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We report on the laboratory implementation of quantum-control-mechanism identification through Hamiltonian
encoding and observable decoding (HE-OD). Over a sequence of experiments, HE-OD introduces a special
encoded signature into the components of a previously determined control field expressed in a chosen
representation. The outcome appears as a modulated signal in the controlled system observable. Decoding the
modulated signal identifies the hierarchy of correlations between components of the control field in a particular
representation. In cases where the initial quantum state and observable operator are fully known, then HE-OD
can also identify the transition amplitudes of the various Dyson expansion orders contributing to the controlled
dynamics. The basic principles of HE-OD are illustrated for second harmonic generation when the components
of the field representation are simply taken as the pixels in the pulse shaper. The outcome of HE-OD agrees well
with simulations, verifying the concept.
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I. INTRODUCTION

The control of quantum dynamics phenomena is receiving
increasing attention, and a practical paradigm is closed-loop
learning control which optimizes an output signal through an
algorithmically guided adaptation of the system controls [1].
Closed-loop-based quantum control has been successfully
achieved in a growing variety of applications [2] including
selective molecular dissociation [3], discrimination of almost
identical molecules [4], selective multiphoton ionization [5],
tailored x-ray generation [6], control of lattice vibrations [7],
spatio-temporal control of nanostructures [8], and even the
control of the shape of a wave function [9]. The detailed
structure of the associated optimal control fields is often non-
intuitive, especially for systems driven in a highly nonlinear
fashion and for those with complex dynamics. Thus, a physical
interpretation of optimal control fields is a challenging task.
Furthermore, there will typically be multiple sets of controls
producing the same outcome [4]. This situation implies that
different mechanisms can give rise to the same output yield. At
this stage of development in controlling quantum dynamics,
the notion of mechanism is still subject to definition. An
important goal is to learn as much as possible about control
mechanism directly from appropriate experiments without re-
sorting to dynamical simulations, which are difficult to reliably
perform in complex systems. In order to address the latter
challenges, a laboratory-implementable technique referred to
as mechanism identification through Hamiltonian encoding
and observable decoding (HE-OD) has been proposed [10–14].
HE-OD deduces mechanistic information by encoding the
Hamiltonian through a sequence of specifically designed
perturbations to the control and decoding the resultant system
response. The mechanism is then obtained in the form of
correlations among the control variables, which can be further
analyzed to yield pathway amplitudes in the Dyson expansion
of the evolution operator [13].

In contrast to HE-OD, other methods to extract mechanistic
information generally seek to perform modeling using the
observed control field, possibly along with additional support-
ing experimentation. For example, mechanistic information
has been obtained from numerical simulations aided by

pump-probe experiments [15–17]. Characterization of the
optimum field along with previous knowledge about the system
has been used to guide modeling [18,19]. The complexity of the
problem may be reduced in some circumstances by identifying
an important subset of control variables, and in favorable cases
this can lead to obtaining a new control field basis better suited
to the problem at hand [20–24]. In some situations it is possible
to restrict the learning algorithm to search over a subset
of fields whose action on the system is already physically
understood [25]. The full set of control fields deduced by
the learning algorithm in every iteration toward optimization
has been subjected to statistical correlation analyses to obtain
mechanistic information [26,27]. All of these methods address
particular aspects of control mechanism assessment, and they
may be viewed as providing information complementary to
that extracted from HE-OD.

Ideally, mechanistic information could be determined in
real time during feedback-control experiments. The additional
information for the learning algorithm could be used to redirect
the controls toward achieving a desired dynamical goal while
also steering the system along a favorable mechanistic path.
Such a real-time procedure would only be possible when
the method for identifying the mechanism does not require
computationally intensive modeling of the system dynamics.
HE-OD has the capability of real-time laboratory operation,
which will be demonstrated in a follow-up work. The present
paper aims to present the basic principles of HE-OD and
provide a simple laboratory implementation to verify these
principles.

The paper is organized as follows. In Sec. II HE-OD is
expressed in a general fashion including for cases when little
a priori information is known about the system. Section III
specifies the field representation used in this work as well as the
particular encoding procedure employed in the experiments.
In Sec. IV HE-OD is applied to the simple case of second
harmonic generation (SHG). This initial test case was chosen
for its well-documented behavior [28], which permits easy
testing of HE-OD by comparing the expected results to
the experimental findings. Importantly, HE-OD is a generic
mechanism analysis tool and the simple illustration here
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shows the basic elements which may now be implemented
in more complex systems. The laboratory setup is also
discussed in Sec. IV as well as the results of the experimental
implementation of HE-OD. Section V presents a mechanism
analysis from the experimental results of Sec. IV and compares
this with simulations. Concluding remarks are given in
Sec. VI.

II. PRINCIPLES OF HE-OD

The HE-OD technique is set forth here for a quantum
system under manipulation by an optical electric field E(t).
The system Hamiltonian is considered to have the form
H = H0 − µE(t), where H0 is the unperturbed Hamiltonian
and µ is the dipole moment operator. The HE-OD technique
can be applied in the laboratory without knowledge of H0 and
µ. Additionally, the Hamiltonian could even have an unknown
form, as HE-OD is a means for directly identifying the
relationship between the input control field structure and the
output dynamical response. However, knowledge of the form
of the Hamiltonian [e.g., H = H0 − µE(t)] greatly aids in
interpreting the input–output relationship revealed by HE-OD.
In this section we adopt the dipole coupling form for clarity of
illustration.

