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Driven optical lattices as strong-field simulators
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We argue that ultracold atoms in strongly shaken optical lattices can be subjected to conditions similar to those
experienced by electrons in laser-irradiated crystalline solids, but without introducing secondary polarization
effects. As a consequence, one can induce nonperturbative multiphoton-like resonances due to the mutual
penetration of ac-Stark-shifted Bloch bands. These phenomena can be detected with a combination of currently
available laboratory techniques.
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I. INTRODUCTION

The investigation of ultracold atoms in optical lattices
constitutes a major area of topical research [1–4]. One of the
long-term visions driving this trend stems from the prospect of
using these well-controllable and flexible systems for “emulat-
ing” important quantum many-body problems which still are
not fully understood, such as high-Tc superconductivity [5,6],
and of obtaining information on these by observing their
cold-atom-emulated versions in the laboratory, rather than
attempting necessarily imperfect computer simulations. So far,
interest has been focused mainly on systems governed by a
time-independent Hamiltonian operator, a hallmark example
being provided by the Bose-Hubbard model [7]. However, it is
feasible to subject the lattice atoms to time-dependent external
forces, and thus to study explicitly time-dependent phenomena
[8,9]. Already in 1998 Madison et al. have obtained evidence
for Bloch band narrowing with cold sodium atoms in time-
periodically forced optical lattices [10]; more recently, dy-
namic localization [11,12], photon-assisted tunneling [13], and
coherent control of the superfluid-to-Mott insulator transition
[14] have been demonstrated with Bose-Einstein condensates
in such strongly shaken periodic potentials. Moreover, it has
been suggested to employ oscillating optical lattices for realiz-
ing frustrated quantum antiferromagnetism [15]. In this article
we argue that ultracold atoms in forced optical lattices also
lend themselves to the study of multiphoton-like transitions
under strong-field conditions which are barely accessible with
electrons in solids irradiated by high-power lasers; in particu-
lar, they provide an exceptionally clean testing ground for the
investigation of nonperturbative multiphoton-like resonances.
We first sketch in Sec. II the required setup, and specify
the orders of magnitude of the relevant parameters which
characterize the optical-lattice analogs of strong laser fields.
We then present numerical model calculations in Sec. III,
demonstrating how both perturbative and nonperturbative
resonances manifest themselves. The explanation of these
phenomena makes use of both the spatial periodicity of the
optical lattice and the temporal periodicity of the driving force:
Effectively, one encounters a spatiotemporal crystal, the band
structure of which is controlled by the parameters of the driving
force. This viewpoint is emphasized in the concluding Sec. IV.

II. SIMULATING STRONG LASER FIELDS

A one-dimensional (1D) optical lattice is created,
for example, by shining laser radiation with wavelength
λ = 2π/kL against a mirror and retroreflecting the beam into

itself. An atom of mass M moving in this standing light wave
then experiences a periodic potential with a depth V0 which
is proportional to the laser intensity [2]. Mounting the mirror
on a piezoelectric actuator now allows one to let it oscillate
sinusoidally with a precisely controlled angular frequency ω

and amplitude L, thus shaking the lattice back and forth [14]. In
the laboratory frame, the Hamiltonian describing the particle’s
center-of-mass motion along the lattice direction then reads

Hlab = p2

2M
+ V0

2
cos{2kL[x − L cos(ωt)]}. (1)

The relevant characteristic energy scale is given by the single-
photon recoil energy,

Er = h̄2k2
L

2M
; (2)

typical scaled lattice depths V0/Er range between about 5 and
10. For example, with 87Rb atoms in a lattice erected by light
with wavelength λ = 842 nm one has Er = 1.34 × 10−11 eV,
as corresponding to the recoil frequency νr = Er/(2πh̄) =
3.23 kHz.

Performing a unitary transformation to a frame co-moving
with the lattice, the Hamiltonian acquires the suggestive form
[10,16]

H = p2

2M
+ V0

2
cos(2kLx) − Fx cos(ωt), (3)

with F = MLω2 denoting the amplitude of the inertial force
appearing in this oscillating frame. A meaningful measure for
the strength of this force is the dimensionless parameter [12]

K0 = Fd

h̄ω
, (4)

where d = λ/2 specifies the lattice constant. In terms of
quantities directly accessible in the laboratory, one has

