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Rotating three-dimensional solitons in Bose-Einstein condensates with gravitylike
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We study formation of rotating three-dimensional high-order solitons (azimuthons) in Bose Einstein condensate
with attractive nonlocal nonlinear interaction. In particular, we demonstrate formation of toroidal rotating solitons
and investigate their stability. We show that variational methods allow a very good approximation of such solutions
and predict accurately the soliton rotation frequency. We also find that these rotating localized structures are
very robust and persist even if the initial condensate conditions are rather far from the exact soliton solutions.
Furthermore, the presence of repulsive contact interaction does not prevent the existence of those solutions, but
allows one to control their rotation. We conjecture that self-trapped azimuthons are generic for condensates with
attractive nonlocal interaction.
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I. INTRODUCTION

Studies of Bose Einstein condensates (BEC) belong to
one of the fastest developing research directions. The major
theoretical progress in this area has been stimulated by the fast
experimental advances that enable one to investigate subtle
phenomena of fundamental nature [1,2]. In the semiclassical
approach the spatial and temporal evolution of the conden-
sates’ wave function is commonly described by the Gross
Pitaevskii equation [3] which reflects the interplay between ki-
netic energy of the condensate and the nonlinearity originating
from the interaction potential leading, among others, to the for-
mation of localized structures, bright and dark solitons [4,5].
So far the main theoretical and experimental efforts have been
concentrating on condensates with contact (or hard-sphere)
bosonic interaction which, in case of attraction, may lead
to collapse-like dynamics. Recently, also systems exhibiting
a nonlocal, long-range dipolar interaction [6] have attracted
a significant attention. This interest has been stimulated by
successful condensation of chromium atoms which exhibit an
appreciable magnetic dipole moment [7–9]. The presence of
spatially nonlocal nonlinear interaction and, at the same time,
the ability to control externally the character of local (contact)
interactions via the Feshbach resonance techniques offer the
unique opportunity to study the effect of nonlocality on the
dynamics, stability, and interaction of bright- and dark-matter
wave solitons [10–13]. The enhanced stability of localized
structures including fundamental, vortex, and rotating solitons
in nonlocal nonlinear media (not necessarily BEC) was already
pointed out in a number of theoretical works [14–21]. In
particular, stable toroidal solitons were presented in [20,21].
However, since the dipole-dipole interaction is spatially
anisotropic, an additional trapping potential or a combination
of attractive two-particle and repulsive three-particle interac-
tion was necessary. Various trapping arrangements have been
proposed to minimize or completely eliminate this anisotropy.
In particular, O’Dell et al. [22] have suggested using a series
of triads of orthogonally polarized laser beams illuminating
a cloud of cold atoms along three orthogonal axes so that

the angular dependence of the dipole-dipole nonlinear term
is averaged out. The resulting nonlocal interaction potential
becomes effectively isotropic of the form 1/r . It was already
shown by Turitsyn [23] that such a purely attractive “gravi-
tational” (or Coulomb) interaction potential prevents collapse
of nonlinear localized waves and gives rise to the formation
of localized states (bright solitons) which could be supported
without necessity of using the external trapping potential. If
realized experimentally such trapping geometry would enable
to study effects akin to gravitational interaction. Few recent
works have been dealing with this “gravitational” model of
condensate looking, among others, at the stability of localized
structures such as fundamental solitons and two-dimensional
vortices [24–27].

In this paper we study formation of three-dimensional
(3D) high-order solitons in BEC with gravity-like attractive
nonlocal nonlinear potential. In particular, we demonstrate
formation of toroidal solitons [28,29] and investigate their
stability. We show that such BEC supports robust localized
structures even if the initial conditions are rather far from the
exact soliton solutions. This extraordinary robustness allows
us to propose straightforward generation scenarios for rotating
solitons. Furthermore, we demonstrate that the presence of
repulsive contact interaction does not prevent the existence
of those solutions, but allows one to control their rotation
by changing the strength of the local repulsive contribution
compared to the nonlocal attractive one.

