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Time-dependent response of dissipative electron systems

Jean Christophe Tremblay,* Pascal Krause, Tillmann Klamroth, and Peter Saalfrank
Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany

(Received 22 March 2010; published 23 June 2010)

We present a systematic study of the influence of energy and phase relaxation on dynamic polarizability
simulations in the linear response regime. The nonperturbative approach is based on explicit electron dynamics
using short laser pulses of low intensities. To include environmental effects on the property calculation, we
use the time-dependent configuration-interaction method in its reduced density matrix formulation. Both energy
dissipation and nonlocal pure dephasing are included. The explicit treatment of time-resolved electron dynamics
gives access to the phase shift between the electric field and the induced dipole moment, which can be used to
define a useful uncertainty measure for the dynamic polarizability. The nonperturbative treatment is compared to
perturbation theory expressions, as applied to a simple model system, the rigid H2 molecule. It is shown that both
approaches are equivalent for low field intensities, but the time-dependent treatment provides complementary
information on the phase of the induced dipole moment, which allows for the definition of an uncertainty
associated with the computation of the dynamic polarizability in the linear response regime.
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I. INTRODUCTION

In recent years, ultrafast correlated electron dynamics
has attracted increasing interest from both the experimental
and the theoretical communities. The latest developments in
subfemtosecond laser technology now make it possible to
study and control the motion of electrons in situ using pulses
only a few cycles or even less than one cycle long [1–6].
Although the literature on the topic was rather sparse until the
end of the last millenium [7–11], an impressive body of work
has been produced by theoreticians around the world over the
past decade (see, for example, Refs. [12–36] and the numerous
references therein).

Among the different approaches available emerges a family
of methods based on wave-function expansions. These range
from time-dependent Hartree-Fock [7], to time-dependent
configuration-interaction (TDCI) [16,37], to time-dependent
complete active space self-consistent field (CASSCF) (or
multiconfiguration time-dependent Hartree-Fock) [18,23]
methods. The latter two methods offer the great advantage that
the dynamics, governed by the electronic Schödinger equation,
can be, in principle, improved systematically toward its exact
solution. In their original form, only isolated systems can be
studied with those approaches since no interaction with the
environment is explicitly included in the theoretical treatment.

To treat the environmental effects, we have proposed an
extension of the TDCI method based on the reduced density
matrix formulation, called ρ-TDCI in the following [38].
Energy transfer between the system and the environment, as
well as nonlocal pure dephasing, are included in the dynamics
using Lindblad dynamical semigroup formalism [39–44]. The
method was applied to study intramolecular charge transfers
and to control selective excitations using short, intense laser
pulses in the linear molecule LiCN [38,45].

In a recent study [25], the dissipation-free TDCI method
was used to compute molecular response properties in a
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time-dependent framework. It is the purpose of this article
to extend the range of applications of ρ-TDCI to the study
of linear response properties, with particular emphasis on
the dynamic polarizability. To characterize this property,
a static approach based on a pole and residues analysis
has been introduced by Olsen and Jørgensen [46] and is
nowadays widely appreciated. They provide a complementary
picture to the sum-over-states expressions stemming from
time-dependent perturbation theory [47–49]. These methods
present singularities of the dynamic polarizability close to the
resonance energies. To avoid this problem, a typical solution is
to include a phenomenological damping parameter in the per-
turbation theory expressions [50–52]. Alternatively, Norman
and co-workers [53,54] proposed a self-consistent formulation
of the response equations based on the Ehrenfest theorem.
Jørgensen and co-workers [55,56] also proposed a related
model in terms of complex quasienergy, including a lifetime
broadening parameter. The time-dependent density functional
community also came up with an approach for including the
effects of finite lifetime on linear response calculations [57,58].
All these methods used a simple phenomenological lifetime
broadening constant for all electronic states.

We propose using the TDCI for open-system density
matrix to study the effect of energy and phase relaxation on
the dynamic polarizability in a time-dependent context. The
propagation of the electronic density matrix in real time allows
us to treat the response of the molecule to perturbations of
arbitrary strength, beyond perturbation theory. State-resolved
relaxation rates for explicitely correlated electron dynamics of
a small molecule in a dissipative environment are determined
as Einstein coefficients for spontaneous emission, with an
empirical scaling factor to account for accelerated relaxation,
for example, close to a metal surface or another electron-rich
medium. The coupling strength of the system to the bath,
and hence the energy broadening of the different electronic
states, is varied systematically to mimic the effect of weakly
to strongly coupled environments on the time-dependent
induced dipole moment. To assess the quality of our method,
we compare the nonperturbative treatment with existing
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sum-over-state expressions for the dynamic polarizability
tensor. As a test case, the method is applied to H2, but
application to much larger systems is straightforward.