The system dynamics is governed by the evolution operator
U (t) satisfying the time-dependent Schrödinger equation in the
interaction representation,

ih̄
dU (t)

dt
= µI (t)E(t)U (t), (1)

with µI (t) = −exp(− i
h̄
H0t)µ exp( i

h̄
H0t) and U (0) = I . The

basic HE-OD concepts are presented here in the context
of a closed quantum system undergoing unitary dynamics.
An extended formulation also could be considered for open
systems with nonunitary dynamics. The laboratory implemen-
tation of HE-OD is the same in both cases, but the analysis
and interpretation of the results depend on the particular
circumstances. The solution of Eq. (1) can be expressed in
terms of the Dyson expansion

U (T ) = I +
∞∑

n=1

(
1

ih̄

)n

U (n)(T ), (2)

where

U (n)(T ) =
∫ T

0

∫ tn

0

∫ tn−1

0
· · ·

∫ t2

0
µI (tn)E(tn)µI (tn−1)E(tn−1)

× · · ·µI (t1)E(t1) dt1 · · · dtn−1dtn, (3)

with the index n referring to the order [i.e., the power of E(t)
in the particular term] of U (n). Here T is the target time for
performing an observation, but it could also be considered as
a variable labeling a sequence of temporal observations. The
convergence of the Dyson expansion for realistic pulses of
finite energy was proved in Ref. [10]. The ultimate goal of HE-
OD is to identify the significant contributing terms U (n), n =
1,2, . . . , directly from laboratory data. To proceed further a
practical representation needs to be chosen for the field E(t).

The following general expression is useful for illustrating the
basic field encoding concept:

E(t) =
σ∑

p=−σ

apεp(t). (4)

The number of expansion functions is 2σ + 1, and the set
{εp(t)} is assumed to be appropriately chosen for the particular
intended application. Since the field E(t) is real, if the basis
functions εp(t) are taken as complex, then it may be convenient
to choose ε−p(t) = ε∗

p(t). The most common example is the
Fourier representation with spectral components εp(t) = eiωpt ,
which is a natural basis for pulse-shaping experiments where
the expansion coefficients ap = |ap|eiφp can be directly set
by controlling the shaper amplitudes |ap| and phases φp,
with |a−p| = |ap| and φ−p = −φp. Virtually any other field
representation may be utilized with HE-OD, as dictated by
the physics of the problem, including expansions in terms
of Gaussian or polynomial-phase functions, time-frequency
functions, etc. [23,29,30]. Notwithstanding the freedom in
choosing the representation of the field, the mechanistic insight
obtained by HE-OD will be in reference to the particular field
form. Thus, distinct physical insights about the mechanism
could arise from the same field E(t), according to how it is
represented for a HE-OD analysis.

The quantum system evolution following Eq. (1) results in
a nonlinear mixing of field components, as evident in Eq. (3).
Substituting Eq. (4) into Eq. (3) yields

U (n)(T ) =
∑
pn

∑
pn−1

· · ·
∑
p1

(
1

ih̄

)n

Un(p1···pn)(T ) (5)

and

U (T ) = I +
∞∑

n=1

( ∑
pn

∑
pn−1

· · ·
∑
p1

(
1

ih̄

)n

Un(p1···pn)(T )

)
(6)

with

Un(p1···pn)(T ) =
∫ T

0

∫ tn

0
· · ·

∫ t2

0

×µI (tn)apn
εpn

(tn)µI (tn−1)apn−1εpn−1 (tn−1)

× · · · µI (t1)ap1εp1 (t1)dt1 · · · dtn−1dtn, (7)

The collection of physically relevant matrix elements of
Un(p1···pn)(T ),n = 1,2, . . . , of significant magnitude for the
system observable specifies the control mechanism in the
context of HE-OD.

The first step in HE-OD is to encode the field as follows.
Consider a sequence of experiments labeled by an index k =
1,2, . . . with the control field in the kth experiment E(t,sk)
now labeled by the variable sk and given by

E(t,sk) =
σ∑

p=−σ

aphp(sk)εp(t). (8)

Here hp(sk) is a time-independent encoding function which
depends on the variable sk,k = 1,2, . . . . As will be shown in
the following, it is desirable to choose the encoding functions
hp(sk) with some specific properties to facilitate the extraction
of mechanistic information from dynamical observations. In
practice some of the functions hp(sk) may be set to 1 to
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selectively encode the remaining portion of the field to deduce
its particular role in the controlled dynamics. Substituting the
encoded field of Eq. (8) in place of the original field of Eq. (4)
into the terms of Eq. (6) results in the modulated evolution
operator

U (T ,sk)

= I +
∞∑

n=1

(∑
pn

∑
pn−1

· · ·
∑
p1

hpn
(sk)hpn−1 (sk) · · · hp1 (sk)

×
(

1

ih̄

)n

Un(p1···pn)(T )

)
. (9)

Each term Un(p1...pn)(T ) in the expansion of the evolution
operator is now modulated by an associated product of
encoding functions hpn

