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Unconventional superfluidity of fermions in Bose-Fermi mixtures
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We examine a two-dimensional mixture of single-component fermions and dipolar bosons. We calculate the
self-enregies of the fermions in the normal state and the Cooper-pair channel by including first-order vertex
correction to derive a modified Eliashberg equation. We predict the appearance of superfluids with various
nonstandard pairing symmetries at experimentally feasible transition temperatures within the strong-coupling
limit of the Eliashberg equation. Excitations in these superfluids are anyonic and follow non-Abelian statistics.
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I. INTRODUCTION

Experimental realization of fermionic superfluidity in a
quantum degenerate ultracold gas [1] started a renewed interest
in the field. Attraction between fermionic particles favors
the pairing of fermions, resulting in superfluidity of the
system. The paired fermions, known as Cooper pairs, can
have different kinds of internal symmetries. The common ones
found in nature have s-wave and d-wave internal structure and
conserve parity and time-reversal symmetry. In superfluid 3He,
the so-called A and A1 phases are characterized by Cooper
pairs with nonzero magnetic orbital momenta. Also, there
was a theoretical prediction of higher-order f -wave pairing
in 3He [2,3]. Classical heavy-fermion noncentrosymmetric
compounds with like UPt3 also show unconventional order
parameter with nonzero angular momentum [4]. Cooper pairs
with chiral (px + ipy)-wave internal structure are believed
to be responsible for the observed superfluidity of electrons
in strontium ruthenate [5]. This kind of pairing breaks the
time-reversal symmetry. The spinless chiral p-wave superfluid
state has formal resemblance to the “Pfaffian” state proposed
in relation to the fractional quantum Hall state with filling
factor 5/2 [6–8]. When confined in a two-dimensional ge-
ometry, excitations in the chiral p-wave superfluid become
so-called non-Abelian anyons. Anyons are particles living
in a two-dimensional plane that, under exchange, behave
neither as bosons nor as fermions. For non-Abelian anyons,
the exchange of two such particles depends on the order
of the exchange [9–11]. Apart from a fundamental interest
in the existence of such particles, non-Abelian anyons find
remarkable applications in the field of quantum information for
quantum memories and fault-tolerant quantum computation
[12]. Finally, admixture of order parameters with nonzero
angular momentum is considered in Refs. [13,14].

Recently, it has been shown that quasiparticles in vortex
excitations of chiral two-dimensional p-wave spinless su-
perfluids obey non-Abelian statistics [15,16]. Using p-wave
Feshbach resonances in fermionic ultracold atoms, such
superfluids can be realized in principle, but this procedure
is very difficult because of nonelastic loss processes [17].
Another proposal for p-wave superfluid with dipolar fermions
has been recently formulated in Ref. [18] with transition
temperature on the order of 0.1εF , where εF is the Fermi
energy. Bose-Fermi mixtures are another candidate for creating
superfluidity in fermions via boson-mediated interactions

[19] and have formal resemblance to phonon-mediated su-
perconductivity in metals. It was found, however, when
the bosons and single-component fermions are completely
mixed, increasing the boson-fermion interaction strength or
fermionic density may induce dynamical instability of the
condensate, resulting in phase separation in the mixture
[19–22]. Near phase separation, inclusion of the dressing of
phonons is predicted to increase the transition temperature
[23]. In Ref. [24], the authors found that close to Feshbach
resonances, a Bose-Einstein condensate of dimers can induce
a strong pairing in the p-wave channel. In Refs. [25–29],
the authors discuss the stability of p-wave pairing in a repulsive
Fermi gas and concentrated Bose-Fermi mixtures within the
framework of the Kohn-Luttinger mechanism by including
vertex correction and retardation effect and their effect on
superconducting transition temperature. In the concentrated
He3-He4 mixtures the inclusion of vertex-corrections in the
framework of the Kohn-Luttinger mechanism as well as the
retardation effect stabilizes p-wave pairing in three and two
dimensions.

In the present article, we discuss another way to generate
high-temperature superfluids in a Bose-Fermi mixture. We
study the property of superfluidity in Bose-Fermi mixtures,
where bosons are interacting via long-range dipolar interac-
tions. We show that the transition temperature for p-wave
superfluidity can become comparable to the Fermi energy.
More importantly, we find that other more exotic Cooper pairs
with f - and h-wave internal symmetries are possible in a
certain range of Fermi energies without bosons and fermions
separating. In addition, we study the excitations in chiral states
of the odd-wave superfluids and point out their non-Abelian
anyonic nature. Experimentally, an available bosonic species,
where prominent dipolar interaction can be achieved using
Feshbach resonance, is Cr52 [30,31]. Another route toward
achieving ultracold dipolar gas is to experimentally realize
quantum degenerate heteronuclear molecules [32], which have
permanent electric moment. Thus, in the near future a quantum
degenerate mixture of dipolar bosons and fermions will be
achievable experimentally.