II. THEORY

A. Time-dependent configuration interaction for open systems

In the following, we use the TDCI approach [16] in its
density matrix formulation [38] (ρ-TDCI) to compute the
response properties of a small molecule, hereafter called the
subsystem, in a dissipative environment. This is done by
explicitly studying the evolution of the subsystem reduced
density matrix under the influence of a time-dependent electric
field. The time evolution of the density operator under the
influence of a vectorial electric field F (t) obeys the Liouville-
von Neumann equation, which is given in the semiclassical
dipole approximation by

∂ρ̂(t)

∂t
= −i[Ĥ0,ρ̂(t)] + i

∑
q=x,y,z

Fq(t)[µ̂q,ρ̂(t)] + LDρ̂(t),

(1)

where Ĥ0 = − 1
2

∑N
i=1 �i +

∑N
i=1

∑N
j<i

1
|ri−rj | − ∑N

i=1

∑NA

A=1
ZA

|ri−RA| is the field-free electronic Hamiltonian for a system

with N electrons and NA nuclei. Further, µ̂q is the qth com-
ponent of the subsystem dipole operator [µ̂ = −∑N

i=1 ri +∑NA

A=1 ZARA = (µ̂x,µ̂y,µ̂z)], and LD is the dissipative Li-
ouvillian superoperator accounting for energy and phase
relaxation (see later in this article). The single-electron kinetic
energy − 1

2�i , the position ri of electron i, and the position
RA of nucleus A with charge ZA are given in atomic units.

The standard configuration interaction singles (CIS)
methodology can be used to solve the unperturbed electronic
eigenvalue problem Ĥ0�i = Ei�i . As a first step, spatial
orbitals are computed at the restricted Hartree-Fock level
using the ground-state Slater determinant, �HF

0 . A basis of
singly excited configurations, �a

r , is then used to represent
the full-dimensional subsystem electronic Hamiltonian. These
configurations are generated by exciting one electron from
occupied orbitals a to unoccupied orbitals r . In the present
work we focus on singlet states and only the associated
excited configurations, 1�r

a = 1/
√

2(�r
a + �r

a) ({a,r} refer
to α and {a,r} to β spin orbitals), are considered in the
calculations. In that basis the electronic Hamiltonian matrix
is then diagonalized to yield the CIS energies, ECIS

i , and wave
functions, �i . The CIS energies can be, for example, further
corrected perturbatively by inclusion of double excitations,
yielding CIS(D) energies E

CIS(D)
i = ECIS

i + E
(D)
i , where E

(D)
i

is defined in a previous article [24,59]. The ground-state energy
at this level, E

CIS(D)
0 , corresponds to the MP2 energy, EMP2

0 ,
whereas ECIS

0 is uncorrelated, giving the Hartree-Fock ground
state, EHF

0 . The CIS(D) level of ab initio theory shall be used in
the remainder of the article but could be improved in principle.

Using the CI eigenfunctions and energies we can represent
compactly the subsystem reduced density operator. The direct
integration of Eq. (1) is particularly efficient in the interaction
picture [38], that is, if we perform the transformation ρ̂(t) =
eiĤ0t/h̄ρ̂I (t)e−iĤ0t/h̄. In the basis of the CI eigenstates, the

equations of motion for the reduced density operator have
a particularly simple form

dρI
mn

dt
= i

h̄

∑
q=x,y,z

Fq(t)
S∑

j=1

[
e−iωmj tµ

(q)
mjρ

I
jn − e−iωjntρI

mj µ̂
(q)
jn

]

+ e−iωmnt 〈�m|LDρ̂|�n〉, (2)

where S is the number of CI eigenstates and h̄ωmn = ECI
m −

ECI
n the energy difference between states |�m〉 and |�n〉, ρI

mn

is the {m,n} element of the density matrix in the interaction
picture and µ

(q)
mn = 〈�m|µ̂q |�n〉 is the associated dipole matrix

element along orientation q. In all our applications the
equations of motion are solved numerically using a Cash-Karp
Runge-Kutta integrator [38,60,61].