The paper is organized as follows. In Sec. II we introduce
briefly a scaled nonlocal Gross-Pitaevskii equation (GPE).
In Sec. III we recall general properties of rotating soliton
solutions (azimuthons), which are then approximated in
Sec. IV by means of a variational approach. Those variational
approximations allow us to predict the rotation frequency
of the azimuthons which are then confronted with results
from rigorous numerical simulations. Finally, self-trapped
higher-order 3D rotating solitons are presented in Sec. V, and
we show that such nonlocal BECs support robust localized
structures.
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II. MODEL

We consider a Bose-Einstein atomic condensate with
isotropic interatomic potential consisting of both repulsive
contact as well as attractive long-range nonlocal interaction
contributions. Following O’Dell et al. [22] the attractive long-
range interaction which is electro-magnetically induced by the
triads of frequency detuned laser beams with the intensity I

can be presented in the “gravitational” form,

UGr (r̃) = − 11

4π

Iq2α2

cε0

1

r̃
= −u

r̃
. (1)

Here, q is the modulus of the wave vector, α the isotropic,
dynamic polarizability of the atoms, c the light velocity, and ε0

the permittivity of the free space. Then the complete two-body
interaction potential is given by

V (r̃) = 4πah̄2

m
δ(r̃) − u

r̃
, (2)

where the first term comes from the contact s-wave scattering,
a is the scattering length, and m is the atomic mass. The
potential can only be written in this form if the mean kinetic
energy per particle dominates the u/r̃-term, so that the short-
range hard-sphere scattering is not affected. This is fulfilled if
aB � λB � a, where aB := h2

mu
is the Bohr radius, associated

with the interaction, and λB is the de Broglie wavelength.
The temporal and spatial dynamics of the condensate

wave function ψ̃(r̃,t̃) is then governed by the following
Gross-Pitaevskii equation (GPE):

ih̄∂t̃ ψ̃ + h̄2

2m
�r̃ψ̃ + u

∫ |ψ̃(r̃′,t̃)|2
|r̃ − r̃′| d3r̃′ψ̃

− 4πah̄2

m
|ψ̃ |2ψ̃ = 0. (3)

Characteristic values for the physical parameters are m =
3.8 × 10−26 kg, a = 3 nm, and u = 2 · 10−13 eVnm, and∫ |ψ̃ |2d3r̃ = N is the number of atoms in the condensate [22].
Using the normalization,

r =
√

um

4πah̄2 r̃ = 1

Rc

r̃ (4a)

t = h̄

2mR2
c

t̃ = 1

Tc

t̃ (4b)

ψ =
√

R3
c

N
ψ̃,

∫
|ψ |2d3r = 1, (4c)

one ends up with the dimensionless GPE,

∂tψ = i�ψ + iρ
ψ (5a)


(r,t) =
∫ |ψ(r′,t)|2

|r − r′| d3r ′ − |ψ |2. (5b)

The normalized nonlinearity 
 consists of both local and
nonlocal contributions, and ρ = 8πNa/Rc depends on all
physical parameters of the system and can be tuned by
(e.g., changing the number of atoms N in the condensate).
Interestingly, the ratio between local and nonlocal term is
solely determined by the form of the wave function ψ . We
will see later (Sec. IV) that for very broad solitons the local
contact interaction ∼|ψ |2 becomes negligible compared to

the nonlocal one. Then the governing equation of motion
is formally equivalent to the so-called Schrödinger-Newton
equation, proposed by Penrose in [30,31]. This equation was
studied numerically in [32], where in particular “spinning
solutions” were considered.