K0 = π2

2

ν

νr

L

d
, (5)

with the driving frequency ν = ω/(2π ), showing that one may
easily realize values K0 > 1 when both ratios ν/νr and L/d

are on the order of unity [11–14]. To appreciate what this
means, consider an atomic analog: A common KrF exciplex
laser provides photons with energy h̄ω = 5.0 eV. Inserting
this into the expression (4), taking the Bohr radius for the
length d, and solving for the electric field strength E = F/e

acting on an electronic charge, one finds that K0 = 1 is reached
only for E = 9.45 × 1010 V/m, which is roughly one-fifth
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of the field formally experienced by a ground-state electron
in the hydrogen atom. In this sense, time-periodically forced
optical lattices can serve even as superstrong-field simulators:
Shaking a lattice with large amplitudes L according to the
Hamiltonian (1) simulates perfectly homogeneous fields acting
on particles in periodic potentials in the regime K0 > 1
of the parameter (4) which is hard to reach with laser-
driven electrons in traditional solids, without introducing,
for example, detrimental polarization effects. Thus, ultracold
atoms in driven optical lattices offer the unique possibility to
study superstrong-field–induced multiphoton-like processes in
periodic potentials in their purest form.

III. PERTURBATIVE AND NONPERTURBATIVE
MULTIPHOTON TRANSITIONS

For illustrating the dynamics that become explorable in
this way, we consider a 1D lattice with depth V0 = 5.7Er. Its
single-particle eigenstates are Bloch waves [17],

ϕn,k(x) = exp(ikx)un,k(x), (6)

with lattice-periodic functions un,k(x) = un,k(x + d) labeled
by a band index n and a wave number k; Fig. 1 depicts the
energy dispersion relations En(k) for the lowest bands n =
1,2,3. In the center of the Brillouin zone, that is, at k/kL = 0,
one has E2(0) − E1(0) = 4.690Er, and E3(0) − E1(0) =
5.544Er. We now take an initial state exclusively populating
the lowest band, as described by

ψ(x,t0) =
∫ +kL

−kL

dkg1(k,t0)ϕ1,k(x,t0) (7)

with a Gaussian k-space distribution

g1(k,t0) = (2kL
√

π�k)−1/2 exp

(
− k2

2(�k)2

)
(8)

centered around k/kL = 0, and set �k = 0.1kL for its width, as
appropriate for an initial ensemble of noninteracting ultracold
atoms. This state then is subjected to pulsed forcing with an
amplitude F (t) which rises from zero to a maximum value,
stays constant for a while, and decreases back to zero. For the
sake of definiteness, we consider conditions as already realized
experimentally in Ref. [14]: We take 87Rb as atomic species
in a lattice with λ = 842 nm, and design the envelope of the
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FIG. 1. Lowest three Bloch bands of a 1D optical lattice with
depth V0 = 5.7Er. The lowest band gap is 2.763Er at k = kL.
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FIG. 2. (Color online) Escape probabilities from the lowest Bloch
band after pulses with linear switch-on and switch-off ramps of 10-ms
duration each, and a holding time of 2 ms, during which a specified
value Kmax

0 of the scaled amplitude (4) is reached. Driving frequencies
ω/(2π ) correspond to 87Rb in an optical lattice with λ = 842 nm.
Light, Kmax

0 = 0.7; black, Kmax
0 = 1.3. Of particular interest is the

unexpected, strong, and narrow resonance at ω/(2π ) = 5.3 kHz.

pulse such that F (t) rises linearly within 10 ms, stays constant
for a holding time of 2 ms, and then is linearly switched off in
another 10 ms. For a driving frequency of 5 kHz, say, the ramp
time of 10 ms corresponds to 50 cycles, so that the relatively
slowly changing envelope F (t) may enable adiabatic following
under nonresonant conditions.

Moreover, we rely on the fact that the fraction of atoms
surviving in the lowest band can be accurately determined,
as demonstrated by the Landau-Zener measurements reported
in Ref. [18]. We therefore compute the escape probability
from the lowest band after each pulse, for specified values of
Kmax

0 reached during the plateau phase. Figure 2 shows results
thus obtained for Kmax

0 = 0.7 and Kmax
0 = 1.3, as functions of

the driving frequency ω/(2π ). The pronounced peak pattern
depends markedly on the maximum driving amplitude; for
instance, a further peak has appeared for Kmax

0 = 1.3 at
ω/(2π ) ≈ 4 kHz which was not visible for Kmax

0 = 0.7. A
more complete picture is provided by Fig. 3, which shows a
two-dimensional plot of the escape probability considered as
function of both ω/(2π ) and Kmax

0 , for the same pulse shape
as taken in Fig. 2.
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FIG. 3. (Color online) Escape probability versus both driving
frequency ω/(2π ) and maximum scaled amplitude Kmax

0 , for the same
pulse shape as employed in Fig. 2.