B. Dissipation model

To treat the energy and phase relaxation, we use the
semigroup formalism introduced by Kossakowski and co-
workers [40,41]. In particular, we use here the Lindblad
form [39], which ensures semipositivy of the reduced density
matrix. This allows interpretation of the diagonal elements
of the reduced density matrix in the CI eigenstates basis
as populations of these zeroth-order states. To simulate the
effect of energy relaxation in an electron-rich environment
such as a metal surface, we make the standard choice of
using upward/downward projectors [38,42]. For treating the
so-called “pure dephasing,” the nonlocal contributions can be
obtained by defining the Lindblad operators as the subsystem
Hamiltonian scaled to fit the typical order of magnitude in the
energy spectrum [42]. In the basis of the subsystem eigenstates,
the matrix elements of the dissipative Liouvillian including
both aforementioned contributions are given by [38]

〈�n|LDρ̂|�n〉 =
S∑

j=1

(�j→nρjj − �n→jρnn), (3)

〈�m|LDρ̂|�n〉

= −1

2

S∑
j=1

(�m→j + �n→j )ρmn − γ ∗
mnρmn for m �= n.

(4)

Here �m→n is the transition rate between states |�m〉 and |�n〉
and γ ∗

mn is the pure dephasing rate.
The downward transition rates are simply obtained by

scaling the Einstein coefficients for spontaneous emission as
(in atomic units)

�m→n = A
4
∣∣µtot

mn

∣∣2

3c3
ω3

mn. (5)

Here c is the speed of light and |µtot
mn|2 =∑

q=x,y,z |〈ψm|µ(q)|ψn〉|2 the total transition dipole moment.
The scaling factor A is chosen to mimic the presence of an
arbitrary dissipative medium and reduces to the refractive
index in vacuum (A = 1). The scaling factor can thus be
interpreted as a phenomenological refractive index in the
environment of interest. Upward transitions are forbidden at
zero temperature, which is assumed here.
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For the pure dephasing rates, we find a quadratic de-
pendence on the energy difference, as suggested elsewhere
[40,41,43,44],

γ ∗
mn = Bγ ∗ω2

mn, (6)

where B is an arbitrary positive constant that we shall vary
to evaluate the effect of dephasing on the properties of
interest. For the general constant γ ∗, the convenient choice
γ ∗ = �1→0ω

−2
10 has been assumed so that the pure dephasing

rate is equal to the energy relaxation rate for the 1 → 0
transition when we set B = 1. For a more detailed discussion
of the ρ-TDCI methodology and the present dissipation model,
the reader is referred to Refs. [38,45].

C. Nonperturbative linear response calculations

The electron cloud around a molecule can be distorted by
the presence of an external electric field, F (t). Polarizability
is defined as the capacity of the electron density to undergo
deformation under the influence of the external field, inducing
a dipole moment. The component along coordinate q (q =
x,y,z) of the induced dipole moment can be written in the
general form

µind,q =
∑
q ′

αqq ′Fq ′ + 1

2

∑
q ′q ′′

βqq ′q ′′Fq ′Fq ′′

+ 1

3!

∑
q ′q ′′q ′′′

γqq ′q ′′q ′′′Fq ′Fq ′′Fq ′′′ + · · · , (7)

where Fq is the qth component of the electric field, αqq ′ is the
{q,q ′}th element of the polarizability tensor, and βqq ′q ′′ and
γqq ′q ′′q ′′′ are elements of the first and second hyperpolarizability
tensor. These quantities are frequency dependent and depend
on frequency-dependent electric fields, for example, αqq ′ →
αqq ′ (−ω; ω). Using a low-intensity electric field, the response
of the electron density can be considered linear to a good
approximation and only the first term in Eq. (7) remains of
interest. It must be stressed that the explicitly time-dependent
correlated electron dynamics approach proposed here is an
exact treatment and contains the response function to all orders.