(sk)hpn−1 (sk) · · · hp1 (sk).
The expectation value of an observable operator O is

given by

〈O(T )〉 = Tr[ρO] = Tr[U (T )ρ(0)U †(T )O], (10)

where ρ(0) is the initial density matrix. In Eq. (10) the observ-
able operator O is considered as time independent, but that
could be relaxed if appropriate. In addition, as remarked earlier,
T could be a running variable for temporal observations. Upon
encoding the field in Eq. (8), the observable expectation value
in Eq. (10) becomes modulated,

〈O(T ,sk)〉 = Tr[U (T ,sk)ρ(0)U †(T ,sk)O]. (11)

The set of observable modulating functions is defined as the
collection of all possible products of the encoding functions
hp(sk). In practice, it is not necessary to consider “all
possible” products, as the series in Eq. (9) will converge to
some acceptable tolerance (e.g., dictated by the laboratory
observable noise level) at a finite order n. If the relevant set
of modulating functions forms an orthogonal basis set, then
the measured modulated data 〈O(t,sk)〉,k = 1,2, . . . , can be
decoded by projecting them onto the members of the basis set.
This attractive orthogonality property leads to some practical
choices for encoding functions, as shown in the following. It
is also possible to use a nonorthogonal basis set, but then the
decoding process becomes more complex, calling for special
attention to data noise and associated instabilities in extracting
the desired mechanistic coefficients. Hereafter, we will assume
that the encoding functions form an orthonormal product set.
A decoded projection of order m is defined as

P (j1, . . . ,jm) = 1

N

N∑
k=1

〈O(T ,sk)〉F ∗(j1, . . . ,jm; sk),

∀jk,k, (12)

where N is the number of experiments, and the corresponding
modulating function is given by

F (j1, . . . ,jm; sk) = hj1 (sk)hj2 (sk) · · ·hjm
(sk). (13)

Equations (9), (11), and (12) show that the projection
P (j1, . . . ,jm) is bilinear in the matrix elements of U (T ) and
linear in a product of appropriate matrix elements of ρ(0) and
O . If the matrix elements of ρ(0) and O are known, then
it is possible to obtain the matrix elements of Um(j1...jm)(t)

from the system of equations (12). A procedure for solving
these equations in the case where ρ(0) and O correspond
to making a pure-state transition is given in Ref. [14], and
the logic may be extended to mixed states and more general
observables.

If neither ρ(0) nor O is fully known, it is still possible
to obtain valuable information from the extracted projections
P (j1, . . . ,jm). As shown in the following, the latter projec-
tions, readily decoded from 〈O(T ,sk)〉, provide mechanistic
insights by revealing the set of nonlinear correlations among
the control field variables contributing to the observable. The
extraction of the projections P (j1,j2, . . . ,jm) is the first data
analysis step with HE-OD, and in some cases this view of
mechanism may suffice. HE-OD can be adapted to the nature
of the information, both known a priori and desired, from the
controlled system dynamics by designing a particular encoding
scheme consistent with these circumstances. When little is
known about the system dynamics, reducing the encoding to
a small portion of the control field variables makes it possible
to simplify the decoding. To see this, consider the scenario
where most of the field components are not encoded, or,
equivalently, where most of the encoding functions in Eq. (8)
are fixed at hp(sk) = 1, ∀sk , and just a small set of m′ functions
(i.e., m′ � 2σ + 1) actually vary with respect to sk . With this
choice, the modulated evolution operator is now given by

U (T ,sk) = U0(T ) +
∞∑

n=1

(∑
pn

∑
pn−1

· · ·
∑
p1

hpn
(sk)hpn−1 (sk)

× · · · hp1 (sk)

(
1

ih̄

)n

Un(p1...pn)(T )

)

= U0(T ) + Umod(T ,sk), (14)

where U0(T ) is the sum of all totally nonmodulated terms
of the evolution operator expansion, and Umod(T ,sk) has a
dependence on sk through the varying encoding functions.
Since the encoding is minimal, U0(T ) is approximately equal
to U (T ) and a reasonable expectation is that ||U0(T )|| ≈ 1 	
||Umod(T ,sk)||. Introducing Eq. (14) into Eq. (11) results in

〈O(T ,sk)〉 = Tr{[U0(T ) + Umod(T ,sk)]ρ(0)[U0(T )

+Umod(T ,sk)]†O}
≈ Tr[U0(T )ρ(0)U †

0 (T )O]

+
∞∑
n

∑
pn...p1

hpn
(sk) · · · hp1 (sk)

× Tr[U0(T )ρ(0)Un(p1...pn) †(T )O] + c.c., (15)

where only terms first order in Umod(T ,sk) are retained.
Projections of the observed data now give

P (j1, . . . ,jm) ≈ Tr[U0(T )ρ(0)Um(j1···jm) †(T )O], ∀ji,m.

(16)

The extracted projections P (j1, . . . ,jm) are bilinear in the
underlying dynamics through their dependence on U0(T )
and Un(p1...pn) †(T ). However, the extraction of the latter
amplitudes poses a far easier problem than the general case of
Eqs. (11) and (12). Moreover, the magnitude of the projection
P (j1, . . . ,jm) is proportional to ||Um(j1...jm)(T )||. As a result,
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|P (j1, . . . ,jm)| gives an estimate of the contribution to the
observable 〈O〉 of the nonlinear process that mixes field com-
ponents as [ε(t)]j1 × [ε(t)]j2 × · · · × [εm(t)]jm . Knowledge of
the field nonlinearities present in the observable can be of
direct use for mechanistic purposes. This feature of HE-OD is
illustrated later in the paper.

