case [2—4]. Such
a state is illustrated in Fig. 1(a) for g = 100 and g,;/g =
0.15. The arrows denote the local direction of magnetization
M(r), whereas the color refers to the particle density n(r).
The repulsive interaction between parallel spins separated
by a vector perpendicular to the spin vectors causes the
magnetization to deviate from the polarized texture. The
structure may also be thought of as resulting from the presence
of two spin vortices located at the periphery of the cloud.
The spin texture is flarelike also in the x-z plane (y = 0) due
to finite M,, which is in accordance with the picture that a
single toroidal spin vortex encircles the cloud. In the flare
state, the magnetization has even parity.
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FIG. 1. (Color online) Magnetization M(r) (arrows) and density
n(r) (color) of the (a) flare and (b) spin vortex states for g = 100,
g4/g = 0.15 in a trap with aspect ratio A = 10. Both quantities are
shown in the z = O plane, the density being nearly Gaussian in the
axial direction and M, small. For the chosen parameter values, the
flare state in (a) is the energetically favored configuration. Panel (c)
illustrates a spin vortex state with opposite spin winding compared to
(b). Such a state is not energetically favorable for the parameter values
considered in this work. Each panel has dimensions 8 a, x 8a,.

When the strength of dipolar interactions is increased,
the ground state undergoes a second-order phase transition
into a state hosting a single spin vortex, which is illustrated
in Fig. 1(b) for g = 100 and g,;/g = 0.15. The density is
typically suppressed at the core of the vortex. The spin
vortex state has also been studied previously within the
semiclassical as well as the F' =1 case [2-4]. Analogous
to the flare state, the presence of the spin vortex results in
a texture which favors dipolar interactions by reducing the
repulsive interactions of parallel spins separated by a vector
perpendicular to their magnetization. For example, close to the
phase transition line in Fig. 2 with g = 1000 and g,;/g = 0.05,
the differences in the kinetic, potential, contact interaction,
and dipolar energies of the flare and the spin vortex states
are AFEg, = —0.16, AEp, =0.077, AEy; = —0.11, and
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FIG. 2. Ground-state phase diagram of a dipolar condensate in
a harmonic trap with aspect ratio A = 10. The effective contact
interaction coupling constant g is represented in logarithmic scale
on the vertical axis. The horizontal axis, measuring the strength of
dipolar interactions through the ratio g,/g, has a linear scale. The
phase diagram is divided into three regions: flare [Fig. 1(a)], spin
vortex [Fig. 1(b)], and the region where the spin vortex becomes
unstable against collapse.
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AEg, = 0.28, respectively, leading to a gain in total energy
of AE: = 0.077 in units of hw, per particle.

Figure 1(c) illustrates a spin vortex state with the opposite
spin winding. For this texture, the angle between local
magnetization and the x axis decreases as the vortex core is
circled around in the counterclockwise direction, whereas for
the state in Fig. 1(b), the angle increases. Such a state is found
only as an excited solution in the present work. In a larger
dipolar system, one can construct energetically low-lying spin
vortex lattices by arranging the vortices presented in Figs. 1(b)
and 1(c), and their negative counterparts (M —> —M) in
an alternating square lattice. Both spin vortices presented in
Fig. 1 have odd parity.

The ground-state phase diagram in the (g, g,/g) parameter
plane is shown in Fig. 2. The axes of the plane are chosen
such that the abscissa is proportional to the particle number
N and the ordinate is independent of N and proportional
to the (bare) dipolar coupling constant g/;. The spin vortex
state is energetically favored for strong contact and dipolar
interactions. The flare state dominates the phase diagram in
the limit of weak contact interaction, g < 50, regardless of
the strength of dipolar interactions. The phase transition point
from flare to spin vortex state depends strongly on the value
of g. The spin vortex state becomes unstable toward collapse
beyond the critical value of g;/g =~ 0.25 which depends only
weakly on the value of g for g > 500.