For the parameter values given above we find the charac-
teristic length and timescales Rc = 19 µm and Tc = 0.25 s,
respectively. Then, a typical condensate of, say, N = 10 000
atoms gives ρ ≈ 42. Hence, in order to claim potential experi-
mental relevance of self-trapped solutions the demonstration of
robust time evolution over normalized times t >∼ 1 is necessary.
Turitsyn [23] found that the ground state of the nonlocal
Schrödinger equation with a purely attractive 1/r kernel is
stable with respect to collapse using Lyapunoff’s method.
Moreover, in [33], linear and global (modulational) stability
under small perturbations of solutions to the Hartree-equation
was shown. Here, we are interested in the existence and
robustness of rotating higher-order states, which we will
investigate in the following by means of numerical simulations.

III. ROTATING SOLITONS

It has been shown earlier that azimuthons (i.e., multi-peak
solitons) with angular phase ramp exhibit constant angular
rotation and hence can be represented by straightforward
generalization of the usual (nonrotating) soliton ansatz by
including an additional parameter, the rotation frequency �

[34,35]. We write

ψ(r,z,φ,t) = U (r,z,φ − �t) eiEt , (6)

where U is the complex amplitude and E is the normal-
ized chemical potential, r =

√
x2 + y2, and φ denotes the

azimuthal angle in the plane (x,y). It can be shown that by
inserting the above function into the nonlocal GPE (5) one can
derive the formal relation for the rotation frequency [36,37],

� = −IL − I ′M + XL − X′M
L2 − MM ′ , (7)

where the functionals M,M ′,X,X′,L,I,I ′ represent the inte-
grals over the stationary amplitude profiles of the azimuthons
given in Appendix A. The first two conserved functionals
(M) and (L) are the norm of the wave function and “angular
momentum,” respectively. In the next section, we will compute
approximate azimuthon solutions and their rotation frequency
employing a certain ansatz for the stationary amplitude
profile U .

IV. VARIATIONAL APPROACH

In order to get some insight into possible localized states
of the Gross-Pitaevskii equation we resort first to the so-called
Lagrangian (or variational) approach [38]. Equation (5) can be
derived from the following Lagrangian density:

L := i

2
(ψ∂tψ

∗ − ψ∗∂tψ) + |∇ψ |2 − 1

2
ρ|ψ |2
(r,t). (8)

It has been shown before that rotating solitons or “azimuthons”
are associated with nontrivial phase and amplitude struc-
ture [39]. In two-dimensional optical problems the simplest
case represents the state falling between optical vortex
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(ring-like pattern with 2π angular phase shift) and optical
dipole in the form of two out-of-phase intensity peaks [39,40].
In three dimensions, a reasonable ansatz for corresponding
localized solutions is

ψ(r,z,ϕ,t) := Ar exp

(
− r2 + z2

2σ 2

)
eiEt

× [cos(ϕ − �t) + ip sin(ϕ − �t)], (9)

where parameter p varies between zero and unity. For p = 0,
Eq. (9) describes a dipole structure consisting of two out-of-
phase lobes, while for p = 1 it is a 3D vortex [i.e., toroid-like
structure with zero in the center and azimuthal (in the (x,y)
plane)] phase ramp of 2π . Using the ansatz Eq. (9), one can
easily find that

IL − I ′M = 0, (10)

which shows that only the nonlinear terms contribute to the
frequency � [vide formula Eq. (7)]. Without loss of generality,
we restrict our analysis to 0 � p � 1; the results for the
opposite angular phase shift (−1 � p � 0) can be obtained
by mirroring the coordinate system.

After inserting the solution Eq. (9) into the Lagrangian
density L, and integrating over the whole 3D space we
obtain the Lagrangian L which is the function of variational
parameters σ and A only. Looking for the extrema of L leads
to a set of algebraic relations among the variational variables
(see also Appendix B). Using

∫ |ψ |2d3r = 1 we can eliminate
the amplitude A, and the width σ of the azimuthon is given by

σ =
300

√
2πC3 + 3

√
20000π2C2

3 + 5ρ2C1C2

2
√

πρC1
, (11)

with C1 = 49p4 + 86p2 + 49, C2 = 3p4 + 2p2 + 3, and
C3 = (1 + p2)2. Obviously, the width σ is minimal but
nonzero for ρ → ∞. Hence, the localized solution exists only
if its width is greater than the critical value σcr(p),