III. PRACTICAL LABORATORY ENCODING

In principle, virtually any set of functions hp(sk) could be
chosen to encode the field, provided that their products in
Eq. (16) form a linearly independent set, up to the highest
significant order encountered in the Dyson expansion. The
experiments in this work employ

hp(sk) = exp[ifp(sk)], (17)

where fp(sk) is a random function with a uniform distribution
in the interval [0,2π ]. This set of encoding functions hp(sk)
follows useful associative and orthogonality requirements.
The product of two random-phase functions hp(sk) and
hq(sk) is another random-phase function hr (sk) with the same
properties:

hp(sk) × hq(sk) = eifp(sk )eifq (sk )

= ei[fp(sk)+fq (sk )] = eifr (sk )

= hr (sk). (18)

Here it is understood that fr (sk) = fp(sk) + fq(sk) is taken
as mod(2π ). Thus, the product of any number of encoding
functions also belongs to the same function set. The latter
property is important, as the modulating function of order m

in Eq. (13) will involve the product of m encoding functions.
By defining the scalar product of two functions hp(sk) and
hq(sk), with k = 1,2, . . . ,N , as

hp ◦ hq = 1

N

N∑
k=1

hp(sk)h∗
q(sk), (19)

one can see that the random-phase function set is approxi-
mately orthonormal,

hp(sk) ◦ hq(sk) = 1

N

N∑
k=1

hp(sk)h∗
q(sk)

= 1

N

N∑
k=1

ei[fp(sk )−fq (sk )]

� δpq . (20)

Establishing the value of N in Eqs. (12) and (19) is
important for the practical execution of HE-OD. The scalar
products in those equations are best viewed as integrals over
the continuous encoding index s, with Monte Carlo random
sampling sk,k = 1,2, . . . , used to approximate the integrals.
Therefore, a large value of N is likely needed for good
convergence of the projection operation. The demonstration
experiment in this paper considers two variables where each
one corresponds to a specific grouping of phase mask pixels
subjected to modulation. Note that different few-variable
modulations can be combined together, since the mechanism
assessment can be approached in a hierarchical fashion with

multiple small groupings of encoded controls. Taking five-bit
resolution per variable in the present work gives a total of
32 × 32 = 1024 distinct laboratory samples 〈O(T ,sk)〉. In
the experiments described in the following, all these data
points were first measured and stored in a database. Then,
the projections were formed from a sample size of N =
200,000 randomly drawn data points from the database along
with the exact values of the associated modulation functions
F (j1,j2; sk). As the number m of encoding basis functions
rises, the orthogonality demand of Eq. (20) may call for
additional sampling when forming the database.

IV. HE-OD DEMONSTRATION EXPERIMENT

This paper presents a proof-of-principle experiment ap-
plying HE-OD to SHG as a simple test system. The well-
established physical basis of this system permits accurate
modeling to assess the experimental results (see Sec. V).

A. Experimental setup

The experiment used a Ti:sapphire femtosecond laser,
consisting of a Spectra-Physics Tsunami oscillator and a
1-kHz, 1.8-mJ Spitfire amplifier. The amplified pulses had
a full width at half maximum (FWHM) of 12.4 nm cen-
tered at 796 nm, which corresponds to pulses of duration
∼100 fs FWHM. Phase modulation was performed with a
4-f configuration pulse shaper having a liquid-crystal display
(LCD) with 128 liquid-crystal pixels (SLM-256, CRI). When
the laser pulse spectrum is spread on the LCD (see Fig. 1) there
is a linear relationship between optical frequency and position
on the LCD; a 0.22-nm portion of the infrared (IR) bandwidth
passed through each of the 128 pixels. In the remainder of
the paper, optical frequency is referred to in units of LCD
pixels.

The amplitude of the input IR electric field |E(ω)| was
determined (within a proportionality constant) by taking the
square root of the measured spectrum. The phase of the
electric field was obtained by first finding the SLM phase mask
that optimizes the SHG signal which was set as a reference.
The phase corresponding to any given SLM mask is just its
difference from the reference phase based upon calibration of
the pulse shaper.

The second harmonic light was produced by focusing the
shaped pulse onto a 100-nm-thick type-I BaB2O4 (BBO)
crystal. The laser intensity at the BBO crystal was ∼2.5 ×
1011 W/cm2 for a transform-limited pulse, well within the non-
depleted low-power regime. The SHG spectrum was recorded
with an Ocean Optics HR-2000 400-nm spectrometer. The
signal was the integral over a 0.3-nm window of the SHG
spectrum centered around 398.3 nm. A diagram of the HE-OD
system is shown in Fig. 1. The setup is similar to those
commonly used in closed-loop quantum control [1]. Here the
setup is used not as a loop to optimize the controls, but rather
to experimentally implement the encoding-decoding HE-OD
operations. This configuration is important, as HE-OD can
be implemented using a standard learning control apparatus
additionally guided by suitable software to perform the extra
encoding of the control field and the subsequent decoding of
the observable signal.
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FIG. 1. (Color online) Setup for the HE-OD modulation experiments. The closed loop in this context is for performing encoding of the
control field to extract mechanistic information. The HE-OD loop may be embedded within a learning loop using the same apparatus with
the computer software swinging from guiding the search for an effective control to mechanism extraction and back again, etc. On-the-fly
extracted mechanistic information could also be used to redirect the learning process toward seeking a control that meets the physical
objective in balance with mechanistic guidance. The SHG demonstration experiment in this paper executed one cycle of this combined
process.