In Sec. II we review the properties of a dipolar Bose-
Einstein condensate in a pancake trap. We discuss especially
the excitation spectrum of such condensates. Then in Sec. III
we study the boson-fermion interaction and the many-body
effect of fermions on dressing the excitation spectrum of the
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condensate. In Sec. IV, we discuss the interaction between the
fermions mediated by bosons in different angular momentum
channels. By integrating out the bosonic mode, we show that
the absolute value of the interaction between fermions in the
(p,h,f )-wave angular momentum channel are comparable
depending on the Fermi energy. In Sec. V, we go beyond
Migdal’s limit and include first-order vertex corrections to
study fermion self-energy in normal state, as well as the
mass renormalization function in the high temperature limit.
In doing so, we include the full effect of retardation and strong
momentum dependence of the bosonic excitation spectrum and
bosonic propagator. We find that vertex correction reduces the
mass renormalization function. In Sec. VI we calculate the
self-energy in a Cooper-pair channel for (p,f,h)-wave order
parameters including the vertex correction and cross interac-
tion for temperature T > Tc. By deriving a vertex-corrected
strong-coupling Eliashberg equation, we solve for transition
temperatures in different angular momentum channels. In
Sec. VII, we present a brief discussion regarding the possible
occurrence of non-Abelian Majorana fermions for broken
time-reversal p-, f -, and h-wave superfluids. We solve the
Bugoliubov–de Gennes equation for the p-, f -, and h-wave
superfluids in the limit of large distance to find the Majorana
bound states.

II. DIPOLAR BOSE-EINSTEIN CONDENSATE

Our system consists of dipolar bosons mixed with single-
component fermions, confined in a quasi-two-dimensional
geometry by a harmonic potential in the z direction with
the condition mbω

2
b = mf ω2

f , where mb and mf are the
mass of bosons and fermions, respectively, and ωb, ωf is
the trapping frequency. First, we assume that the bosons are
polarized along the z direction. The dipolar interaction reads
Vdd = 4πgdd

3 (3k2
z /k2 − 1) in momentum space, where gdd is the

dipole-dipole interaction strength. For atoms gdd = µ0µ
2
m/4π ,

and for dipolar molecules gdd = µ2
e/4πε0, where µm and µe

are the magnetic moment of the atoms and the electric dipole
moment of the molecules, respectively. We assume that the z

dependence of bosonic density is given by a Thomas-Fermi
profile,

nb(x,y,z) = 3nb

4Rz

(
1 − z2

R2
z

)
,

where the Thomas-Fermi radius Rz is determined variationally.
After integrating over z dependence of the density profile of
bosons, the total interaction takes the form Veff = 8πgdd

5Rz
V(k̃⊥),

where

V(k̃⊥) = 3g

8πgdd
− 1

2

+ 15[2k̃3
⊥ − 3k̃2

⊥ − 3(1 + k̃⊥)2 exp(−2k̃⊥) + 3]

8k̃5
⊥

,

(1)

k̃⊥ = k⊥Rz, and g is the contact interaction between the
bosons. V(k⊥) is repulsive for small momentum and can
be attractive in the high-momentum limit depending on the
contact interaction. Subsequently, we write the Hamilto-
nian of the dipolar bosons in the condensed phase, Hb =∑

�k⊥ �0(�k⊥)β†
�k⊥

β�k⊥ , where β
†
�k⊥

and β�k⊥ are Bugoliubov

operators. The excitation frequency �0(�k⊥) is given in the
units of trap frequency,

�2
0(k⊥�0) = [k⊥�0]4

4
+ g3D

�0

Rz

V
(

k⊥�0
Rz

�0

)
[k⊥�0]2, (2)

where �0 = √
h̄/mbωb. We define a dimensionless dipolar

interaction strength g3D = 8πmbgddnb�0/5h̄2 which will be
used later, where �0 is the ground-state oscillator length. Also,
the phonon propagator D0(iωs,k⊥) in this regime is given by

D0(iωs,k⊥) = − �0(k⊥)

ω2
s + �2

0(k⊥)
, (3)

where bosonic Matsubara frequency ωs = 2s, where s is an
integer. By minimizing the mean-field energy of the Bose-
Einstein condensate within the Thomas-Fermi regime, we find
that

Rz/�0 =
(

2.5g3D

[
1 + 3

16πgdd

])1/3

.

For 3g

4πgdd
> 1, the excitation spectrum of the condensate,

denoted by �(�k⊥), can be divided into two parts: (i) ∼k⊥,
phonon spectrum for small momenta, and (ii) ∼ k2

⊥, free-
particle-like spectrum for higher momenta [33]. For 3g

4πgdd
< 1

and g3D greater than a critical value, �(�k⊥) has a mini-
mum at momentum k̃0 [34], where k̃0 is in intermediate
momentum regime. Following Landau, the excitations around
the minimum are called “rotons.” With increasing g3D, the
excitation energy at k̃0 decreases and eventually vanishes for
a critical particle density. When the particle density exceeds
that critical value, the excitation energy becomes imaginary at
finite momentum and the condensate becomes unstable. The
use of Thomas-Fermi density profile is justified in this region
as the chemical potential necessary to reach roton instability
exceeds h̄ωz [34].