σcr =
√

45C2

4πC1
= 3

2

√
5

π

√
3p4 + 2p2 + 3

49p4 + 86p2 + 49
. (12)

This threshold is a direct consequence of competition between
nonlocal and local interaction potentials. While the former
is attractive and thus leads to spatial localization, the latter,
which is repulsive, tends to counteract it. For small σ the
kinetic energy term is large and can be compensated only if
the particle density is high enough. Further on, the chemical
potential E is given by

E = 15(4πσ 2C1 − 5C2)

2σ 2(4πσ 2C1 − 45C2)
, (13)

and according to Eq. (7) the rotation frequency � reads

� = 60p
√

C3(4σ 2π − 5)

σ 2(4πσ 2C1 − 45C2)
. (14)

Interestingly, the latter expression is not sign definite, which
means that we can expect both co- and counter-rotating az-
imuthons with respect to the phase. In particular, the azimuthon
with the “stationary” width σs = √

5/4π ≈ 0.63 should have
no angular velocity. Again, this effect is due to competition
between nonlocal and local contribution to � for small σ . The
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FIG. 1. (Color online) The left panels show the dependencies of
the azimuthon width σ on the parameter ρ = 8πNa/Rc (top) and
the chemical potential E on the width σ (bottom). Black curves show
results from the variational approach; dashed blue curves represent the
asymptotic limits for σ → ∞ (without repulsive contact interaction).
The right panel shows the rotation frequency � as a function of
the width σ . Black dots denote results obtained from numerical
simulations of the GPE (5). All plots are for p = 0.7.

nonlocal attractive interaction leads to a positive contribution
to �, the repulsive local interaction to a negative one. The
formal expression for �∞ without repulsion can be obtained by
the outlined variational procedure or by asymptotic expansion
(σ → ∞) up to O(1/σ 2), �∞ = 60p

√
C3/C1σ

2. As also
expected from simple scaling analysis, this quantity is sign
definite with respect to σ .

The solid black curves in Fig. 1 summarize our findings
from the variational approach. For each value of the parameter
ρ = 8πNa/Rc and 0 � p � 1, we find exactly one azimuthon
with width σ (ρ,p), chemical potential E(σ (ρ,p)), and rota-
tion frequency �(σ (ρ,p)). The dashed blue curves in Fig. 1
depict the asymptotic behaviors for large width σ → ∞, when
repulsive contact interaction becomes negligible. The most
pronounced effect occurs in the angular velocity, shown in
the right panel in Fig. 1. We can see that the repulsive local
interaction kicks in for σ <∼ 1.5, thus for ρ >∼ 12. Moreover,
for large width σ one finds E ∼ 1/σ 2 and σ ∼ 1/ρ. The fact
that we find a localized solution for any nonzero value of ρ is
a well-known property of very long-range kernels, such as the
Coulomb potential in three dimensions [33].

V. NUMERICAL RESULTS

In this section, the predictions of the variational approach
will be confronted with direct numerical simulations. The
approximate solitons resulting from the variational approach
will be used as initial conditions to our 3D simulation code
to compute their time evolution. In general, we find stable
evolution; in particular, the characteristic shape of the initial
conditions is preserved. For rotating azimuthons, the angular
velocities will be measured and compared to the ones obtained
in the previous section.
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FIG. 2. (Color online) Dynamics of the 3D stable solitons in
gravity-like BEC. Iso-surfaces of the normalized density |ψ |2 are
depicted for different evolution times; the interior density distribution
is represented in grayscales. The initial variational parameters used
are σ = 1 and p = 1 (torus, ρ = 19.4; iso-density surface at |ψ |2 =
0.039) for the upper row; p = 0 (dipole, ρ = 19.7; iso-density surface
at |ψ |2 = 0.071) for the middle one; and finally, p = 0.7 (azimuthon,
ρ = 19.4; iso-density surface at |ψ |2 = 0.044). The sense of the
rotation (� = 0.64) is indicated by the arrow.