B. Encoding SHG

In SHG two photons with frequencies ω1 and ω2 combine
to produce another photon with frequency � = ω1 + ω2. As
the input laser pulse is spread over a frequency window,
the electric field generated at frequency � is given by
[28]

ESHG(�) ∝ |E(t)|2 ∝
∫ −∞

−∞
E(ω)E(� − ω) dω, (21)

where E(ω) is the input electric field at frequency ω. The
observed SHG signal is proportional to the square modulus
of the generated electric field integrated over a recorded
frequency band 	�:

SSHG ∝
∫

	�

|ESHG(�)|2 d�. (22)

Equation (21) can be interpreted as a sum of products
of paired electric field amplitudes whose corresponding
frequencies are symmetrical relative to �/2. This situation
is illustrated in Fig. 2, where the field pixel components of
selected pairs are connected by arrows for a frequency �/2
which is slightly shifted by ζ = �/2 − ω0 from the center of
the input pulse spectrum located at ω0. The figure shows two
groups of encoded electric field components of width 	 = 5
symmetrically located relative to the center of the spectrum
at �/2 (blue grouped pixels in Fig. 2.) The encoding of
the latter two groups of pixels is done by multiplying one
group of spectral components by h1(sk) = exp[if1(sk)] and the
other group by h2(sk) = exp[if2(sk)]. This encoding is easily
implemented by setting the SLM to add a phase equal to f1(sk)
or f2(sk) to the corresponding group of pixels. The remaining
spectral components (yellow pixels in Fig. 2) are not encoded.
To summarize, the encoding can be expressed as a piecewise
function

Eenc(ω,sk) =

⎧⎪⎨
⎪⎩

E(ω) × eif1(sk ), ω − ω0 ∈ [−ωc − 	/2, − ωc + 	/2],

E(ω) × eif2(sk ), ω − ω0 ∈ [ωc − 	/2,ωc + 	/2],

E(ω), otherwise.

(23)

The experimental implementation of the encoding resulted
in the random SHG signal shown in Fig. 3. Since there are
two encoding functions h1(sk) and h2(sk), the projections
P (j1, . . . ,jm) defined in Eq. (12) only have two indices (j1,j2).
The decoded projections from the data are shown in Fig. 4 and
will be analyzed in Sec. V.

There can be significant cross-talk between pixels in a SLM
due to voltage leaking [31] and/or diffraction effects [32] as
near-infrared light goes through the ∼100-µm-wide pixels.

The cross-talk between pixels results in a smoothing of
the transition between the phase and/or amplitude values of
contiguous pixels. The real phase and/or amplitude mask is
then the sum of a mask with sudden transitions (as an ideal
SLM would produce) and small-bandwith components that
smooth the transitions between pixels. These small-bandwidth
components lead to the creation of long (∼1 ns) pulses [31]
that may have complex effects on the system dynamics. Cross-
talk effects are further exacerbated by large phase changes
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∆ ∆  
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FIG. 2. (Color) Spectral dependence of the input pulse’s electric
field amplitude (solid red curve). The yellow and blue rectangles
symbolize spectral components. The two groups of blue spectral
components of width 	 = 5 (measured in pixel units as explained
in Sec. IV A) on the right and left are encoded by eif1(sk ) and eif2(sk ),
respectively. The yellow spectral components are not encoded. The
figure shows only part of the spectrum for clarity, and a large
number of pixels are actually involved in the experiments. The arrows
connect spectral components symmetrical to ω = ω0 + ζ (where ω0

corresponds to the center of the input field spectrum). When the
spectral components of a pair are multiplied together in a SHG
process the product has a modulation that depends on the position
of the pair. Notice that some blue (encoded) pixels multiply yellow
(unencoded) ones; this gives rise to first-order projections (when
blue multiplies yellow) and second-order projections (when blue
multiplies blue). The specific function that modulates some of the
pairs is indicated over the arrow connecting a particular pair. The
top abscissa scale gives the corresponding position of the spectral
components on the LCD used in the experiments. The amplitude
of each spectral component in general coincides with the solid
curve, but the amplitudes of spectral components in and around the
encoded regions are kept constant to illustrate the approximation to
the field amplitudes utilized in the qualitative assessment of the SHG
mechanism given in Sec. V.

between neighboring SLM pixels. Consideration of these is-
sues suggests the use of smooth component functions in Eq. (4)
to represent the controls with each function transcending many
pixels. Nevertheless, the present work adopted a pixel basis
to clearly illustrate the principles of HE-OD. The SLM used
here only accepted phase changes in the [0,2π ] interval. Any
phase whose value lies outside of this interval has to be
wrapped around back to the [0,2π ] interval, and large phase
discontinuities can appear at wrap-around points producing
larger cross-talk effects. Given these issues, the random-phase
functions were chosen here in order to confine the phase of
each pixel to the interval [0,2π ], avoiding the need to wrap
around and reducing cross-talk effects.