III. BOSON-FERMION INTERACTION AND
DRESSED EXCITATION

In this section, first we disccuss the condensate-fermion
interaction Hamiltonian and dynamical stability of the con-
densate. We find the the dressed propagator for the Bugoliubov
quasiparticles in the presence of fermionic particle hole
excitation within second-order perturbation theory. We then
discuss the appearance of roton instability in the dressed
excitation spectrum of the condensate.

Kinetic energy for the single-component fermions is char-
acterized by the Hamiltonian Hf = ∑

�k⊥[ξ (�k⊥) − εF ]c†�k⊥
c�k⊥ ,

where c
†
�k⊥

and c�k⊥ are fermionic creation and destruction

operators. ξ (�k⊥) = �k2/2mf − εF is the dispersion energy of
the fermions and εF is the Fermi energy. The density profile of
fermions along the z direction is approximated by a normalized
Gaussian with width �f = √

h̄/mf ωf . The fermions are
interacting with the bosons via short-range contact interaction
of strength gbf . After integrating over the z coordinate, the
boson-fermion interaction Hamiltonian reads

Hbf = 3gbfα

4
√

πRz

∑
�k⊥,�q⊥

c
†
�k⊥

c �k′⊥b
†
�q ′⊥

b�q⊥ , (4)
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FIG. 1. Schematic diagram of phonon propagator including the
polarizing effect of the fermions. The thick dashed line corresponds
to the dressed phonon propagator D(iωs,k⊥), while the thin dashed
line corresponds to noninteracting phonon propagator D0(iωs,k⊥).
The solid line corresponds to the free fermion propagator.

where b�q⊥ and b
†
�q⊥ are the bosonic creation and annihilation

operators and α = �f

Rz
exp(−R2

z

�2
f

) −
√

π

2 (
�2
f

R2
z

− 2)erf(Rz

�f
), with

erf(. . .) being the error function. Next we concentrate our
attention on the interaction between the fermions and the
Bugoliubov quasiparticles. The fluctuations in fermionic
density couple to the density fluctuations present in the
Bose-Einstein condensate. Due to the momentum dependence
of the bosonic excitations, the condensate-fermion interaction
becomes a function of momentum. Including the fluctua-
tions in the Bose-Einstein condensate in the x-y plane, the
condensate-fermion interaction Hamiltonian can be written as

Hbf = 3gbf

4
√

πRz

α
∑
�k⊥,�q⊥

γ (�k⊥)c†�k⊥
c�q⊥−�k⊥[b�k⊥ + b

†
−�k⊥

], (5)

where the momentum-dependent coupling constant is given

by γ (�k⊥) =
√

2nbεb(�k⊥)/�0(�k⊥). Due to the interaction
between Bugoliubov quasiparticles and fermions, as shown
in Fig. 1, the bosonic excitations are dressed by the fermions
resulting in the dressing of the bare condensate excitation
spectrum in Eq. (2). This can be derived within second-order
perturbation theory as shown in Fig. 1. Subsequently, the new
phonon propagator is given by

D(iωs,k⊥) = − �0(k⊥)

ω2
s + �2(k⊥)

, (6)

where the dressed excitation spectrum �(k⊥�0) for the dressed
Bugoliubov quasiparticles is expressed by

�(�k⊥) = �0(�k⊥)

√
1 − |γ (�k⊥)|2N0

�0(k⊥)
h(ω,k⊥), (7)

where the two-dimensional Lindhard function

h(ω,k⊥) = 1 − |ω|θ (|ω| − vf k⊥)√
ω2 − v2

f k2
⊥

,

and ω is the transfer of energy. As we are interested in Cooper
instability of the fermions which happens for momenta close
to Fermi momentum, the transfer of energy is of the order of
ω � εF . In this limit the Lindhard function h(ω,k⊥) = 1. For
future use, we define an effective interaction strength between
the bosons and the fermions,

Gbf = 45g2
bfN0

128πgdd�0
α2.

In order to determine dynamical stability of the uniform
condensate, we study the properties of the dressed spectrum
of Bugoliubov quasiparticles in the parameter regime of

3g

4πgdd
> 1, where the bare spectrum has no roton minimum.

From Eq. (7), due to the attractive effect of Bose-Fermi

0 0.5 1 1.5
0

0.4

0.8

k⊥ l
0

Ω
(k

⊥
 l 0) 

FIG. 2. The dressed excitation spectrum �(�k⊥) (in units of h̄ωb)
as a function of �k⊥ for various values of the Bose-Fermi interaction:
Gbf = 0 (upper dash-dotted line), 0.51 (middle dashed line), and 0.57
(bottom solid line). The fixed parameters are mf = 53, 3g

4πgdd
= 0.6,

and g3D = 2.5.

interaction, we notice that roton minimum in the excitation
spectrum �(�k⊥) can develop for a certain critical interaction
strength g3D and Gbf . Consequently, the uniform condensate
will become instable as the excitation spectrum becomes
imaginary at a finite momentum. However, as long as the
roton gap remains positive, the uniform state of the bosons
will be stable or metastable [35]. In Fig. 2, we have plotted
the dressed excitation spectrum for different values of Bose-
Fermi interaction Gbf . With no boson-fermion interaction,
as 3g

