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Encoding and decoding phase information in high-n circular wave packets
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We demonstrate theoretically and experimentally the extraction of detailed information on the density matrix
of very-high-n (>300) near-circular Rydberg wave packets through Fourier analysis of the quantum beat and
quantum revival signals. The remarkably long coherence times associated with circular wave packets facilitate
the preservation and read-out of phase information encoded in this matrix. We illustrate the power of the method
by determining the angular localization of the components of a wave packet.
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I. INTRODUCTION

A wave packet comprising a superposition of stationary
states is characterized by its complex expansion coefficients
aj , i.e., their moduli and phases [1]. For high-lying Rydberg
states the density of states is such that the number of parameters
required to uniquely characterize a wave packet becomes large.
In consequence, controlling the initial preparation of the wave
packet as well as later characterizing the evolved state becomes
a challenge. Moreover, protecting quantum coherence, i.e.,
the relative phases between excitation amplitudes, in high-
lying states against decoherence is very difficult due to their
extreme sensitivity to environmental interactions. However,
developing methods for controlled preparation, evolution, and
read out of high-n wave packets is attractive for a number
of applications, including protocols for coherent control and
quantum information storage. In this article, we show that
detailed information on the quantum state amplitudes in
a superposition of near-circular states involving more than
100 stationary eigenstates |n,l,m〉 can be retrieved. This is
accomplished by constructing carefully tailored wave packets
for which the relative phases between adjacent n levels are
only weakly dependent on l and m. The present protocol gives
access to a subset of off-diagonal density matrix elements that
contain information on the relative phases between quantum
state amplitudes. Near-circular states are remarkably robust
against decoherence, allowing this information to be retained
for extended periods. As will be shown, the relative phases
of near-circular states correspond to the geometric angle and
provide information on the angular localization of the wave
packet. By extracting both the phases and population (moduli)
of the individual component n levels, a (partial) reconstruction
of the wave packet is possible.

The relative phases and populations of quantum-state
expansions can be obtained through Fourier analysis of signals
obtained using time-dependent pump-probe methods. Such
approaches have been used to resolve the vibrational states
of molecules [2] or to probe the expansion coefficients
of Rydberg wave packets with n ∼ 30 [3,4]. For higher-n
(n ∼ 300) states protecting the encoded information against
decoherence becomes a major challenge due to their sensitivity
to external perturbations. Nonetheless, we have recently shown
that near-circular wave packets [5] with l � n are surprisingly

robust against decoherence with coherence times � 1µs [6],
equal to hundreds of Kepler orbital periods. Here we show
another remarkable feature of near-circular wave packets: the
phases of reduced density matrix elements ρn,n+1 remain well
defined, i.e., survive, when traced over l and m states of the
wave packet involving nearly a hundred l and m states in each n

level. We show that the phases and moduli of the density matrix
elements can be extracted from Fourier analysis of the quantum
beat signal. In particular, features specific to n � l � m states
allow extraction of the dynamical phase angles of the quantum
superposition which, we show, coincide with the azimuthal
localization angles φ0.

II. FOURIER ANALYSIS OF WAVE PACKET DYNAMICS

The circular wave packets are prepared (see Refs. [5,6]
for more details) by first creating quasi-one-dimensional
(Q1D) very-high-n potassium Rydberg states oriented along
the x axis by direct photoexcitation of selected red-shifted
Stark states from the ground state in the presence of a
weak (∼400 µV cm−1) dc field [7]. The weak dc field is
then turned off and a transverse electric pump field, Fpump,
suddenly applied along the −y axis creating a wave packet
that undergoes Stark precession in the xy plane. After a time
Tpump = π/(3nFpump) this precession [8] transforms the wave
packet to a superposition of high-angular-momentum states
(l ∼ m ∼ n)

|�(t)〉 =
∑

n

′ ∑
l,m

′|an,l,m|e−i�n,l,m(t)|ψn,l,m〉 , (1)

where |an,l,m| is the modulus and �n,l,m is the phase of the
expansion coefficients (atomic units are used throughout). The
primed summation indicates that the sum over n, l, and m is
restricted to a narrow range of n (governed by the strength
of Fpump) and l ∼ m ∼ n. Switch-off of the pump field at this
time (taken as t = 0 for the subsequent field-free evolution)
prevents further Stark precession, creating a near-circular wave
packet, whose radial wave function peaks near r ∼ n2(∼5 µm)
and which is localized near the xy plane [spherical harmonics
Ym

l (θ,φ) with l ∼ m have large amplitudes near θ = π/2]. The
wave packet is initially fairly uniformly distributed in azimuth,
i.e., in φ. Localization in azimuth requires the coherent
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superposition of several m states with properly aligned phases
�n,l,m. If, for example, �n,l,m � mφ0, the wave packet is
localized at φ0 with a width determined by the range of m

included in the superposition [9]. After switching off the pump
field (at t = 0), �n,l,m(t) evolves as �n,l,m(0) − t/(2n2).