There is a maximum resolvable projection order analogous
to the Nyquist frequency for discrete Fourier transforms.
This fact is used here to estimate the projection error. The
projections have errors originating not only from experimental
noise but also from the numerical processing due to the
approximate orthogonality of the modulating function set.
As mentioned in Sec. III we used five-bit phase resolu-
tion. This resolution ultimately determines the maximum

0 200100
sample number

FIG. 3. SHG experimental data resulting from random field
modulation. A transform-limited pulse was encoded as described in
Eq. (23). The transform-limited phase produced a SHG signal ∼ 1.1
corresponding to integration over an ultraviolet spectral window of
0.3 nm (equivalent to 	� = 2.8 in pixel units) around the center of
the spectrum at 398.3 nm. Shown are 200 randomly sampled data
from the laboratory database of 1024 recorded points as explained
in Sec. III. The vertical scale is proportional to the SHG signal and
shows random variations around a mean level of ∼0.8. This dc level
is due to the portion of the SHG signal not modified by the encoding.
In the decoding operation 200,000 random samples were drawn from
the recorded database to perform projections onto a hierarchy of
decoding functions.
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FIG. 4. Projections obtained from the experimental data with the
projection indices being (j1,j2). Each projection has a (not shown
here for clarity) corresponding c.c. projection of the same amplitude
[i.e., projection (j1,j2) has a c.c. projection (−j1,−j2)]. The order
of projection (j1,j2) is defined as |j1| + |j2|. High-order and very
low value projections are not labeled in the main graph due to
their close spacing. The inset zooms in at high-order projections
(from the 32th to the 100th order) to show how the projection
error was estimated as the mean value ∼0.05 of the high-order
projections.
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resolvable projection order as shown next. In the case of
random-phase functions, a projection P (j1,j2) is calculated
from the modulated SHG signal as

P (j1,j2) = 1

N

N∑
k=1

SSHG(sk) × e−i[j1f1(sk )+j2f2(sk )]. (24)

From the five-bit phase-resolution used here, the minimum
phase difference between two contiguous points of the
function fi(sk) is equal to 	φ = 2π/25 = 2π/32. While
this phase resolution is adequate to sample the functions
fi(sk),i = 1 and 2, high multiples of these functions will not
be adequately sampled. For instance, the minimum phase
difference between two contiguous points of the function
j1f1(sk) is 	φj1 = j1 × 2π/32. For j1 � 32, then 	φj1 � 2π ,
and the function j1f1(sk) (modulo 2π ) will be distorted.
Similarly the function j1f1(sk) + j2f2(sk) is distorted for
|j1| + |j2| � 32. As a result an observed nonlinear process
corresponding to |j1| + |j2| � 32 would not be physically
reliable, but in turn such an observed signal may be used
as a basis to estimate the overall projection error. In the SHG
illustration the projections are restricted to |j1| + |j2| � 2 on
physical grounds (see Sec. V), and the resolution limit will
not be reached. However, the resolution value of 32 permits
an estimation of the combined effects of experimental noise
and numerical error. The inset of Fig. 4 shows the magnitude
of the high-order projections beyond 32, and their mean value
is taken to establish the error level.

The errors in the projection ratios shown later in Table I
were calculated from the projection errors using standard noise
propagation formulas [i.e., the error ±	r of the ratio r =
P1/P2 can be obtained from the numerator and denominator er-
rors 	P1 and 	P2 as 	r/r = ±

√
(	P1/P1)2 + (	P2/P2)2].

This formula is not accurate for very small value ratios, but it
is still used here to estimate the error.

V. MECHANISM ANALYSIS OF THE SHG EXPERIMENTS

As explained earlier, the SHG system was chosen for its
physical simplicity as an initial demonstration of HE-OD. The
goal of the analysis in this section is to confirm the significant
projection findings of Fig. 4 and to indicate how HE-OD
projections can be interpreted.

Most of the field components were left unmodulated in
the encoding described in Sec. IV B. Thus, Eq. (16) can be
used here to interpret the experimental data directly from
the projections of Fig. 4. As seen in the figure, there is a
large decoded projection P (0,0) corresponding to the high
nominal dc level in the experimental signal (see Fig. 3). The
highest-order projection over the resolution level is P (1,1),
indicating that the underlying physical process involved here
is at most second order in the field. Also, the fact that
P (1,1) [and not P (2,0) or P (0,2)] is present, indicates that
cooperation among field components on opposite sides of the
spectrum is important. There are also first-order projections
P (1,0) and P (0,1), whose origin in the context of SHG
will be explained in the following. Importantly, the logic of
HE-OD does not require a priori knowledge of the system’s
Hamiltonian or its dynamics, as evident in Fig. 1 and the

expression in Eqs. (12) or (16) corresponding to the de-
coded data. Each projection P (j1, . . . ,jm) is a quantitative
measure of the nonlinear interaction of the field components
for their impact on the controlled dynamics. The HE-OD
analysis of SHG will be performed first in a qualitative
fashion followed by a quantitative comparison with numerical
simulations.

For the qualitative analysis of the projection data, we simply
treat the field amplitudes in the encoded spectral components
on the left and the right of the spectrum as approximately
constant and equal to E1 and E2, respectively (see Fig. 2).
With this simplification the encoded field in Eq. (23) is now
approximately given by

Eenc(ω,sk) =

⎧⎪⎨
⎪⎩

E1 × eif1(sk), ω ∼ (ω0 − ωc),

E2 × eif2(sk), ω ∼ (ω0 + ωc),

E(ω), otherwise.