4πgdd
> 1, the excitation spectrum has the usual phonon

regime for low momenta and free-particle regime for higher
momenta. For a critical Gbf , that is, Gbf ≈ 0.5 in Fig. 2, in
the region of intermediate momenta, the excitation spectrum
has a roton-maxon character. With further increase of Gbf , the
roton gap goes to zero and the excitation spectrum becomes
imaginary at a finite momentum. Subsequently, the bosons
undergo a phase transition to a state with periodic density
modulation, which finally collapses. This periodic density
wave state can be stabilized for repulsive contact interaction
obeying 3g/8πgdd ≈ Gbf

�0
Rz

[35]. The appearance of a roton
minimum in dressed excitation spectrum in this case is entirely
due to the many-body effect of the fermions on Bugoliubov
quasiparticles. Another point we like to stress is that the roton
instability is always reached before the phonon instability
pointing toward phase separation [19].

IV. EFFECTIVE INTERACTION BETWEEN FERMIONS

In this section we find the interaction between the fermions
mediated by the Bugoliubov quasiparticles in the limit of
T = 0. We then obtain the interaction strength in a different
angular momentum channel, which varies as a function of
dimensionality parameter, defined as η = εF /h̄ωf .

Integrating out the bosonic degree of freedom in Eq. (5) and
inclusion of the effect of dressed excitation spectrum result in
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FIG. 3. Effective fermion-fermion interaction strength λL(0,0) in
the angular momentum channels L = 0 (dashed line), L = 1 (solid
line), L = 3 (dotted line), and L = 5 (dash-dotted line) as functions of
the fermion dimensionality parameter η. We fixed mf /mb = 53/52,
g3D = 4, 3g/8πgdd = 0.6, and Gbf = 0.5.

effective interaction between the fermions [36],

Vph(�q⊥,iωs) = 9g2
bfα

2

16πR2
z

nbq
2
⊥/mb

ω2 − �2(�q⊥)
, (8)

where q2
⊥ = 2k2

F (1 − cos φ) is the momentum exchange be-
tween the interacting particles along the Fermi surface.
At T = 0, assuming momentum transfer occurs around the
Fermi momentum kF , we can expand Eq. (8) as Vph(�k⊥,0) =
−∑

L=...,−1,0,1,... λL(0,0)eiLφ , and the dimensionless effective
interaction between the fermions in angular momentum
channel L is given by

λL(0,0)

= Gbf

∫ 2π

0

exp[iLφ]dφ/2π

ηR2
z

g3D�2
f

(1 − cos φ) + Rz

�0
V

(√
Rz

�f
η(1 − cos φ)

) .

(9)

As we are considering single-component fermions, pairing
will occur in the odd angular momentum channels.

Next we look into the variation of λL(0,0) as a function
of η. For concreteness, we assume a 52Cr-53Cr mixture.
The interaction strengths from Eq. (9) in various angu-
lar momentum channels have been plotted in Fig. 3. We
find that with changing dimensionality, the strengths in
different angular momentum channels vary. Additionally,
|λ1(0,0)| ∼ |λ3(0,0)| ∼ |λ5(0,0)|, and, depending on the di-
mensionality, they can be positive or negative.

FIG. 4. Fermion self-energy in normal state including the first-
order vertex correction. The solid line denotes the fermion propagator
while the thick dashed line denotes the dressed phonon propagator of
Eq. (6).

V. FERMIONIC SELF-ENERGY INCLUDING
VERTEX CORRECTION

In this section, we consider the fermion self-energy in the
normal state due to the interaction between the fermions and
dressed Bugoliubov quasiparticles. In doing so, we explicitly
take into account the momentum dependence as well as the
retardation of the phonon propagator. More importantly, we
also go beyond Migdal’s adiabatic limit and take into account
the effect of vertex correction. This kind of nonadiabatic
correction is introduced to the electron-phonon system in
metals in Refs. [37–39] in the limit of T → 0. Our main result
is that as temperature gets lower, the vertex-corrected mass
renormalization function Z(T ) also gets smaller.

The unperturbed Green’s function for the fermions is given
by G0(�k⊥,iωn) = 1/[iωn − ξ (�k⊥)], where the Matsubara fre-
quency ωn = (2n + 1)πT , n being an integer. The normal
self-energy �n(�k⊥), including the first-order vertex correction,
as shown in Fig. 4, is given by

�n(�k⊥,iωn) = �1
n(�k⊥,iωn) + �v

n(�k⊥,iωn), (10)

where �1
n(�k⊥,iωn) comes from the first diagram in Fig. 4 and

�v
n(�k⊥,iωn) arises from the second diagram, which denotes

the vertex correction. Also,

�1
n(�k⊥,iωn) = −T

∑
m,�q⊥

|γ (�k⊥ − �q⊥)|2

×D(ωm − ωn,�k⊥ − �q⊥)G0(iωm,�q⊥), (11)