The rotating wave packet can be monitored by observing
the expectation value of its y (and/or x) coordinates,

〈y(t)〉 =
∑
n,l,m

′ ∑
n′,l′,m′

′|an,l,man′,l′,m′ |e−i(�n,l,m(t)−�n′ ,l′ ,m′ (t))

×〈ψn′,l′,m′ |y|ψn,l,m〉
�

∑
n,l,m

′2Dn,l,m sin[��n,l,m(t)] ≡
∑
n,l,m

′〈y(t)〉n,l,m , (2)

where Dn,l,m = |〈ψn,l,m|ρy|ψn,l,m〉| is the modulus of
the dipole expectation value for a density matrix with
element 〈ψn′,l′,m′ |ρ|ψn,l,m〉 = an,l,ma∗

n′,l′,m′ and ��n,l,m(t) =
�n+1,l+1,m+1(t) − �n,l,m(t). Here, Dn,l,m can be approximated
as

Dn,l,m � |an,l,man+1,l+1,m+1〈ψn+1,l+1,m+1|y|ψn,l,m〉| , (3)

because, for circular states, the dipole matrix elements effec-
tively couple only states satisfying the condition n′ = n ± 1,
l′ = l ± 1, m′ = m ± 1. Each component 〈y(t)〉n,l,m oscillates
harmonically with amplitude 2Dn,l,m and a time-dependent
phase

��n,l,m(t) = ��n,l,m(0) + 	nt , (4)

where 	n = 1/(2n2) − 1/[2(n + 1)2] closely matches its clas-
sical counterpart (	n � n−3 = ωn) for large n. The entire
wave packet thus behaves as an ensemble of “classical”
electrons in different n, l, m states. The localization condition
�n,l,m = mφ0 is equivalent to the condition ��n,l,m = φ0

and corresponds to the situation where all the components
in Eq. (2) within a single n shell remain in phase at all times.
If this condition is satisfied, 〈y(t)〉 displays strong harmonic
oscillations that can be probed experimentally. However, each
n-component evolves with a different angular frequency
leading to dephasing. Unlike true classical ensembles, the
wave packet is governed by a discrete energy spectrum
leading to quantum revivals when a finite number of n levels
are “dephased” from each other by 2jπ at t = 2jπ/(	n −
	n+1) � 2jπn4/3 (j = 1,2,3, . . .).

Given the relatively simple form of Eq. (2), information on
both the phase and modulus can be extracted from a Fourier
transform of 〈y(t)〉

cn = 1

T

∫ T

0
〈y(t)〉ei	ntdt �

∑
l,m

′Dn,l,me−i��n,l,m(0)+iπ/2 , (5)

provided that T is sufficiently long to resolve individual
n levels, i.e., T � 2π/(	n − 	n+1). When (as here) the
components exhibit angular localization, i.e., the ��n,l,m(0)
are nearly independent of l and m, the complex expansion
coefficients can be factorized as

cn � e−i��n,l,m(0)+iπ/2
∑
l,m

′Dn,l,m . (6)

Since the dipole matrix elements for circular states are nearly
independent of l and m, |〈ψn+1,l+1,m+1|y|ψn,l,m〉| � n2/2, and

the sum of off-diagonal elements of the density matrix can be
determined as∣∣∣∣∣

∑
l,m

′〈ψn+1,l+1,m+1|ρ|ψn,l,m〉
∣∣∣∣∣ = 2

n2

∑
l,m

′Dn,l,m . (7)

This quantity approximates, for a fully coherent ensemble, the
geometric mean of the occupation probabilities for the n and
n + 1 levels. Alternately, it can be interpreted as the probability
for a “classical” electron to evolve with angular frequency
ωn = n−3. [Note that use of Fourier analysis to extract az-
imuthal angles φ0 = ��n,l,m and values of |cn| works only for
n components localized in φ. Those n components not local-
ized in φ produce no time dependence in the observable 〈y(t)〉.]