In Fig. 2 we illustrate the temporal evolution of three-
dimensional solitons for the “gravitational” potential [i.e.,
solutions to Eq. (5)]. This first two rows present the classical
stationary soliton solutions torus and dipole, respectively.
Due to imperfections of the initial conditions obtained from
the variational approach we observe slight oscillations upon
evolution, in particular, for the dipole solutions (second row).
Those oscillations are not present if we use numerically exact
solutions (obtained from an iterative solver [41]) as initial
conditions (not shown). In the last row of Fig. 2, we show
the evolution of an azimuthon (p = 0.7,σ = 1). The rotation
of the amplitude profile is clearly visible. Again we observe
radial oscillations due to the imperfect initial condition, but
the solution is robust.

Figure 3 shows the dependence of the azimuthon rotation
frequency as a function of the modulation parameter p. Solid
lines represent predictions from the variational model; black
dots represent rotation frequency obtained from numerical
simulations. As expected from two-dimensional nonlocal
models [37,42], the modulus of � increases with p. Our
variational calculations predict that for small width σ , when
repulsive interaction comes into play, the sense of azimuthon
rotation changes. In particular, we found a “stationary” width
σs where the rotation frequency � vanishes. Indeed, full model
simulations confirm this property, since the first row in Figs. 4
and 3(a) show a very slow rotation with opposite orientation, so

0 0.5 1
−1

0

1

2

p

Ω

0 0.5 1
0

0.04

0.08

p

Ω

FIG. 3. (Color online) Azimuthon rotation frequency � versus
modulation parameter p in gravity-like BEC for σ = 0.6 ≈ σs (ρ =
48.0 . . . 65.4, left panel) and σ = 3 (ρ = 5.2 . . . 5.5, right panel).
Black curves show results from the variational approach; dashed
blue curves represent the asymptotic limits for σ → ∞ (without
repulsive contact interaction). Black dots denote results obtained from
numerical simulations of the GPE (5).

that the numerical stationary width is between 0.6 and 0.61.
Furthermore, we observe that very narrow azimuthons (σ →
σcr) have negative � and rotate very fast (see Fig. 1). This may
be interesting for potential realizations, since the duration of
BEC experiments is restricted to typically several hundreds
of milliseconds. However, for azimuthons very close to σcr

the ansatz function (9) becomes less appropriate and using
variational initial conditions leads to very strong oscillations
upon evolution, up to the point where it is no longer possible
to identify properly the rotation frequency �.

Finally, we will discuss possible strategies to actually gen-
erate azimuthons from more simple initial configurations of
the condensate. It turns out that apart from their extraordinary
robustness, azimuthons are also strong nonlinear attractors
in parameter space, which makes their excitation feasible. In
general, 3D tori or vortex rings could be generated by either
imprinting the vortex phase distribution onto a condensate
[43,44], or by stirring the condensate with an external localized
laser beam [45,46]. Both of these methods have been shown
to excite either single or multiple vortices in a condensate.

FIG. 4. (Color online) The upper row shows iso-density surfaces
at |ψ |2 = 0.16 for the very slow rotating (� ≈ 0) azimuthon with p =
0.7 and σ = 0.61 (ρ = 47.5). The lower row shows a fast counter-
rotating (� = −2.2) azimuthon with p = 0.7, σ = 0.5 (ρ = 93.9),
and iso-density surface at |ψ |2 = 0.34. Same plot style as in Fig. 2.
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FIG. 5. (Color online) The upper row shows iso-density surfaces
at |ψ |2 = 0.040 of the time evolution of a sphere (ρ = 18.8). The
imprinted vortex phase is shown in the inset; a stable torus is formed.
The lower row shows the formation of a rotating dipole azimuthon by
using initially an ellipsoid (ρ = 19.6; iso-density surface at |ψ |2 =
0.039). Same plot style as in Fig. 2.