�v
n(�k⊥,iωn) = T 2

∑
m,l,�q⊥, �p⊥

|γ (�k⊥ − �q⊥)|2|γ (�k⊥ − �p⊥)|2

×D(ωl − ωn,�k⊥ − �p⊥)D(ωm − ωn,�k⊥ − �q⊥)

×G0(iωm,�q⊥)G0(iωl, �p⊥)G0

× [i(ωl − ωn + ωm), �p⊥ − �k⊥ + �q⊥], (12)

by taking the average over Fermi energy (|�k⊥| ≈ |�q⊥| ≈
kf ) and denoting ξ (�k⊥) = h̄2k2

⊥/2m − εF = x, ξ ( �p⊥) =
h̄2k2

⊥/2m − εF = x ′, and ξ ( �p⊥ − �k⊥�q⊥) − µ = x ′ + 2εF α,
where

α = 1 − cos(φ′) + cos(θ ) − cos(γ ) (13)

and the angles (�k⊥,�q⊥) = φ′, (�k⊥, �p⊥) = θ , and γ = φ′ − θ .
Using the Euler-Maclauren summation formula, we can
transform the sum over l in Eq. (11) to integral as

P (x ′,m,T ,φ′,θ ) = −
∑

l

D(ωl − ωn,�k⊥ − �p⊥)G(iωm,�q⊥)G(iωl, �p⊥)G(i(ωl − ωn + ωm), �p⊥ − �k⊥ + �q⊥)

=
∫ +∞

−∞

dω

2π

�2

ω2 + �2

1

iω − x ′ + iπT

1

(ω + 2mπT ) − x ′ − α + iπT
(14)
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= i�

2(2mπT − iα)

[
θ (x ′)

� + x ′ − iπT
− θ (−x ′)

� − x ′ + iπT
− θ (x ′ + α)

� − 2imπT + x ′ − iπT + α

+ θ (−x ′ − α)

� + 2imπT − x ′ + iπT − α

]
, (15)

where θ (. . .) is the step function. We can rewrite �n(iωn) as

�n(iωn) = χ (iωn) + iωn[1 − Z(iωn)], (16)

where χ (iωn) is the real part of �n(iωn) and Z(iωn) is
known as the mass renormalization function. χ (πT ) shifts the
bare fermion dispersion energy ξ (�k⊥). As we are considering
strong-coupling superfluidity, we only consider the term
corresponding to n = 0 [40]. Then the mass renormalization
functions Z(πT ) and χ (πT ) in the conventional Eliashberg
form is given by

Z(πT ) = 1 + λZ(T ), (17)

χ (πT ) =
∑
m

sgn(ωm)Im[Pv(m,T )], (18)

with an effective coupling constant

λZ(T ) = λ0(0,0) − P 0
v (T ), (19)

and P 0
v (T ) = ∑

m sgn(ωm)Re[P 0
v (m,T )], where

λL(s,T ) = −
∫ 2π

0
|γ (φ)|2D(ωs,φ)(cos Lφ) dφ/2π,

P L
v (m,T ) =

∫ εF

−εF

dx ′
∫ π

−π

dφ′

2π

∫ π

−π

dθ

2π
|γ (φ′)|2|γ (θ )|2

×P (x ′,m,T ,φ′,θ )(cos Lθ ), (20)

and Re[f ] and Im[f ] denote the real and imaginary parts,
respectively, of the function f . In Fig. 5 we plot P 0

v (T ) as a

1 2 3

0.5

1

1.5

ε
F
/π T

P
0 v(T

)/
λ 0(0

,0
)

FIG. 5. Plot of the vertex correction in P 0
v as a function of εF

πT
for

different values of the dimensionality parameter η = 1.5 (dotted line),
η = 1 (solid line), and η = 0.6 (dashed line). We fixed mf /mb =
53/52, 3g

4πgdd
= 0.6,G = 0.5, and g3D = 3.8.

function of temperature for various values of dimensionality
η. From the expression of λL(s,T ) in Eq. (20), we notice that
λL(0,0) is always positive, as shown in Fig. 3. P 0

v (T )/λ0(0,0)
is the expansion parameter for the perturbative scheme. The
correction P 0

v (T ) is always found to be positive, which reduces
the coupling strength λZ(T ). With decreasing temperature,
P 0

v (T )/λ0(0,0) increases before saturating. This saturation
value increases with decreasing dimensionality, as seen in
Fig. 5. For smaller η,P 0

v (T )λ0(0,0) becomes higher than
one for lower temperature, invalidating any perturbative
calculation in that low-temperature region.

Next we calculate the real part of the fermion self energy
χ (πT ). Figure 6 shows a such generic case for the same
parameters as Fig. 5. We find that χ (T ) � λ0(0,0) even in
the temperature region with high P 0

v (T ). Henceforth, we can
neglect the effect of energy shift of the fermions due to the
smallness of χ (T ).