(25)

Substituting the encoded field Eenc(ω,sk) of Eq. (25) for the
field in the integrand of Eq. (21) gives the modulated SHG
field at frequency � = 2(ω0 + ζ ), where ζ is a small shift
from the center of the spectrum (see Fig. 2). When ζ = 0, all
encoded spectral components multiply each other, producing
only modulated terms of the form ei[f1(sk )+f2(sk )]. On the other
hand, when ζ �= 0 some encoded spectral components multiply
nonencoded ones, resulting in the appearance of modulated
terms of the form eif1(sk ) and eif2(sk ), as can be seen in Fig. 4. As
ζ increases, the amplitude of the modulated term ei[f1(sk )+f2(sk )]

decreases proportionately to ζ while the amplitude of the
modulated terms eif1(sk ) and eif2(sk ) similarly increases. From
these considerations and inspection of Fig. 2, the modulated
SHG field is given by

Emod
SHG(�,sk) ∝ A′ + B ′(ζ )ei[f1(sk )+f2(sk )]

+C ′(ζ )[eif1(sk ) + eif2(sk)], (26)

where

B ′(ζ ) = (	 − 2ζ )E1E2, (27)
C ′(ζ ) = 2ζE1E2, (28)

and A′ is the sum of all unmodulated pairs and is approximately
a constant with respect to ζ , and 	 = 5 (in pixel units) is the
width of the encoded regions of the spectrum. The quantities B ′
and C ′ are proportional to the small number of modulated pairs
in Fig. 2, and thus the value of either of them is at most equal
to ∼ 	E1E2. There are 	 = 5 modulated pairs and 128/2 −
	 = 59 unmodulated pairs. Taking E1E2 as the approximate
value of all pair products in Fig. 2, then we can estimate these
parameters as A′ ∼ 59E1E2 and B ′,C ′ ∼ 5E1E2, and we have

A′ 	 B ′,C ′. (29)

Equation (29) is confirmed by the presence of a large dc
component in the modulated signal (see Fig. 3.)

To calculate the observed modulated signal Smod
SHG(sk)

we integrate the squared modulus |ESHG(�,sk)|2 over the
measured frequency interval 	�, as in Eq. (22). For a
given SHG frequency �(ζ ) = 2(ω0 + ζ ), the measured “blue”
(SHG) band 	� = 2.8 in the IR spectrum corresponds to
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	ζ =1.4 and hence to a half-bandwidth of ζm = 0.7. With
these parameters, the modulated signal is given by

Smod
SHG(sk) ∝

∫
	�

∣∣Emod
SHG(�,sk)

∣∣2
d�

∝
∫ ζm

−ζm

∣∣Emod
SHG(�(ζ ),sk)

∣∣2
dζ

= 2
∫ ζm

0

∣∣Emod
SHG(�(ζ ),sk)

∣∣2
dζ

∝ {A + Bei[f1(sk )+f2(sk)] + C[eif1(sk ) + eif2(sk )]

+Dei[f1(sk)−f2(sk )] + c.c.}, (30)

where

A =
∫ ζm

0
|A′|2dζ ≈ ζm|A′|2, (31)

B =
∫ ζm

0
A′∗B ′(ζ )dζ ≈ A′∗(	ζm − ζ 2

m

)
E1E2, (32)

C =
∫ ζm

0
A′∗C ′(ζ )dζ ≈ A′∗ζ 2

mE1E2, (33)

D =
∫ ζm

0
B ′(ζ )C ′∗(ζ )dζ ≈ 2ζ 2

mE2
1E

2
2 . (34)

Recall that 	 = 5, ζm = 0.7, and A′ 	 B ′,C ′ ∼ E1E2. Since
A is second order in A′, while B and C are first order in A′,
and D is zeroth order in A′, we have

A 	 B, C 	 D.

Equation (30) shows how the original encoding of Eq. (23)
affects the signal. The encoding produced terms linear in
exp[if1(sk)] and exp[if2(sk)] as well as mixed bilinear terms
exp{i[f1(sk) + f2(sk)]} and exp{i[f1(sk) − f2(sk)]} in the out-
put signal. The modulated signal may be projected onto the
set of functions F (j1,j2; sk) = exp{i[j1f1(sk) + j2f2(sk)]} as
explained in Sec. II to produce P (j1,j2). From Eq. (30), the
projections (as well as their c.c.) are P (0,0) ≈ A, P (1,1) ≈
B, P (1,0) ≈ C, P (0,1) ≈ D, and P (1,−1) ≈ D. By using
Eqs. (31)–(34) the projection ratios are predicted to satisfy the
following relations:

P (0,0)

P (1,1)
∼ A

B
	 1,

P (1,1)

P (1,0)
∼ B

C
≈ 	 − ζm

ζm

> 1,

(35)
P (1,0)

P (0,1)
∼ C

C
= 1,

P (1,−1)

P (1,1)
∼ D

B
� 1.

These results are in qualitative agreement with the laboratory
projections of Fig. 4. No other projection has significant value
over the estimated experimental noise level in Fig. 4. Also as
expected, P (1,−1) is very small and approximately lies at the
noise level for these experiments.

