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Coherent control of quantum tunneling in different driving-frequency regions
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We investigate the coherent control of quantum tunneling for a single particle held in a driven double-well
potential. For a moderate-frequency region, we demonstrate that the irregular quantum tunneling is associated
with classically chaotic dynamics. A set of lower resonance-like frequencies is found, for which the coherent
destruction of tunneling in the sense of the time average is illustrated numerically. For a high-frequency region,
it is shown that the particle is located at the bottom of each well alternately for a long time and the time located
in one well can be modulated by adjusting the driving field. The results could be useful for the experiments of
controlling single-particle tunneling [see, e.g., E. Kierig, U. Schnorrberger, A. Schietinger, J. Tomkovic, and
M. K. Oberthaler, Phys. Rev. Lett. 100, 190405 (2008).].
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I. INTRODUCTION

The tunneling dynamics of the periodically driven double-
well system has been an attractive subject in recent years and
many interesting phenomena were demonstrated, such as the
coherent control of self-trapping with nonzero time average
of population imbalance [1], Josephson-like oscillations [2],
and photon-assisted tunneling [3]. As a relatively simple
system, a single particle trapped in a double well has also
been investigated widely [4–7]. Previously, Lin and Ballentine
[8] proved that the tunneling rate can be highly enhanced
due to the periodic modulation associated with chaos. Then
Grossmann et al. [9] found another peculiar effect; namely,
for an appropriate ratio of the driving strength and frequency,
the particle initially located in one well never transfers to
the other. Such an effect was called the “coherent destruction
of tunneling” (CDT), which can be well understood by a
two-state model in the high-frequency approximation [7].
With the development of laser shaping technology [10], the
coherent control of quantum tunneling, either enhancing [8] or
suppressing [9] induced by an external field, has attracted great
theoretical and experimental interest. Recently, E. Kierig et al.
[11] reported the first direct observation of coherent control
for single-atom tunneling in a strongly driven double-well
potential, which has exhibited the importance of studying the
quantum manipulation of a single particle.

In this paper, we investigate the coherent control of
quantum tunneling for a single particle which is initially
static in one of the driven double wells. Three frequency
regions are found based on Newton’s classical equation, and
the tunneling behaviors in different frequency regions are
illustrated numerically. In the moderate-frequency region,
the classically chaotic dynamics and the quantum irregular
tunneling are demonstrated. In the low- and high-frequency
regions, the classical trajectories are distributed regularly
in the initially occupied well, but quantum tunneling may
occur. For a given driving amplitude, quantum treatment leads
to a set of resonance-like frequencies in the low-frequency
region, ωn = ν/n with constant ν and n = 1,2, . . . , which is
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similar to the condition of multiple photon resonance [12–14].
The spatiotemporal evolutions of probability density show
that for the discrete driving frequency ωn the particle is
located completely in the initially occupied well except for
n oscillations in some short time intervals. Thus, the time
average of the probability density displays the approximate
CDT, which is equivalent to the strong self-trapping in the
sense of the time average [1]. In the high-frequency region, it
is shown that the particle is located at the bottom of each well
alternately for a long time and the time located in one well can
be modulated by adjusting the driving field. Interestingly, the
similar phenomenon of long-lasting localization in each well
was observed in the recent experiment of a light coupler [15].
Based on the capacity of current experiments [11], the results
presented in this paper can be tested and used experimentally.

II. QUANTUM TUNNELING AND CONTROL IN
DIFFERENT FREQUENCY REGIONS

We consider a single particle held in a symmetric quartic
double well and driven by a time-dependent external field. The
corresponding one-dimensional Schrödinger equation reads
[16]

i
∂

∂t
�(x,t) = −1

2

∂2

∂x2
�(x,t) + V (x,t)�(x,t), (1)

where the driven double-well potential is in the form

V (x,t) = bx4 − [a − ε sin(ωt)]
x2

2
. (2)

For simplification, hereafter we adopt dimensionless parame-
ters, where the energy is normalized in units of h̄ω0 with ω0

being the harmonic frequency around the deepest well [17].