It was shown previously [25] that, in the linear response, the
polarizability tensor α can be probed by looking at the indiviual
components of the dipole moment induced by nonresonant
subpicosecond polarized laser pulses. Let us consider the
simple case where the probed molecule is put in a low-intensity
z-polarized electric field of the form

Fz(t ; ω) = F0,zsin2

(
πt

2tm

)
cos[ω(t − tm)]; 0 � t � tm,

(8)

where F0,z is the field amplitude and tm is the center of the
pulse. The probe molecule to be considered in what follows
is H2, for which we fix the orientation along the z axis. The
real part of the zz dynamic polarizability component at time t

can be expressed as a function of the laser carrier frequency ω

using the relation

α(R)
zz (t ; ω) = µz(t)

Fz(t ; ω)
. (9)

In the following, the quantity α(R)
zz (t ; ω) is evaluated at the field

maximum (tm) if not stated otherwise. Further, the imaginary
part of the polarizability tensor, from which one can extract
the absorption cross section, can be obtained from its real part
using the Kramers-Kronig rule,

α
(I )
qq ′ (−ω; ω) = −2ω

π

∫ ∞

0

α
(R)
qq ′ (−ω′; ω′)

ω′2 − ω2
dω′. (10)

The quantity (9) can be interpreted as the Fourier trans-
form of the associated polarizability tensor elements, say
αR

zz(−ω; ω). It is, in general, not possible, however, to perform
the inverse Fourier transform of Eq. (9) to recover the true
frequency dependence of the polarizability tensor. The latter
presents poles in the frequency domain when the carrier
frequency is chosen resonant with a transition energy of the
system. In the time domain, this introduces a phase shift of the
induced dipole moment, which lags the field by π/2 like in
the case of a classical driven damped harmonic oscillator. The
time at which one should evaluate the polarizability tensor
is thus not rigorously defined, particularly at the transition
energy. We could either use the value at the field maximum,
for which the induced dipole is zero, or that at the maximum
dipole, where the field vanishes and the polarizability diverges.
We propose to use the difference in these two values as a
measure of the uncertainty on the polarizability calculation,

�α(R)
zz (ω) =

∣∣∣∣α
(R)
zz (tm; ω) − α(R)

zz (tµ; ω)

α
(R)
zz (tm; ω)

∣∣∣∣ , (11)

where tm and tµ are the time at which the field and the induced
dipole moment reach their maximal value, respectively.

D. Other approaches to dissipative polarizability calculations

Time-dependent perturbation theory can also be used for
computing dynamic polarizabilities. It was shown [48–52] that
the real and imaginary parts of the qq ′ component of the
polarizability tensor in a dissipative system can be computed
using sum-over-states formulæ,

α
(R)
qq ′ (−ω; ω) =

∑
n

[ 〈0|µq |n〉〈n|µq ′ |0〉(ω0n − ω)

(ω0n − ω)2 + γ 2
n0

+ 〈0|µq |n〉〈n|µq ′ |0〉(ω0n + ω)

(ω0n + ω)2 + γ 2
n0

]
,

(12)

α
(I )
qq ′ (−ω; ω) =

∑
n

γn0

[ 〈0|µq |n〉〈n|µq ′ |0〉
(ω0n − ω)2 + γ 2

n0

− 〈0|µq |n〉〈n|µq ′ |0〉
(ω0n + ω)2 + γ 2

n0

]
,

provided we have a model for describing the dissipation
rates. The state-resolved energy-broadening constants γn0 are
defined in terms of the state-to-state relaxation rates as the
total dephasing rate, γn0 = 1

2

∑
i(�n→i + �0→i) + γ ∗

n0.
Since there is considerable uncertainty on the state-resolved

energy-broadening parameters, a common assumption is to set
them all to a constant, γn0 → γ , where γ can be interpreted as
a phenomenological energy broadening, related to the system

063420-3



TREMBLAY, KRAUSE, KLAMROTH, AND SAALFRANK PHYSICAL REVIEW A 81, 063420 (2010)

lifetime and pure dephasing. Under this condition, Eqs. (12)
simplify to

α
(R)
qq ′ (−ω; ω) =

∑
n

[ 〈0|µq |n〉〈n|µq ′ |0〉(ω0n − ω)

(ω0n − ω)2 + γ 2

+ 〈0|µq |n〉〈n|µq ′ |0〉(ω0n + ω)

(ω0n + ω)2 + γ 2

]
,

(13)
α

(I )
qq ′ (−ω; ω) = γ

∑
n

[ 〈0|µq |n〉〈n|µq ′ |0〉
(ω0n − ω)2 + γ 2

− 〈0|µq |n〉〈n|µq ′ |0〉
(ω0n + ω)2 + γ 2

]
.

These models were compared to dissipative time-dependent
density functional calculation in a recent article by Jensen
and co-workers [58] and are compared to the nonperturbative
treatment in the following.