For a more quantitative comparison with the experimental
results, numerical simulations were carried out with the true
form of the field, that is, E(ω) taken without the simplifying
assumptions used earlier and with the inclusion of beam
propagation effects. These effects are relevant since the
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FIG. 5. Projections obtained from simulated data under similar
conditions to those in the experiments.

coupling between the SHG and input laser beams can vary as
both propagate through the nonlinear crystal due to imperfect
phase matching. In our experiments the BBO crystal was
critically phase matched by adjusting the angle of the crystal
with respect to the input beam [28]. This results in near-perfect
phase matching for spectral components close to the center of
the spectrum, but the quality of the phase matching decreases
for spectral components far from the center of the spectrum.
This factor was taken into account in the numerical simulations
since it can produce small effects but ones that are clearly
observable with HE-OD.

The simulations were implemented in LabView using the
LAB2 routine SFM CRYSTAL (nondepleted three-wave mix-
ing) [33]. The input parameters were the same as for the
experiment given in Sec. IV, including the crystal orientation
set to φ = 0◦ and θ = 29.178◦ for angle phase matching. The
LAB2 laser source that simulated the production of Gaussian
pulses was set to high spectral resolution to allow for accurate
modeling of the dynamics. The split-step method was used
and dispersion effects of all orders were considered by using
the Sellmeier equation to calculate the BBO crystal index of
refraction. The results of these simulations are shown in Fig. 5.

A comparison between simulated and experimental projec-
tion ratios is given in Table I, where there is good quantitative

TABLE I. Comparison of simulated and experimental projection
ratios. The experimental errors of the projection ratios were calculated
from an error estimate in the data of 0.05 (obtained from the
amplitude of the high-order projections as shown in the inset of Fig. 4)
using standard error propagation formulas as indicated in Sec. IV B.
P (1,−1) was predicted to be small in Sec. V and its measured value
lies near the experimental noise level.

P (1,1)/P (1,0) P (1,0)/P (0,1) P (1,−1)/P (1,1)

Simulation 1.24 0.88 0.13
Experiment 1.19 ± 0.09 1.00 ± 0.08 0.06 ± 0.05
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agreement. No ratio is shown involving projection P (0,0)
(a measure of the unmodulated portion of the signal), as the
spectral data contained an arbitrary constant offset (i.e., the
spectrometer signal was not zero for zero light intensity) that
distorted the value of the experimental P (0,0) value. The
spectral offset does not affect the value of other projections,
since a constant added to the signal does not affect the varying
(ac) components. The projection P (1,−1) should physically
be present, but it should be small relative to the dominant
terms P (1,1), P (0,1), and P (1,0) as argued in Eq. (35). This
behavior is confirmed in Fig. 4 where P (1,−1) is at the noise
level, and the observed ratio P (1,−1)/P (1,1) is consistent
with the simulations. Fig. 4 also shows a number of other small
spurious projections at the noise level whose origin could be
due to various experimental artifacts and the finite amount of
data.

VI. CONCLUSIONS

The laboratory applicability of HE-OD was described in
this work along with its successful illustration to the simple
case of SHG to show the basic principles of the technique.
HE-OD addresses the control mechanism by identifying the
linear and nonlinear interactions between the field components
in a chosen representation of the control, such as in Eq. (4). Any
representation for the field can be employed with HE-OD, and,
accordingly, the HE-OD mechanism assessment will reflect the
choice of control field representation. This outcome is natural,
as mechanism analysis of any form will be expressed with
respect to some reference [11]. The only basic requirement
is the ability to conveniently implement a particular field
representation using a standard laboratory pulse shaper.

Any scheme aiming to extract quantitative information
about the control mechanism requires knowledge of the
laser field at the sample. This is particularly true for post-
experiment modeling of dynamics that attempts to extract the
mechanism from knowledge of the control field and the system
Hamiltonian. In simple cases a calibration of the shaper will
suffice to determine the field for an optically thin sample

at weak field strengths. In the present illustration, detailed
modeling (that included propagation effects) was used for
comparison with the experimental findings of HE-OD, but
that was not required here as the qualitative analysis of Sec. V
demonstrated. In practice, HE-OD can always be performed to
extract the projections P (j1, . . . ,jm), but a full understanding
of their physical meaning relies on an adequate knowledge of
the field at the location of the test cell where the focal volume
lies. Due attention needs to be paid to this issue, possibly
including careful design of the test cell.

HE-OD can be adapted to any form of suitable experimental
control data, including temporal observations. In this context,
HE-OD may be viewed as a tailored sequence of encoded
pump-probe experiments, where nonlinear relations between
the controls (i.e., the pump) and the observations (i.e., the
probe) are revealed in a hierarchical fashion. When ρ(0) and O
are known, then HE-OD may be used to extract the physically
relevant pathway amplitudes U (n) entering the expansion of U .
In this sense HE-OD can be performed for quantum process
tomography [34,35]. In turn, the correlations P (j1,j2, . . . ,jm)
extracted from HE-OD data can be interpreted analogously
to the correlations obtained by multidimensional (controlled)
spectroscopy [36]. Importantly, HE-OD can be applied in
cases where little information is available about the nature
of the system’s dynamics. In such circumstances, the decoded
relationships between the field and the observations present
insights into the detailed manipulation of the system that
might, in turn, be used to aid in developing a model of the
underlying dynamics. Furthermore, as indicated in Fig. 1,
HE-OD may be included in closed-loop adaptive learning
control to guide the search algorithm toward finding an optimal
field that meets the control objective in balance with a desired
mechanism.
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