III. COMPARISON WITH EXPERIMENT

The evolution of 〈y(t)〉 can be probed experimentally
through ionization using a pulsed field directed along the y

axis. Because the survival probability mirrors the expectation
value of the electron y coordinate at the application of the pump
pulse [10], measurements of the survival probability versus the
time delay, τdelay, after turn off of Fpump provide information
on the time development of 〈y(t)〉. In practice, an ionization
pulse with amplitude 100 mV cm−1, duration 6 ns, and rise and
fall times of ∼0.3 ns (sufficient to ionize ∼50% of the initial
Rydberg atoms) is employed and τdelay is varied in steps of
0.4 ns. Results obtained using an incoherent mix of red-shifted
Stark states (ni ∼ 305) and a pump field Fpump = −5 mV cm−1

applied for Tpump = 85 ns are presented in Fig. 1. The initial
buildup of strong periodic oscillations in survival probability
demonstrates the creation of a wave packet strongly localized
in azimuth in near-circular Bohr-like orbit about the nucleus
[5,11]. While this localization is subsequently lost through
dephasing strong quantum revivals are evident at later times.

The localization seen in Fig. 1 indicates that the pump pulse
yields relative phases ��n,l,m(0) that, while depending on n,
are relatively independent of l and m. This strong correlation
(coherence) in phase can be understood using a simple classical
picture [12]. Sudden application of Fpump (directed along the
−y axis) leads to an energy transfer �E = yiFpump, where
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FIG. 1. Measured survival probabilities as a function of the time
delay between turn off of the pump field and application of a
6-ns, 100-mV cm−1 probe pulse in the −y direction for a mix
of parent Q1D ni = 303 and 305 atoms (see text). A pump field
Fpump = −5 mV cm−1 of 85-ns duration is employed.
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FIG. 2. Amplitude and phase of the Fourier transform [Eq. (5)]
of [(a and d)] the measured survival probability (Fig. 1), [(b and e)]
the simulated survival probability (see Ref. [6]), and [(c and f)] the
simulated 〈y(t)〉. The histograms [(d–f)] indicate the amplitude of
the (normalized) Fourier expansion coefficients |cn| and the symbols
[(a–c)] the relative phase ��n,l,m(0) ∼ i log(cn/|cn|) + π/2. The
simulations use an incoherent mix of Q1D red-shifted Stark states
in the n = 303 and n = 305 manifolds (see text). The pump and the
probe fields are as in Fig. 1.

yi is the initial electron coordinate but this is small as the
Q1D state is initially aligned with the x axis, i.e., yi ∼ 0.
However, at the turn off of Fpump the electron probability
density is fairly uniformly distributed around a near circular
orbit of radius r ∼ n2

i . Projection of this distribution onto the
y axis yields a probability density distribution that is strongly
peaked near yf ∼ ±n2

i (yf is the final electron coordinate at
t = 0). On turn off of Fpump that portion with yf ∼ n2

i , i.e.,
with azimuthal angle φ ∼ π/2, gains energy �E = n2

i |Fpump|
moving it to a higher n. That portion with yf ∼ −n2

i , i.e.,
with azimuthal angle φ ∼ −π/2, loses energy moving it to a
lower n level. Thus for each of these “extreme” final states
the quantum number n is directly related to the initial angle
φ0(n) or, equivalently, the relative phase ��n,l,m which is, to
a good approximation, independent of l and m. For n values
between the extrema, two values of φ, φ0(n) and π − φ0(n), are
associated with each n. The corresponding component wave
packets have two peaks in φ and are more “delocalized.”