III. NUMERICAL SIMULATIONS

A. Time-dependent basis parameters

For our numerical simulations, we choose to study the
dynamic polarizability of H2. This model system has been
a playground for theoreticians for a quite a long time
already [62–65] and thus provides a good benchmark for
our nonperturbative linear response simulations. We fixed
the nuclear distance at its experimental value of RHH =
1.401a0 and defined the z axis along the molecular axis. It
is well-known that the dynamic polarizability is influenced by
the nuclear motion [66], in particular for a small molecule
like H2 with an oscillation period below 10 fs. The fixed-
nuclei approximation certainly represents a limitation of the
present model. Fortunately, including the effect of nuclear
motion on the dynamic polarizability tensor is straightfor-
ward. The idea is to calculate the dynamic polarizability
tensor at different internuclear distances, RHH, and then
average according to the result on the initial vibrational wave
function,

α
(R,I )
qq ′ (t ; ω)

=
∑

ν

Pν

∫ ∞

0
ψ∗

ν (RHH)α(R,I )
qq ′ (t ; ω; RHH)ψν(RHH)dRHH,

(14)

where ψν is the νth vibrational eigenstate on the ground
potential energy surface and Pν is its Boltzmann weight.
We prefer leaving the vibrational averaging aside to put the
emphasis on the effects of energy and phase relaxation of the
electronic states on a single-point calculation of the dynamic
polarizability tensor.

Using Dunning’s augmented correlation-consistent polar-
ized valence quadruple ζ basis set [67,68], the 92 orbitals
computed at the Hartree-Fock level were combined to form a
full basis of singlet states. The wave functions were computed
at the CIS level and the energies were corrected perturbatively
to include the effect of double excitations. Figure 1 shows
schematically the first few eigenenergies of H2 obtained at the
CIS(D) level of theory, classified according to the orientation
of their transition dipole moment. The ionization potential,
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FIG. 1. (Color online) First few energy levels of H2 computed at
the CIS(D) level of theory using Dunning’s aug-cc-pVQZ basis set.
The states on the left (right) are accessible from the ground state using
an x- (y-)polarized electric field, while the states in the middle are
accessible using a z-polarized electric field. The ionization potential
IP is at 0.594 45 Eh.

calculated from Koopmans’ theorem, is at 0.594 45 Eh, just
above state |5〉.

The basis size for the time-dependent calculation was
tested for convergence. Whereas a minimal two-state basis
appears sufficient for converging the dynamic polarizability
curve close to the resonance energies, up to 60 states were
included in the basis to achieve full convergence off resonance.
These correspond to states below 4.69 Hartree, where there
is coincidently a large gap of about 1 hartree in the CIS(D)
energies. All calculations have been performed with the latter
basis of 60 singlet states at the CIS(D) level.

The nonperturbative dynamic polarizability calculations
in a time-dependent framework depend on the duration of
the pulse used to measure the property. Throughout the
article all calculations have been performed using z-polarized
electric fields according to Eq. (8) with amplitude F0,z =
10−10Eh/ea0. Figure 2 shows the effect of the pulse duration
on the real part of the dynamic polarizability for the system
with and without dissipation close to the first resonant
transition. The pulse length was varied from 25 fs to 10 ps.
In the top panel, which corresponds to the dissipation-free
case, we see that the real dynamic polarizability along z

is indeed greatly affected by the pulse length, as the linear
response becomes larger close to the resonance for longer
pulse.

This is an indication that, for very short pulses,
the field and the response property are convoluted. In
the inset the details of the real dynamic polarizability
close to the resonance are better seen. With a pulse
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FIG. 2. (Color online) Effect of the pulse duration on the
zz component of the dynamic polarizability tensor of H2 close to the
0 → 1 transition computed using the ρ-TDCI method and a sin2 pulse
with maximal amplitude 10−10 Eh/ea0. The convolution of the field
and the dynamic polarizability without and with (A = 104 and B = 1)
dissipation is shown in the top and bottom panels, respectively. The
signals obtained with the three longer pulses overlap in the bottom
panel. In the inset, the detailed behavior close to the resonance point
for the nondissipative system is shown.

of 1 ps, the response is similar to that obtained with
longer pulses until ∼0.5 millihartree about the transition
energy.