063612-2



DRIVEN OPTICAL LATTICES AS STRONG-FIELD . . . PHYSICAL REVIEW A 81, 063612 (2010)

TABLE I. Expected and computed resonance frequencies: νres is
an m-photon transition frequency according to Eq. (9), νpeak is the
position of the corresponding peak where it becomes apparent in
Fig. 3. The entry NV indicates that no peak is visible for the pulse
profile employed here.

m n �En,1/(mEr) νres (kHz) νpeak (kHz)

1 3 5.544 17.932 18.00
1 2 4.690 15.170 15.15
2 3 2.772 8.966 9.00
2 2 2.345 7.585 7.60
3 3 1.848 5.977 5.85

– – 5.30
3 2 1.563 5.057 NV

The positions of most of the peaks in Figs. 2 and 3 (i.e., most
of the system’s resonant frequencies) are easily explained:
Because the initial state is narrowly centered around k/kL = 0,
its response is mainly determined by the energies En(0) in the
Brillouin-zone center. Hence, one expects ordinary m-photon-
like resonances between the initial band n = 1 and higher
bands n = 2,3, . . . when the driving frequency complies with
the condition

�En,1 ≡ En(0) − E1(0) = mh̄ω (9)

for integer m. Indeed, listing these expected m-photon tran-
sition frequencies in Table I and comparing them to the
frequencies of the peaks observed in Fig. 3, one generally
finds quite good agreement.

In some instances, however, the numerical solution of the
Schrödinger equation produces a peak which does not fit into
this naive pattern. Most notably, the sharp spike visible in Fig. 2
at ω/(2π ) = 5.3 kHz does not match Eq. (9) for any reasonable
combination of n and m. Such “nonperturbative” events are
our main concern; we predict that they can be detected
experimentally in already existing setups. These particular
resonances admit a systematic explanation which forces us to
go way beyond the perturbative reasoning underlying Eq. (9).

Because the Hamiltonian (1) is periodic both in space (with
lattice period d = π/kL = λ/2) and in time (with driving
period T = 2π/ω), it gives rise to spatiotemporal Bloch
waves [16],

ψn,k(x,t) = un,k(x,t) exp{i[kx − εn(k)t/h̄]}, (10)

with functions un,k(x,t) = un,k(x + d,t) = un,k(x,t + T )
reflecting translational invariance in space and time on equal
footing, and quasienergies εn(k), in generalization of the usual
Bloch waves (6). While quasimomenta h̄k are determined up to
an integer multiple of 2πh̄/d = 2h̄kL, quasienergies are like-
wise determined up to an integer multiple of the photon energy
2πh̄/T = h̄ω. Figure 4 shows one “quasienergy Brillouin
zone” (of height h̄ω) with states originating from the lowest
three Bloch bands for ω/(2π ) = 5.30 kHz, the frequency of the
extraordinary peak in Fig. 2, and K0 = 0.7, 1.0, and 1.3. There
are various avoided crossings indicating multiphoton-like cou-
plings between the bands; however, with �k = 0.1kL the wave
packet evolving from the initial distribution (8) mainly
explores the interval of quasimomenta indicated by the shaded
areas. The quasienergy band originating from the lowest
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FIG. 4. Quasienergies εn(k) for the 1D optical lattice driven with
frequency ω/(2π ) = 5.30 kHz, and scaled amplitudes K0 = 0.7 (a),
1.0 (b), and 1.3 (c). The areas shaded in gray, extending from k =
−0.1kL to k = +0.1kL, mark the range of wave numbers explored by
the initial wave packet. The insets show how the quasienergy band
n = 1 (above) is pinched through with increasing K0 by the band
n = 2, displaced downward by 3h̄ω. This causes the nonperturbative
resonance observed in Fig. 2.

unperturbed energy band n = 1 is shown enlarged in the insets;
with increasing K0 this band is pierced through from below by
the quasienergy band n = 2, displaced down in energy by 3h̄ω

against that representative which is continuously connected
to the bare n = 2 Bloch band. This penetration results in
“active” avoided crossings signaling a strong-field–induced
three-photon resonance; this is responsible for the anomalous
peak at ω/(2π ) = 5.30 kHz.