The spatial information encoded in the modulus |cn| and
phase ��n,l,m(0) � φ0(n) can be extracted through Fourier
analysis of the data (see Fig. 2). |cn| features two peaks near
n = 306 and n = 302. The corresponding phases ��n,l,m are
φ0(n � 306) � π/2 and φ0(n � 302) � −π/2, as expected
for a two-component wave packet (or Schrödinger cat state)
whose components are initially localized on opposite sides
of the nucleus [6]. Figure 2 also includes the results of
simulations undertaken using the quantized classical trajectory
Monte Carlo (QCTMC) method described elsewhere [6].
These simulations employ as an initial state a mix of restricted
microcanonical ensembles mimicking the experimentally real-
ized Q1D state. For ni ∼ 305, the splitting of the ni and ni − 2
Rydberg levels is similar to that of the ground F = 2 and
F = 1 hyperfine levels (∼461.7 MHz) allowing simultaneous
excitation of Q1D n = 303 and 305 states having very similar
spatial characteristics. As evident from Fig. 2, Fourier analysis
of the calculated survival probabilities provides results that
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FIG. 3. (a) Measured and (b) calculated survival probabilities as
a function of the time delay between turn off of the pump field and
application of a 6-ns, 100-mV cm−1 probe pulse in the −y direction
for a mix of parent Q1D ni = 304 and 306 atoms (see text). A pump
field Fpump = −2 mV cm−1 of 170-ns duration is employed.

agree with those obtained experimentally. Calculations of
〈y(t)〉 were also undertaken and Fourier analyzed. The Fourier
spectra are similar to those obtained from the calculated
survival probabilities (see Fig. 2), confirming that the behavior
of the survival probability mimics that of 〈y(t)〉. The data
demonstrate that measurements of survival probabilities can
provide both the magnitude of the �n = 1 coherences as
well as their phase angle, which coincides with the geometric
azimuthal angle. This is all the more remarkable given
that the overall initial degree of coherence is quite small
(Trρ2/(Trρ)2 < 0.01).

Figure 3 shows survival probabilities measured using a
mix of ni = 304 and 306 states following application of a
smaller pump field Fpump = −2 mV cm−1 for Tpump ∼ 170 ns.
The small size of Fpump limits the maximum energy transfer
that accompanies its turn-on or turn-off such that it becomes
comparable to the splitting of the ni = 304 and 306 levels. The
observed buildup of large oscillations in survival probability
again points to transient localization and creation of Bohr-like
wave packets, and strong periodic revivals are present. As
evident from Fig. 4 Fourier analysis of the data yields two
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FIG. 4. Amplitude and phase of the Fourier transform of the
[(a and c)] measured and [(b and d)] calculated survival probabilities
in Fig. 3. The histograms [(c and d)] indicate the amplitude of the
(normalized) Fourier expansion coefficients |cn| and the symbols
[(a and b)] the relative phase ��n,l,m(0).
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peaks in |cn| but the width of the overall n distribution is
substantially smaller than seen in Fig. 2, consistent with the
use of a smaller pump field. However, while in Fig. 2 the phase
varies only weakly across each peak and increases by π from
one to the other, in Fig. 4 a phase jump of π occurs within each
peak. This indicates that each peak derives from just one of the
initial parent states. Indeed, the relative weight of the two peaks
as determined by the integral over |cn|, ∼ 40% for n ∼ 303 and
∼60% for n ∼ 306, is consistent with the weights expected
for a statistically populated incoherent ensemble of ground
hyperfine levels. This interpretation is supported by QCTMC
simulations. The calculated beat and revival pattern agrees with
the experimental data (see Fig. 3) as do the corresponding
Fourier transforms. This agreement is remarkable given the
susceptibility of very high n Rydberg states to even modest
perturbations.

IV. SUMMARY AND OUTLOOK

Circular wave packets feature a direct correlation [Eq. (2)]
between their spatial distribution and the complex expansion
coefficients of Eq. (1). Thus, with proper manipulation of the
spatial distribution by, for example, careful control of the
rise or fall times of the pump field or by breaking up the
pump field into segments and varying the intermediate time

delays, it should be possible to imprint information into the
superposition which can be subsequently retrieved through
measurements of its time evolution. As demonstrated, this can
be accomplished even with an initial statistical ensemble of
states. Fourier spectroscopy is quite robust against statistical
errors. Even when the measured survival probabilities have
limited statistics and display large fluctuations, the Fourier
transform converges relatively quickly because the statistical
noise frequencies can be separated from the Kepler orbital
frequency by recording (as done here) the survival probability
with a much finer time step than the Kepler period. The present
findings suggest future opportunities to exploit this excitation
protocol for quantum information storage and entanglement
of hyperfine and spin degrees of freedom with the spatial
localization of a Rydberg wave packet using coherently excited
hyperfine states.
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