The length, time, and driving frequency are in units of
√

h̄
mω0

,

ω−1
0 , and ω0, respectively, and the constants a and ε are in

units of mω2
0 and constant b is in units of m2ω3

0
h̄

.
In this model, the double-well potential is symmetric during

the time-evolution process as in Fig. 1, where a few lowest
eigenenergy levels in the absence of the driving field (ε = 0)
are shown numerically. It is obvious that the potential function
obeys the periodicity V (x,t + T ) = V (x,t) with T = 2π/ω,
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FIG. 1. (Color online) Sketch of the driven double-well potential
V (x,t) with a = 5, b = 0.25, and ε = 3 for the times ωt = 0 (solid
line), ωt = 0.5π (dash-dotted line), and ωt = 1.5π (dashed line).
The horizontal lines denote some lower eigenenergy levels of Eq. (1)
in the absence of the driving force (ε = 0), with the same potential
parameters a and b. The lines below the barrier occur in doublets.
The quantities plotted in every figure of this paper are dimensionless.

and the barrier height between wells is varied periodically with
the lowest barrier at tk(ω) = (2k+0.5)π

ω
and the deepest well at

t ′k(ω) = (2k−0.5)π
ω

(k = 0,1,2, . . .).
To show the relation between quantum treatment and the

corresponding classical treatment, at first we consider classical
dynamics of the double-well system governed by Newton’s
classical equation

ẍ − [a − ε sin(ωt)]x + 4bx3 = 0. (3)

The parameters are chosen as a = 5 and b = 0.25 throughout
this paper. In addition, we set the initial position and mo-
mentum as x0 = √

5 and p0 = 0, which means the particle
is located at the bottom of the right well initially with zero
momentum. From Eq. (3), the time evolution of the classical
trajectory x(t) is plotted for different driving parameters, as
in Fig. 2. Given driving amplitude ε = 3, three frequency
regions are shown as in Fig. 2(a), where the particle crosses
over the barrier centered at x = 0 in the moderate-frequency
region ω ∈ [0.5,8.9]. But the classical crossovers do not occur
in the low- and high-frequency regions. By the numerical
experiments, we find that the classical crossover corresponds to
a chaotic orbit in phase space as in Fig. 3(a). However, in other
frequency regions, the classical dynamics are regular and the
classical trajectories are located in the initially occupied well
as in Figs. 3(b) and 3(c). By decreasing the driving amplitude

FIG. 2. (Color online) Time evolution of the classical trajectories
x(t) for different driving frequencies. The parameters are chosen
as a = 5, b = 0.25, and (a) ε = 3, (b) ε = 2. Initial position
and momentum of the particle are set as x0 = √

5 and p0 = 0,
respectively.

to ε = 2, the moderate-frequency region becomes small as
in Fig. 2(b), which indicates that the range of the driving-
frequency region depends on the driving amplitude. In this
paper, we focus on the quantum tunneling behaviors of single
particles for the three different driving-frequency regions.

A. Chaotic behavior in the moderate-frequency region

First, we consider the quantum dynamics of a single
particle in the moderate-frequency region, where the classical
dynamics governed by Eq. (3) may be chaotic [8]. The initial
state is set as the Gaussian wave packet [16]

�(x,t = 0) = (σπ )1/4 exp

[
− (x − x0)2

2σ

]
, (4)

with the center position x0 = √
5 and expectation value of

momentum p̄0 = 0; the spread of the initial packet is taken as
σ = 0.3. The boundary conditions �(x = ±∞,t) = 0 are sat-
isfied in the numerical calculations. Numerically, we find the ir-
regular quantum tunneling for the moderate-frequency driving,
as in Fig. 4, where spatiotemporal evolution of the probability
density |�(x,t)|2 is exhibited for the same driving parameters
as in Fig. 3(a). The distribution of probability density is
irregular and at any time it fills the two wells centered at x > 0
and x < 0, respectively. It exhibits a high tunneling rate, an
important characteristic of the chaos-assisted tunneling [16].