With strong enough contact interaction (g > 1000) and
weak dipolar interaction, the cores of the spin vortices are
filled with particles whose magnetic moments are pointing
in the axial direction. The condensate gains trapping as well
as contact interaction energy by filling the vortex core. The
dashed line in the phase diagram of Fig. 2 separates the states
with filled cores from states with empty cores. On the line
[ n(r =0,z)dz/max [ n(r,z)dz = 0.01 with r = /x? + y?,
whereas the ratio is close to unity in the upper left corner. The
finite axial magnetic moment due to the filled core breaks the
inversion symmetry of the state. Instead, the components of M
have the following symmetry: }A’zMx,y =-M,,, P.M, =M.,
where P, inverts the sign of the x and y coordinates keeping
Z intact.

For large enough g, the flare state develops continuously
into a state with two spin vortices which have ferromagnetic
cores as the strength of dipolar interactions is increased.
The magnetic moments of the cores are pointing either
into the same or opposite directions, the two states being
nearly degenerate irrespective of the relative orientation. States
hosting multiple spin vortices are found to be energetically
unfavorable compared to single spin vortex states for the
parameter values considered in this work.

The radial size of the spin vortex state diminishes signifi-
cantly as the strength of dipolar interactions is increased. This
suggests that the reason why the system becomes unstable at
some critical value of g;/g could be due to inward collapse
of the condensate. Local and global collapse of a dipolar
condensate have been recently studied numerically [28].

In order to understand why the spin vortex solution ceases
to exist above the critical point, it is instructive to study scaling
transformations of the form

T (0)u(r,2) = (@Y1 + Tl [1 + o T]2), ®)
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where (r,z) are the cylindrical coordinates, t is the scaling
parameter, o determines the ratio between axial and radial
scaling, and c¢?(tr) is chosen to ensure particle number
conservation.

Close to the critical point of collapse, the spin vortex
state in a pancake-shaped trap is the ground state of the
system, and hence lies in a minimum of the energy functional.
Under transformations of the form given in Eq. (8), the
total energy becomes a function of the scaling parameter
T, EZ(7) = Ewt[T° ()Y (r,2)]. Deviation from the ground
state always leads to an increase in energy, and hence the
second derivative of the total energy with respect to any one-
parameter transformation must be positive, 83 EZ (T)|z=0 > 0.
The existence of a transformation for which this quantity
vanishes indicates that the state becomes unstable against such
variation.

Figure 3 shows the value of min,{02EZ (7).} as a
function of g,;/g € [0.10,0.30] scaled by the value at g;/g =
0.10. The solid curve is for g = 10*, dashed for g = 103, and
dash-dotted for g = 102. The curves are extrapolated (dotted
lines) using the last few points to obtain an estimate for the
critical value for which the minimum in the energy functional
vanishes. The critical values are g;/g = (0.240,0.243,0.274),
respectively. The inset in Fig. 3 depicts the value of o for which
d2EC (7)|;=o is minimized for each g, /g, the horizontal axis
being the same as in the main graph. In the vicinity of the
critical point for g < 10°, o > 0, showing that the collapsing
cloud shrinks both in radial and axial directions.

Based on a spinor F' = 1 study, a critical value of g;/g ~
0.24 has been previously reported for the existence of the
spin vortex state [3], where the parameters are chosen such
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FIG. 3. (Color online) Second derivative of the total energy with
respect to a scaling transformation of the form given in Eq. (8) as
a function of g,/g shown in units of the corresponding quantity at
ga/g = 0.10. The curves correspond to the parameter values g = 10*
(solid), g = 10* (dashed), and g = 10? (dash-dotted). The value of
ga/ ¢ for which the second derivative vanishes indicates the critical
strength beyond which the spin vortex state becomes unstable against
collapse. The inset shows the ratio of axial and radial scaling for
which the minimal value of the bracketed expression in the main
figure is obtained.
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that g &~ 7000 in the present study. As the current model is
expected to be accurate, apart from possible mass currents, in
the limit of large (classical) magnetic moments, this agreement
suggests that the critical value for the collapse is universal and
independent of F'.