VI. SELF-ENERGY IN COOPER-PAIR CHANNEL AND
TRANSITION TEMPERATURE

In this section we look at the fermionic self-energy in
the Cooper-pair channel, �s(�k⊥,iωn) as represented diagra-
matically in Fig. 7, close to transition temperature Tc. Then
we find transition temperature within strong-coupling limit
considering the terms n = 0, − 1 [40,41]. The main results
of this section are: (i) Depending on the angular momentum
channel, the vertex-corrected interaction strength can increase
as a function of dimensionality and temperature. (ii) The

1 2 3

−0.02

0

0.02

0.04

0.06

ε
F
/π T

χ(
T

)/
λ 0(0

, 0
)

 

 

FIG. 6. χ (T ) as a function of εF

πT
for different values of the

dimensionality parameter η = 1.5 (dotted line), η = 1 (solid line),
and η = 0.6 (dashed line). We fixed mf /mb = 53/52, 3g

4πgdd
= 0.6,

G = 0.5, and g3D = 3.8.
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FIG. 7. Schematic diagram of fermion self-energy in the Cooper-
pair channel including the first-order vertex correction. The solid line
denotes the fermion propagator while the thick dashed line denotes
the dressed phonon propagator of Eq. (6). The first diagram after
the equals sign denotes the direct interaction, the second and third
diagrams denote the first-order vertex corrections, and the fourth
diagram denotes the cross-term.

solution of modified Eliashberg equation supports Tc ∼ 0.1εF

in the strong-coupling limit for p-, f -, and h-wave order
parameters.

For T > Tc, the fermion self-energy in the Cooper-pair
channel, �s(�k⊥), is given by

�s(�k⊥,iωn) = �1
s (�k⊥,iωn) + �v

s (�k⊥,iωn) + �c
s (�k⊥,iωn),

(21)

where �1
s (�k⊥,iωn) comes from the first diagram after the

equals sign in Fig. 7, the second and third diagrams give
equal contribution and denoted by �v

s (�k⊥,iωn), while the last
diagram, denoting cross interaction, is given by �c

s (�k⊥,iωn),
and

�1
s (�k⊥,iωn)

= −T
∑
m,�q⊥

|γ (�k⊥ − �q⊥)|2D(ωm − ωn,�k⊥ − �q⊥)

×G(iωm,�q⊥)G(−iωm, �−q⊥)�s(�q⊥,iωm), (22)

�v
s (�k⊥,iωn)

= 2T 2
∑

m,l,�q⊥, �p⊥

|γ (�k⊥ − �q⊥)|2|γ (�k⊥ − �p⊥)|2

×D(ωm − ωn,�k⊥ − �q⊥)D(ωn − ωl,�k⊥ − �q⊥)

×G(iωl, �p⊥)G(i(ωl − ωn + ωm), �p⊥ − �k⊥ + �q⊥)

×G(iωm,�q⊥)G(−iωm, �−q⊥)�s(�q⊥,iωm), (23)

�c
s (�k⊥,iωn)

= T 2
∑

m,l,�q⊥, �p⊥

|γ (�k⊥ − �p⊥)|2|γ (�q⊥ − �p⊥)|2

×D(ωn − ωl,�k⊥ − �p⊥)D(ωm − ωl,�q⊥ − �p⊥)

×G(iωl, �p⊥)G(i(ωl − ωn − ωm), �p⊥ − �k⊥ − �q⊥)

×G(iωm,�q⊥)G(−iωm, �−q⊥)�s(�q⊥,iωm). (24)

We take the average over Fermi energy(|�k⊥| ≈ |�q⊥| ≈ kf ) and
denote ξ ( �p⊥ − �k⊥ − �q⊥) − µ = x ′ + 2εF β, where

β = 1 + cos(φ′) − cos(θ ) − cos(γ ).

We define the superfluid order parameter in the usual way,
�(iωn) = �s(iωn)/Z(iωn). Due to the single-component

nature of the fermions in the mixture, the order parame-
ter can be expanded in an odd partial wave �(iωn,φ) =∑

L=...,−1,1,... �L(iωn) exp[iLφ]. In the strong coupling limit
we are interested in the terms n = 0 and n = −1. Assuming
the order parameter to be an even function offrequency,
�(πT ) = �(−πT ), we get from Eqs. (21) and (22)

�L(πT )Z(πT ) = λ�
L (0,T )�L(πT ) + λ�

L (−1,T )�L(−πT ),

(25)

where

λ�
L (m,T ) = λL(m,T ) − 2P L

v (m,T ) − P L
c (m,T ) (26)

and λL(m,T ) originate from �1
s (iωn), whereas P L

v (m,T )
comes from the vertex-corrected self-energy �v

s (iωn).
Pc(m,T ) results from the contribution of the cross-term
�c

s (iωn),

P L
c (m,T )

= 2T Im

⎧⎨
⎩

∑
l,φ′,θ

(cos Lθ )|γ (θ )|2|γ (θ − φ′)|2D(l,θ − φ′)

× D(m − l,θ )

[
tan−1

(
εF

(2l + 1)πT

)
− tan−1

×
(

εF

iβ + (2l − 2m − 1)πT

)]
1

β + 2i(m + 1)πT

⎫⎬
⎭.