B. CDT in the sense of the time average in the
low-frequency region

Now we investigate the quantum dynamics for low-
frequency driving from Eq. (1), where the classical trajectory
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FIG. 3. (Color online) Stroboscopic plots of the classical trajectories in phase space for the driving parameters ε = 3 and (a) moderate
frequency, ω = 2.5; (b) low frequency, ω = 0.45; and (c) high frequency, ω = 9.6. The initial conditions are the same as those in Fig. 2.
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FIG. 4. (Color online) Spatiotemporal evolution of the probability
density with parameters ε = 3, ω = 2.5, and initial state of Eq. (4).

located in the initially occupied well is regular, as illustrated in
Fig. 3(b) for ε = 3, ω = 0.45 (ω < 0.5). For the same driving
amplitude ε = 3, a set of resonance-like frequencies, ωn =
ν/n with constant ν = 0.0708 and n = 1,2, . . . , is found
by numerical methods. Periodic spatiotemporal evolution of
the probability density is exhibited for the driving frequency
ω1 = 0.0708 as in Fig. 5(a), where the quantum tunneling of
the probability density wave packet occurs around the lowest
barrier at t = tk(ω1). In a short time interval δt , the wave packet
tunnels through the lowest barrier and rapidly returns to the
initially occupied well; then it is located in the initial well for
a long interval 	tk(ω1) = tk+1 − tk − δt ≈ 77 with δt ≈ 7 =
	tk(ω1)/11 being the time located in the other well. Such a
process is repeated periodically. So the quantum probability in
the right well reads PR(t) = ∫ ∞

0 |�(x,t)|2dx = 1, except for
the short time δt .

Keeping the strength ε = 3 and decreasing the driving
frequency to ω2 = ν/2 = 0.0354, the spatiotemporal evolu-
tion of the probability density is illustrated in Fig. 5(b). It is
shown that the probability density wave packet returns to the
initially occupied well after four tunneling events around the
lowest barrier, where the wave packet is located completely
in the initial well in the time interval 	tk(ω2) = tk+1 − tk +
δt − 2δt ≈ 11 × 2δt = 154 and the time in the other well is
approximately 2δt during one time period. In Figs. 5(c) and
5(d), similar results are found for ω3 = ν/3 and ω4 = ν/4. In
fact, for any ωn = ν/n with n = 1,2, . . . , we have obtained
	tk(ωn)/(nδt) ≈ 	tk(ω1)/δt ≈ 11; that is, the time located
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FIG. 6. (Color online) Numerical result of parameter ν vs driving
strength ε (black dots) and the function ν(ε) = 0.002 85ε3 (dash-
dotted line).

in the initially occupied well 	tk(ωn) is 11 times that of the
time in the other well, nδt . This implies the interval 	tk(ωn) =
n	tk(ω1), which increases with increasing n. The result reveals
that the particle is always located in the initially occupied well
except for a short time nδt for driving frequency ωn. So the
time-averaged probability is P R = 1

mT

∫ mT

0 PR(t) dt ≈ 0.92,
with m an integer, which reveals the approximate CDT in the
sense of the time average. Of course, the CDT in the sense of
the time average is different from that reported by Grossmann
et al. [9], which can be well understood by a two-state model
in the high-frequency approximation [7]. However, the CDT
presented here is obtained in the low-frequency region by
solving the exact Schrödinger equation (1) instead of the
approximate two-state model. Interestingly, the CDT in the
sense of the time average is similar to the strong self-trapping
phenomenon, which has been realized in an experiment based
on Bose-Einstein condensates [1].

When the driving strength ε is changed, we find that
the parameters ν and ωn depend on ε. In Fig. 6, we show
the parameter ν versus the driving strength ε numerically by
the black dots and the approximate functional relation between
ν and ε, ν(ε) = 0.002 85ε3, by the dash-dotted line. To our
surprise, the relation of the discrete driving-frequency ωn =
ν/n is similar to the condition of multiple photon resonance
[12–14], where ωn = 	E/n with 	E the potential difference
of two adjacent wells. It is well known that the multiple photon
resonance can cause CDT to depend on the quantum number
n [12–14]. However, for the driving frequency ω �= ν/n, the
particle possesses an approximately equivalent time-average

FIG. 5. (Color online) Spatiotemporal evolution of the probability density for the driving strength ε = 3 and frequencies ωn = 0.0708/n

with (a) n = 1, (b) n = 2, (c) n = 3, and (d) n = 4. The initial state is given by Eq. (4).
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FIG. 7. (Color online) Spatiotemporal evolution of the probability
density for ε = 3, ω = 0.059.

value of probability in the two wells, as shown in Fig. 7, where
the quantum probability obeys P R ≈ P L ≈ 0.5. So, the CDT
in the sense of the time average can be obtained only for
the discrete resonance-like frequency ωn in the low-frequency
region. This result is very interesting and may be important for
the design of a single-particle device [18].