B. Ground states in the cigar-shaped limit

Let us now consider solutions to Eq. (5) in an elongated
trapping geometry with A € [0.10,0.50]. For definiteness, we
will fix g = 10* which corresponds to a number of N & 1.5 x
10° 87Rb atoms in a harmonic trap with radial frequency w, =
2m x 100 Hz. Regardless of the aspect ratio A, the solutions
are found to exist only within the interval g;/g € [0,0.235],
agreeing with the result previously reported in the F =1
study [3].

The spins tend to lie predominantly along the axial direction
for finite but sufficiently weak dipolar interactions. This
ground state resembles the flare state in the pancake-shaped
limit, and it has been discussed previously both in F =1
condensates as well as using the semiclassical model [2,4].
Figures 4(a)—4(c) illustrate the spin textures in three radial
cross sections of the condensate. Here A =0.20, g,/g =
0.030, and the cross sections are taken at z = —12a,,0,
and 12a,, respectively. The color depicts the z component
of magnetization, M (r), and the color bar is scaled with
respect to the maximum magnetization, max|M(r)|, in the
corresponding state. The arrows show the texture projected

-1.0 —0.5 0 0.5 1.0
I X -
(a) z=-12a, [|(b) =z=0 (c) =
$1Y
~ =
o ~
Yo
12 a, -
(d) z=-12a, || (e) z_12aT
1

(8) z=-25a || (h) (i) z=25a,

e

FIG. 4. (Color online) Spin textures in the flare (a)—(c), spin
vortex (d)—(f), and spin helix (g)—(i) states in a cigar-shaped trapping
geometry with aspect ratio A = 0.20 and dipolar interaction strengths
g4/g = 0.030, 0.080, and 0.030, respectively. The arrows illustrate
the magnetization within a given radial cross section projected onto
the x-y plane, whereas the color refers to the axial magnetization M,
normalized with respect to maximal magnetization within each state
separately. Each panel has dimensions 12a, x 12a,.
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|
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onto the x-y plane (henceforth referred to as the planar
texture), with the length of the arrows scaled within each
panel separately, except in Fig. 4(b), for which M, = M, =0
by symmetry. The stability range of the flare state depends
strongly on the aspect ratio: For example, with A = 0.50,
the flare state is the ground state for 0 < g4/g < 0.01, with
A =0.20 for 0 < g;/g < 0.08, whereas with A = 0.10 the
flare state dominates the entire stability window.

Typically, for stronger dipolar interactions, a spin vortex
texture appears in the central region of the condensate,
illustrated in Figs. 4(d)—4(f) for . = 0.20 and g,/g = 0.080.
As shown in Fig. 4(e), the planar texture near the center
resembles the spin vortex texture in the pancake-shaped
geometry discussed before, see Fig. 1(b). As one moves farther
away from the center, the planar texture deforms continuously
toward the flare texture discussed in the previous paragraph, as
depicted in Figs. 4(d) and 4(f). Although the magnetization in
both the flare and the spin vortex states has the same symmetry,
ﬁsz =—M,, and P.M, = M., the phase transition is
sharp, as illustrated below in Fig. 5(d).

In order to characterize the spin vortex state more precisely,
we define the following quantities: The axial column density
reads

n,(z) = /n(r)dx dy. 9

This measures the number of atoms per unit length in the axial
direction and is normalized to unity. The average twisting angle

is given by
a(z) = <arccos I:xy—”(r):|>, (10)
M,y (r)

where f,, = (xe, + ye,)/y/x? + y? and the averaging is taken
over vectors M,, whose length exceeds 1% of the maximum
of the planar magnetization M, = \/M? + M3. This quantity
characterizes the twisting of the magnetization in the plane,
yielding zero (or m) for the flarelike textures, Figs. 4(a)—
4(c), and /2 for the spin vortex texture, Fig. 4(e). The
average twisting angle is essentially independent of the radial
distribution of the density. Finally, we define the average filting

angle through
B M, (1)
B) = <arctan [—Mz(r) j|>, 1D

where the averaging is evaluated as above. The tilting angle
is related to the pitch of the helical streamlines obtained by
following the local direction of magnetization in the spin
vortex state, cf. Ref. [3].