(27)

Equation (25) is similar to the Eliashberg equation [40] in the
strong coupling limit with additional vertex-corrected inter-
action strengths. Apart from the dependence on temperature,
the effective interaction strength in the angular momentum
channel L,λ�

L (T ), is also a function of dimensionality η and
the boson-fermion mass ratio mf /mb. As noticed in Eq. (20),
P L

v (0,T ) is positive, thus reducing the effective interaction
strength in the Cooper-pair channel. However, the correction
arising from the cross term P L

c (m,T ) can be negative or
positive, as shown in Fig. 8. Also, the sign of P L

c (m,T )
depends on the particular angular momentum channel under
consideration. However, in general, for smaller η,P L

c (m,T )
becomes positive, in turn reducing the interaction strength,
λ�

L (m,T ), in the Cooper-pair channel. However, a higher value
of η changes P L

c (m,T ) to negative, which enhances λ�
L (m,T ).

We also find out that with increasing fermionic mass, P L
c (m,T )

becomes negative for lower values of η, thus enhancing
the interaction strengths in the various angular momentum
channel. The reason behind this is that P L

c (m,T ) depends
on the ratio between the position of the roton minimum k0

and Fermi momentum k0/2kf . With high fermionic mass, kf

increases, resulting in a lower ratio k0/2kf . This in turn makes
the cross term more negative. From this we infer that it is better
to use fermions with higher mass to get a higher interaction
strength λ�

L (m,T ).
Next we look into the dependence of λ�

L (0,T ) on dimen-
sionality η. First we fix πT = εF and plot for various values
of η in Fig. 9. We see that the magnitude of λ�

L (εF ) in
different angular momentum channels changes as η varies.
Also, different angular momentum channels become dominant
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, ε
f)/

λ 0(0
, ε

F
)

FIG. 8. Plot of cross-term interaction P L
c (0,εF ) as a function of

η for mf /mb = 53/52, πT = εF , g3D = 4.0, Gbf = 0.5, and 3g

4πgdd
=

0.6. From the left-hand side, the upper curve (solid line), the middle
curve (dashed line), and the bottom curve (dotted line) correspond to
p-, h-, and f -wave angular momentum channels, respectively.

depending on the dimensionality. This qualitatively resembles
the situation in Sec. III, where without the vertex correction, we
find that different interactions become dominant for different
dimensionalities.

Next we find the transition temperature for fermionic
superfluidity within a perturbative scheme as long as Tc < T ∗,
where T ∗ is the temperature for which the perturbative scheme
becomes invalid. In the situation of more than one solution
of Eq. (25), we have taken the transition temperature to
be the one corresponding to the highest temperature. In the
case of Eq. (25) having no solution for Tc, vertex-corrected
strong coupling superfluidity is not possible and to find the
transition temperature we need to consider the full Eliashberg
equation [40] for all values of n. This regime is not considered

0.8 1.2 1.6 2
−2

0

2

4

η

λ∆ L
(ε

F
)

 

 

FIG. 9. Effective interaction λ�
L (πT = εF ) as a function of η for

mf /mb = 53/52, πT = εF , g3D = 4.0, Gbf = 0.5, and 3g

4πgdd
= 0.6.

From the left-hand side, the top curve (dotted line), the middle
curve (dashed line), and the bottom curve (solid line) correspond
to λ�

3 (T ),λ�
5 (T ), and λ�

1 (T ), respectively.

0.4 0.8 1.2 1.6 2

0.2

0.4

0.6

η

T
c/ε

F

0.8 1.2 1.6

(b)

(a)

2
0.1

0.3

0.5

0.7

η

T
c/ε

F

FIG. 10. Critical temperature Tc, in units of Fermi energy εF , as a
function of η. The top curve (dash-dotted), the middle curve (dashed),
and the bottom curve (solid) correspond to transition temperatures of
p-wave, h-wave, and f -wave order parameters, respectively, with the
following parameters: (a) mf /mb = 1.7, dipole strength g3D = 2.5;
(b) mf /mb = 53/52, dipole strength g3D = 4.0.

in this article as we are only interested in the high-temperature
limit of the transition temperature.

In Figs. 10(a) and 10(b) we plot the solution of Eqs. (17) and
(25). In the case of obtaining multiple solutions for transition
temperatures corresponding to different angular momentum
channels, we considered the channel with maximum transition
temperature to be the solution. In general, we find that
with lowering dimensionality, the nature of the superfluidity
changes from p to h to f wave. Also, we obtained transition
temperature Tc on the order of 0.1εF or more in each angular
momentum channel. By comparing Figs. 10(a) and 10(b) we
notice that, for higher fermion mass, we find that much lower
value of η can be attainable without the perturbation becoming
invalid than for a lower fermionic mass.