Here, we will focus on the former method of phase imprint.
To this end, we assume a condensate initially trapped in a
spherical or ellipsoidal harmonic trap. Then, we switch off the
trap, switch on the nonlocal attractive interaction, and imprint
a vortex phase at the same time. Figure 5 shows snapshots of
the resulting time evolutions. The spherical condensate (first
row) develops immediately a minimum with zero density at
center and radial modulations, which disappear and a toroidal
structure close to the soliton is formed at t ≈ 0.1 (not shown).
The subsequent evolution is an oscillation around the stable
stationary state. When we use an initially ellipsoidal conden-
sate and imprint the vortex phase, a similar dynamics follows,
but due to the spatial asymmetry a dipole azimuthon is formed
at t ≈ 0.1, which then starts to rotate (see lower row in Fig. 5).

VI. CONCLUSION

We have studied the formation of rotating localized struc-
tures in Bose Einstein condensate with gravity-like attractive
nonlocal interaction. We successfully used variational tech-
niques to investigate their dynamics and showed numerically
that such localized structures are indeed robust objects which
persist over long evolution times even if the initial conditions
significantly differ from the exact soliton solutions. It turned
out that it is possible to create such higher-order structures
from very basic trapped condensates via phase imprint.

For rotating solitons (azimuthons), we derived analytical
expressions for the angular velocity, in excellent agreement
with rigorous 3D numerical simulations. Furthermore, we
show that properties of the azimuthons depend on a single
parameter ρ ∼ N

√
a/mu only. This makes it possible to

control the rotation frequency by, for example, tuning the
local contact interaction (∼a), which is routinely done by
Feshbach resonance techniques. In particular, we can change
the sense of rotation with respect to the phase, and we can find
nonrotating azimuthons. We also identify parameter regions

with particularly fast rotation, which may be important for
potential experimental observation of such solutions.

Last but not least, by using different nonlocal kernel
functions we checked that rotating soliton solutions are
generic structures in nonlocal GPEs. Hence, we conjecture
that the phenomena observed in this paper are rather universal
and apply for a general class of attractive nonlocal interaction
potentials.
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APPENDIX A: FUNCTIONALS

The functionals M,M ′,X,X′,L,I,I ′ in Eq. (7) represent
the following integrals over the stationary amplitude profiles
of the azimuthons:

M =
∫

|U |2d3r = 1, (A1a)

L = −i

∫
U ∗∂ϕUd3r, (A1b)

I =
∫

U ∗�Ud3r, (A1c)

X = ρ

∫

(r)|U (r)|2d3r, (A1d)

M ′ =
∫

|∂ϕU |2d3r, (A1e)

I ′ = i

∫
∂ϕU ∗�Ud3r, (A1f)

X′ = iρ

∫

(r)U (∂ϕU ∗) d3r. (A1g)

APPENDIX B: CONVOLUTION

The convolution term in the Lagrangian (8) can be calcu-
lated analytically by, for instance, rewriting the integrand in
terms of spherical harmonics Yij . Then, |ψ(r)|2 = ∑

yijYij ,
where yij denote the coefficients of the spherical harmonics,
and the convolution integral can be easily calculated leading
to the following result:

1

2

∫
|ψ(r)|2

∫ |ψ(r′)|2
|r − r′| d3r′d3r

= 1

2

∫ ∞

0

∫ r

0
4πrA4r ′2 exp

(
− r ′2 + r2

σ 2

)

×
[
y2

00 + 1

5
y2

20

(
r ′

r

)2

+ 2

5
y2

2±2

(
r ′

r

)2]
r ′2dr ′r2dr

+ 1

2

∫ ∞

0

∫ ∞

r

4πr ′A4r2 exp

(
− r ′2 + r2

σ 2

)

×
[
y2

00 + 1

5
y2

20

( r

r ′
)2

+ 2

5
y2

2±2

( r

r ′
)2

]
r ′2dr ′r2dr

= 49 + 86p2 + 49p4

240
σ 9π

5
2 A4 1√

2
.
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