Figure 5(a) shows the twisting a(z) in the flare (solid)
and spin vortex state (dashed and dash-dotted) for the dipolar
interaction strengths g, /¢ = (0.075,0.15,0.235), respectively.
The flare state is chosen from the neighborhood of the
transition point to a spin vortex state. However, «(z) remains
nearly zero (or ) over the whole length of the cloud. Small
deviation from zero shows that the flare state has even parity
only approximately. As the dipolar interaction strength is
increased, a spin vortex enters the system. Hence, the twisting
angle decreases continuously from 7 to 0 along the length
of the condensate. A plateau of a(z) ~ m/2 forms in the
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FIG. 5. (Color online) The twisting angle «(z) (a), tilting angle
B(z) (b), and the axial column density n,(z) (c) for three values of
the dipolar interaction strength g,/g = (0.075,0.15,0.235) shown
with solid, dashed, and dash-dotted lines, respectively. The total
magnetization My, which is directed along the z axis by symmetry,
is shown in (d) for the aspect ratios A = 0.10 (dashed), 0.20 (solid),
and 0.50 (dash-dotted). The dots in (d) refer to the values of g;/g
used in (a), (b), and (¢). Units are shown in brackets.

central region of the system for strong dipolar interactions,
g4/8 = 0.15. The width of the plateau decreases for increasing
g4/ g due to shrinking of the cloud.

The tilting angle B(z) is shown in Fig. 5(b) for the same
parameter values as in Fig. 5(a). It remains relatively small in
the flare state and experiences a sudden increase at the center of
the system when the ground state hosts a spin vortex. For very
strong dipolar interactions, $(z) =~ 7 /2 in the central region,
slightly even exceeding /2 due to interaction with the axial
magnetization of the core region. The small lobes in 8(z) close
to the top and bottom of the cloud are remainders of the flare
state.

The strength of dipolar interactions affects the spatial
density profile of the spin vortex state significantly. The axial
column density n.(z) is shown in Fig. 5(c) for the parameter
values used in 5(a) and 5(b). Not only does the system shrink
in the radial but also in the axial direction with increasing
g4/ 8- Also, the column density appears to be slightly bimodal
for strong enough dipolar interactions: The column density is
enhanced in the central region of the condensate where the
spin vortex lies in order for the system to gain dipolar energy.
The width of the plateau in Fig. 5(a) due to the presence of
the spin vortex matches the size of the central profile in the
bimodal density distribution. The bimodality appears more
vividly in elongated systems with A < 0.20. In the extreme
limit of g;/g = 0.235, the density n(r) in the spin vortex
state is significantly reduced close to the center of the trap
where r ~ 0.
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Figure 5(d) depicts the total magnetization My =
f M(r)dr in the flare and spin vortex states as a function
of g4/g. Due to symmetry, the total magnetization is along the
axial direction. The dashed, solid, and dash-dotted lines corre-
spond to the aspect ratios A = (0.10,0.20,0.50), respectively.
The sudden drops in total magnetization indicate the phase
boundary between the flare and spin vortex states. Whereas
the flare state dominates the entire stability window for very
elongated trapping geometry (A = 0.10), the ground state in
a prolate system (A = 0.50) hosts a spin vortex already with
ga/g = 0.01. The phase transition points for different values
of X agree qualitatively with the analogous results in the F' = 1
study [3].