Thus, we find that, due to the rotonlike momentum depen-
dence of the dressed excitation spectrum in the Bogoliubov
propagator in Eq. (6), the sign and magnitude of vertex
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corrections depends strongly on the ratio k0/2kf . As we de-
crease η, for a fixed mf ,k0/2kf increases; this in turn enhances
the interaction strength in angular momentum channels L =
3,5, as shown in Fig. 9. This makes the vertex-corrected inter-
action strength in the Cooper-pair channel λ�

L (T ) stronger than
λ�

Z (T ) in Eq. (17). In this case the solution of the conventional
Eliashberg equation gives a transition temperature on the order
of Fermi energy. In Refs. [41,42], using unbalanced Eliashberg
equations, the authors find that transition temperature can
be very high depending on the asymmetry of interactions in
the normal channel and Cooper-pair channel. While deriving
Eq. (25), we have neglected the effect of finite bandwidth of the
system which is on the order of εF . When Tc εF , as is the case
for small η, the renormalization effect of the bandwidth will
become prominent, resulting in a lower transition temperature,
as discussed in Ref. [41].

VII. CHIRALITY AND NON-ABELIAN ANYONS

In this section we briefly discuss the properties of quasi-
particle excitations inside a vortex for different internal
symmetries of the order parameter. By solving a Bugoliubov–
de Gennes equation in the limit of large distance from the
core of the vortex, we show that the zero-energy solutions in
the chiral p-, f -, h-wave states are bounded and non-Abelian
in nature. By considering the superfluid gap equation at low
temperature, the gap is maximum when the order parameter
breaks time-reversal symmetry. From here on we assume that
the order parameters are denoted by �L = �0(�r)[ k

kf
]LeiLθ ,

where kx = k cos θ , ky = k sin θ , and �0(�r) is the center-
of-mass amplitude of the Cooper pairs, with �r being the
center-of-mass coordinate of the pair. For a vortex state,
�0(�r) can be approximated as: (i) �0(�r) = 0, r < ξ, and
(ii) �0(�r) = �0 exp(iφ), r � ξ , where r =

√
x2 + y2 and

tan φ = y/x. ξ is the size of the core of the vortex. The
vortex state of the p-wave superfluids always has a zero-energy
bound quasiparticle state [7,43–45]. Now we discuss the
asymptotic solutions for the zero-energy bound state for f -
and h-wave order parameters. The quasiparticle states in a
single vortex can be found in the limit of large distance
from the vortex core by solving the Bugoliubov–de Gennes
equation,

H0uL + (−i)L
�0

kL
f

eiφ/2

[
e−iφ

(
∂

∂r
− i

r

∂

∂φ

)]L

eiφ/2vL

= EuL,

−H0vL + (i)L
�0

kL
f

e−iφ/2

[
eiφ

(
∂

∂r
+ i

r

∂

∂φ

)]L

e−iφ/2uL

= EvL, (28)

where E is the energy of the quasiparticles with amplitudes
uL,vL. We particularly look for zero-energy solutions with
bounded uL,vL and the property uL = v∗

L [43]. For r → ∞,

we can neglect the terms scaled as r−1 in Eq. (28). Then the
solution of Eq. (28) with different orbital symmetries reads

⎡
⎢⎢⎢⎣

u1

u3

u5

⎤
⎥⎥⎥⎦ ∼

⎡
⎢⎢⎢⎢⎢⎣

exp
(
−mf �0

kf
r
)

exp
(
− k3

f

6mf �0
r
)

e2iφ

exp

(
−

[
k5
f

2mf �0

]1/3
r

)
e4iφ

⎤
⎥⎥⎥⎥⎥⎦. (29)

The zero-energy solution for each odd-wave parameter cor-
responds to a different angular momentum channel of the
quasiparticles inside a vortex core. These results can also
be carried out by applying the “index theorem” [46]. For
temperature smaller than the energy gap �2

0/εF , only the zero-
energy mode is occupied. The quasiparticle operator in that
situation is written as γL = ∫

d2r[uL(r)c†(r) + vL(r)c(r)],
which acts as a Majorana fermion [7,15,43]. γL obeys non-
Abelian statistics and can be used for quantum computing
[16]. In order to perform quantum computational tasks, the
existence of several well-separated vortices is necessary. We
can assume in the weak coupling limit �0 = βεF , where β

is a constant usually less than one. Then substituting �0 in
Eq. (29), we get u1 ∝ exp(−βkf r/2), u3 ∝ exp(−kf r/3β),
and u5 ∝ exp(−kf r/β1/3). For r � ξ , for smaller β,u5 has
a smaller tail than u3 and u1. Thus nonoverlapped states can
be achieved more easily in superfluids in L = 5 and L = 3
channels than in a p-wave channel.

VIII. CONCLUSION

Summarizing, we studied boson-induced superfluidity of
fermions in a mixture of dipolar bosons and single-component
fermions. A system is proposed where a conventional pairing
mechanism gives rise to different exotic internal structures
of the Cooper pairs with strong interactions in respective
angular momentum channels. We find that vertex corrections
play an important role in superfluidity in this mixture and
results in high values of transition temperatures. We like to
stress that the high transition temperatures are a result of the
inclusion of vertex corrections and cross interactions within the
Cooper-pair channel. Importantly, we find that by decreasing
η, we can generate exotic superfluids with p-, f -, and h-wave
internal structures. Excitations in these types of superfluids
breaks time-reversal symmetry and supports quasiparticles
with non-Abelian statistics.
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