The dynamics underlying that peak should thus be dis-
cussed in terms of the morphology of the surfaces which
emerge when the quasienergies are considered as functions
of both the wave number k and the instantaneous amplitude F

(or K0): When the driving amplitude F (t) increases during the
upward ramp of a pulse, the initial distribution is shifted almost
adiabatically on its quasienergy surface, parallel to the K0 axis.
As long as the maximum value of K0 lies below the critical
regime where this surface is first being pierced by another one,
the initial distribution is restored with only minor distortion
when the amplitude returns to zero, resulting in negligible
escape probability. However, when the moving distribution
hits an avoided-crossing regime, part of the wave function
undergoes a Landau-Zener-type transition to the anticrossing
band. Both parts of the wave function then evolve separately
on their respective surfaces, until they meet for a second
time during the downward ramp, when they interfere and
thereby establish the final occupation probabilities of the bands
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FIG. 5. (Color online) Stückelberg oscillations of the escape
probability in response to prolongation of the plateau duration thold,
for ω/(2π ) = 5.30 kHz, and Kmax

0 = 1.0 (dashed) and 1.3 (solid line).

involved. This mechanism of splitting and interference implies
that there should be Stückelberg-like oscillations when the
final occupation probabilities are monitored while the length
of the pulses’ plateau segment is varied, because varying the
plateau duration means varying the relative phase picked up
by the two interfering components. Indeed, these oscillations
are clearly visible in Fig. 5.

We remark that the standard perturbative m-photon reso-
nances can be grasped in a similar manner: For frequencies
such that Eq. (9) holds, two quasienergy surfaces are degen-
erate already at F = 0, so that adiabaticity is disabled and the
wave function splits right at the beginning of a pulse [19]. Seen
against this background, a perturbative resonance corresponds
to the removal of a quasienergy degeneracy already present at
F = 0, while a nonperturbative one emerges when ac-Stark-
shifted Bloch bands penetrate each other at a certain finite
driving strength.

IV. CONCLUSIONS

When viewing a time-periodically forced optical lattice
as a spatiotemporal crystal, the natural basis states are the
spatiotemporal Bloch waves (10); the energy bands En(k) of

the undriven lattice turn into quasienergy bands εn(k). The
latter depend not only on the lattice parameters, but also on
the parameters of the driving force. While they differ barely
from the unperturbed energy bands as long as the driving
amplitude is weak, corresponding to values K0 � 1 of the
dimensionless parameter (4), they become strongly distorted,
and even penetrate each other, in the nonperturbative regime.

When subjected to pulsed forcing with an amplitude which
changes slowly compared to the period T = 2π/ω of the
drive, a wave packet can adjust itself adiabatically to a
mere distortion of its quasienergy band. However, when the
wave packet explores a part of a quasienergy band which is
pierced by another one, as exemplified in Fig. 4, Landau-Zener
transitions occur; this mechanism leads to strong nonper-
turbative resonances at frequencies not given by the simple
condition (9). In principle, such resonances should also occur
in solids irradiated by strong laser pulses; however, there
they would be masked by a host of competing effects. The
experimentally proven good controllability of ultracold atoms
in forced optical lattices makes such systems a far better testing
ground for these dynamics.

Our study has been restricted to the single-particle level;
it is reasonable to expect that the phenomena exemplarily
discussed in the present work can immediately be detected with
sufficiently dilute or close-to-ideal Bose-Einstein condensates
in driven optical lattices [12]. Even more, it appears equally
feasible to perform the experiments suggested here under
conditions of sizable interparticle interactions, or even of
strong correlations. The question how the single-particle
scenario outlined above is modified then opens up far-reaching
further lines of investigation, concerning both experiment and
theory.

ACKNOWLEDGMENTS

We thank Oliver Morsch for continuing in-depth discus-
sions of the Pisa experiments [11–14,18]. This work was
supported by the Deutsche Forschungsgemeinschaft under
Grant No. Ho 1771/6.

[1] D. Jaksch and P. Zoller, Ann. Phys. (NY) 315, 52
(2005).

[2] O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179
(2006).

[3] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen,
and U. Sen, Adv. Phys. 56, 243 (2007).

[4] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[5] W. Hofstetter, J. I. Cirac, P. Zoller, E. Demler, and M. D. Lukin,
Phys. Rev. Lett. 89, 220407 (2002).

[6] I. Bloch, Science 319, 1202 (2008).
[7] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch,
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