It is reasonable to expect that there exist also stationary
states with the opposite symmetry compared to the flare and
spin vortex states, i.e., ISZMX,y(r) = M, ,(r) and ﬁzMZ(r) =
—M,(r). There indeed exist low-energy solutions to Eq. (5)
with such symmetry, to which we refer to as spin helices. The
spin helix state is found, e.g., with A = (0.10,0.20,0.50) in the
entire stability interval 0 < g;/g < 0.235 of the system. This
state resembles closely the state studied in Ref. [18], where
the helical spin texture is created by using a transient magnetic
field gradient. According to our simulations, the stationary
spin helix state exists also in a ferromagnetic F = 1 system
with dipolar interactions, which will be studied in more detail
elsewhere. Dynamical instability of a similar structure in the
absence of dipolar interactions has been studied recently [29].

The spin helix texture is illustrated for A = 0.20and g;/g =
0.030 in Figs. 4(g)—4(i), where the radial cross sections are
taken at z = (—2.54,,0,2.5a,), respectively. On the z axis,
the magnetization lies in the x-y plane, as a consequence of
the antisymmetry of M,. Farther away from the z axis and
perpendicular to the magnetization on the axis, M, becomes the
dominant component. The whole planar texture rotates about
the z axis as a function of the z coordinate, traversing typically
through several cycles along the length of the condensate.

Energetically, the spin helix state appears to be favored by
strong dipolar interactions and not too elongated geometries.
For example, with A = 0.50, the helix becomes energetically
favorable compared to the spin vortex state between 0.050 <
ga/g < 0.10. It is challenging to pinpoint the exact location
of the phase transition point due to near degeneracy of the two
states. Near the critical value of g;/g = 0.235, the difference
in the total energy between the spin vortex and helix states
is AE ~ 0.1 hw, per particle in favor of the helix, which is
roughly 2% of the total energy. For A = 0.20, the helix state
appears to be the minimal energy texture only for g;/g = 0.20,
whereas for A = 0.10, the flare state lies 2%—7% lower in
energy over the entire stability range of the system.

The number of cycles in the helix texture increases as the
condensate is elongated, and thus for the sake of clarity we
illustrate it as an excited state for A = 0.10 and g;/g = 0.20in
Figs. 6(a)-6(c). In Fig. 6(a), the solid and dashed curves show
the components M, and M, along the z axis, respectively,
and the M, component along the y axis is shown in the inset
by the dash-dotted curve.

The spin helix can be thought of as two elongated
stripes, polarized along the z axis in the opposite directions,
intertwined around one another. The helical texture on the
z axis arises due to continuous twisting of the magnetization
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FIG. 6. (Color online) (a) M, (solid) and M, (dashed) on the z axis as a function of z in the spin helix state for A = 0.10and g,/g = 0.20. The
dash-dotted curve in the inset shows M, along the y axis in the range [—5,5] a,. The vertical axis spans the interval [—0.0028,0.0028] N 1 /a?
both in the main figure and the inset. (b) The column density n(x,z) = f n(r) dy illustrating density oscillations characteristic of the spin helix
state for strong dipolar interactions. The parameters are as in (a), and the field of view is 8 a, x 60a,. (c) Wave vector of the spin helix state
for g4/g = (0.080,0.20,0.23) shown with solid, dashed, and dash-dotted curves, respectively. The peaks at the ends of the cloud are finite-size

effects. Units are shown in brackets.

via the x-y plane. In the F' = 1 case, quantized spin vortices
of opposite winding penetrate through the axially polarized
ferromagnetic stripes, forming an intertwined spin vortex pair.
Intertwining of two mass vortices has been previously studied
in relation to the splitting of a doubly quantized vortex in a
scalar condensate [30,31].

Figure 6(b) illustrates the column density n(x,z) =
[ n(r)dy for the same state as in Fig. 6(a), red denoting an
area of high and blue of vanishing particle density. With strong
dipolar interactions, density oscillation appears spontaneously
due to the helix spin texture: for a fixed point in the x-y plane
close to the surface region of the cloud, the axial magnetization
M, is an oscillating function of z. The particle density is
suppressed in the vicinity of the nodes of M, and enhanced at
the antinodes due to dipolar interactions.