C. Long-lasting localization in the high-frequency region

When a particle is located at the bottom of one well for a
long time, we could call the phenomenon long-lasting local-
ization, compared to similar behavior in the recent experiment
with a light coupler [15]. For the high-frequency case, we
demonstrate such a long-lasting localization in this subsection.
Usually, the high-frequency field varies so rapidly that the
wave function is not able to respond appreciably and thus
remains nearly constant over one period [19]. This assumption
is suggested by exploring the behavior of the high-frequency
driven harmonic oscillator [20], where the transformation
�(x,t) = 
(x,t)ei ε

2ω
x2 cos(ωt) with 
(x,t), a slowly varying

function of time, is adopted. Correspondingly, the probabil-
ity density becomes ρ(x,t) = |�(x,t)|2 = |
(x,t)|2, and the
time-dependent driving field µ(x,t) = ε

2x2 sin(ωt) is replaced

by the time-independent effective potential µeff = ε2

4ω2 x
2 in

the high-frequency approximation [19]. This means that the
physical effect on the tunneling dynamics of the particle is
related to the ratio ε/ω for a high enough driving frequency ω.

Let us now numerically investigate the long-lasting local-
ization from Eq. (1) with high driving frequency, where the

classical trajectory is regularly located in the initially occupied
well. Spatiotemporal evolution of the probability density wave
packet is exhibited for ε/ω = 0.32 as in Fig. 8(a), where the
wave packet stays at the bottom of the initially occupied well
in the half-period τ (ε/ω)/2, with τ (0.32) ≈ 330 being the
evolution period in time, and then rapidly tunnels to the other
well. Clearly, the wave packet is located at the bottom of each
well alternately and the evolution period τ is much longer than
the driving period T = 2π/ω for any driving frequency in the
high-frequency region ω > 8.9. In Figs. 8(b), 8(c), and 8(d),
we display the spatiotemporal evolutions of the probability
density wave packet for the lower ratios ε/ω = 0.28, 0.2, and
0.1, respectively. It is shown that the time located in each
well, τ (ε/ω)/2, rapidly increases with the decrease of the
ratio ε/ω. When ε/ω = 0.1 is considered, the time τ (0.1)/2
exceeds 1500, which indicates that the particle stays in the
initially occupied well for quite a long time. A similar experi-
mental phenomenon was observed recently for light couplers
[15].

III. SUMMARY AND DISCUSSION

In summary, we have investigated the tunneling dynamics
of a single particle initially located in one of the driven double
wells with zero momentum. Three frequency regions are
given based on Newton’s classical equation. In the moderate-
frequency region, it is demonstrated that the classical dynamics
is chaotic and the quantum tunneling is irregular. For other
frequency regions, the classical dynamics are regular and
corresponding tunneling behaviors exhibit some interesting
features. In the low-frequency region, the spatiotemporal
evolutions of probability density show that the particle is
always located in an initially occupied well, except for n

oscillations around the lowest barrier for a set of discrete
driving frequencies ωn, and the time evolution of probability
density exhibits the approximate CDT in the sense of the
time average. Such a resonance-like phenomenon is similar
to multiple photon resonance [12–14]. In the high-frequency
region, the long-lasting localization alternately in each well
is demonstrated and the time located in one well increases
with the decrease of the ratio ε/ω. This is similar to the
recently reported result on light evolution in dynamically
modulated directional couplers [15]. The results presented in
this paper can be easily verified under presently accessible
experimental conditions for controlling single-atom tunneling
[11].

FIG. 8. (Color online) Spatiotemporal evolution of the probability density for different driving parameters: (a) ε/ω = 0.32, (b) ε/ω = 0.28,
(c) ε/ω = 0.2, and (d) ε/ω = 0.1. The initial state is given by Eq. (4).
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