As a measure of the pitch of the spin helix, we define the
angle

(12)

6(z) = arctan [M} .

MX(()?O’Z)

The derivative 06/0z yields the wave vector of the helix,
which is plotted in Fig. 6(c) for A =0.10 and g,;/g =
(0.080,0.20,0.23) with the solid, dashed, and dash-dotted
curves, respectively. The wave vector tends to increase for
stronger dipolar interactions, which is reasonable because the
dipolar coherence length decreases as &g gd_l/ *. The peaks
in 06/0z at the top and bottom of the cloud are finite-size
effects: The texture may adjust freely into an energetically
favorable configuration at the edge as one of the boundary
conditions due to continuity of the order parameter is liberated.
Oscillations penetrate along the whole length of the condensate
for g;/g = 0.23. These oscillations enhance rapidly as the
strength of dipolar interactions is increased even further.

The number of cycles in the spin helix state decreases as
the aspect ratio A = w;/w, is increased, until in spherical
geometry, the direction of the spin on the z axis twists
only through half a cycle along the length of the system,
cf. Fig. 6(a). Interestingly, the spin vortex state, for which
the magnetization has the opposite symmetry with respect

to inversion about the z axis, reduces to the spin helix
state, rotated by (£)m/2 about e, x My, where M, is the
magnetization at the trap center in the helix state.

IV. SUMMARY AND CONCLUSIONS

We have studied spin textures arising from dipolar
interactions in gaseous Bose-Einstein condensates of particles
with large permanent dipole moments. The theory is based
on a semiclassical model treating the dipole moments of the
bosons classically.

The observed spin textures in clouds confined in harmonic
trapping potentials agree qualitatively with previously reported
results for an F' = 1 system [3,4], such as 87Rb. Moreover, the
ground-state phase transition points with respect to the strength
of dipolar interactions seem to agree roughly with both weak
and tight axial trapping frequency. The qualitative agreement
in the observations drawn from the two models suggests that
similar textures and phase diagrams are to be expected also
for ferromagnetic systems with F > 1 and for condensates
consisting of electric dipoles.

A major difference between our semiclassical model and the
quantum-mechanical model describing a magnetic system lies
in the existence of mass currents: In the quantum-mechanical
case, phase gradients of the components of the order parameter
emerge spontaneously possibly giving rise to mass currents
which are absent in the semiclassical treatment, see the last
paragraph of Sec. II. The main effect from taking spontaneous
mass currents into account regarding the present results would
be that the phase transition line between the flare and the spin
vortex states in Fig. 2 is shifted to the right due to increased
kinetic energy of the spin vortex state. Spin dynamics of
ferromagnetic condensates has been studied recently in the
long-wavelength limit using a hydrodynamic model [32].

In addition to solving the ground states of the system
for various parameter values, we investigate the spin vortex
state in the extreme limit of the dipolar interaction strength
g4/g =~ 1/4. For larger dipolar interactions, the state becomes
unstable against collapse of the cloud due to strong attractive
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forces overwhelming the quantum pressure term and repulsive
interparticle interactions. The estimated point of instability
agrees well with the value observed in the F = 1 study [3].
In the limit of tight axial confinement, two ground states
are observed, namely, the flare and the spin vortex states. For
prolate geometries, an additional spin helix texture appears as
a low-energy stationary state. The helix is the ground state of
the system only in slightly prolate condensates and for strong
dipolar interactions. This state is most likely related to the S
state reported in [3] and is especially interesting in relation
to the experimental observation of dipolar effects in 8’Rb

PHYSICAL REVIEW A 81, 063623 (2010)

utilizing a similar spin texture [18]. The magnetization pattern
of the spin helix gives rise to spontaneous density oscillations
in the stationary state for strong dipolar interactions. As in the
case of the spin vortex and flare textures, the helix state ceases
to exist for g;/g = 1/4.
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