In the bottom panel of Fig. 2, we see the effect of the
pulse duration on a H2 molecule placed in a strong dissipative
environment. We use the model defined in Sec. II B, where
the energy relaxation parameter A in Eq. (5) is set to 104 and
the pure dephasing parameter B in Eq. (6) is set to 1. For theses
parameter values, the effect of pure dephasing and energy
relaxation are of comparable magnitude. Using this model, the
lifetime of the first excited state is about τ1→0 = 1/�1→0 
 43
fs. As was the case for the nondissipative system, we can see
that the dynamic polarizability is convoluted with the field
for short pulse lengths. On the other hand, the simulation
converges much more quickly as the duration of the pulse is
increased. While almost converged at 250 fs, the simulations
do not show any change for pulses longer than 1 ps. Thus,
the polarizability is completely deconvoluted from the field
for pulse durations on the order of a picosecond, and the
remainder of the simulations have be done in this time
regime.

-8

-6

-4

-2

 0

 2

 4

 6

 8

0.4706 0.4708 0.471 0.4712 0.4714 0.4716 0.4718

α(R
) zz

 (
un

its
 o

f 1
03  a

03 )

Energy (units of Eh)

No dissipation
A = 1

A = 10
A = 100

A = 1000
A = 10000

FIG. 3. (Color online) Effect of energy relaxation on the
zz component of the dynamic polarizability tensor αzz of H2 close
to the 0 → 1 transition computed using the ρ-TDCI method. A sin2

pulse of duration 1 ps and maximal amplitude 10−10 Eh/ea0 was used
for all calculations. The pure dephasing is set to B = 0.

B. Energy and phase relaxation

Figure 3 shows the effect of the strength of energy
dissipation on the real part of the zz component of the dynamic
polarizability tensor αzz of H2 close to the first transition energy
at 0.471 175 Eh. The pure dephasing has first been neglected
by setting B = 0 in Eq. (6). Each point in the figure represents
a simulation using a 1-ps pulse defined by Eq. (8) for different
frequencies ω. The real part of the polarizability tensor has
been extracted at the field maximum, tm, according to Eq. (9).

By increasing the constant A in our dissipation model,
we can see the effect of energy relaxation becoming more
important. For A = 1, representing coupling to the vacuum,
the lifetime of the first excited state is on the order of 430 ps.
Since we are using much shorter laser pulses, the dynamic
polarizability is numerically equivalent to that without dis-
sipation. For A = 100, which yields lifetimes on the same
order as the laser pulse length, the dynamics begins to differ
from that of the nondissipative system. Also, the field and the
response do not appear to be convoluted anymore. The largest
value of A corresponds to an electron-rich environment, such
as the one found when the molecule is close to a metallic
surface, in which case the dynamic polarizability is almost
flat compared to the others. Interestingly, all the different
dissipative environments yield a dynamic polarizability that
crosses 0 exactly at the resonance energy. This stems from
the phase shift between the induced dipole moment and
the field, the former vanishing at the point in time at
which the latter reaches its maximum for resonant excitation
frequency.

Turning now our attention to the effect of nonlocal
pure dephasing, we have studied environments for which
the lifetime of the first subsystem excited state is, at
most, of comparable magnitude as the laser pulse used for
the simulation, here again chosen as 1 ps. Figure 4 shows
the zz component of the real dynamic polarizability for the
environments with parameter A = 1000 (τ1→0 = 430 fs) and
A = 104 (τ1→0 = 43 fs). The relative contribution of pure
dephasing with respect to energy dissipation was varied from
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FIG. 4. (Color online) Effect of pure dephasing on the zz

component of the dynamic polarizability tensor of H2 for different
energy relaxation rates, computed using the ρ-TDCI method and a
sin2 pulse of duration 1 ps with maximal amplitude 10−10 Eh/ea0.
The red (gray) dotted line include no pure dephasing. The green (light
gray) triangles, the black line line, and the blue (dark gray) circles
are obtained by setting B = {0.1,1.0,10}, respectively.

inexistent (B = 0, small red circles) to small (B = 0.1, green
triangles), to comparable in magnitude (B = 1, black solid
line), to dominating (B = 10, large blue circles).

In the top panel, one can see that the first peak of the
response is indeed affected by the nonlocal pure dephasing
due to the environment, whereas the second resonant peak
at h̄ω05 = 0.569 67Eh seems less sensitive. Note that the
transition at energy h̄ω02 = 0.485 04Eh is not observed be-
cause the transition dipole moment is 10 orders of magnitude
smaller than that associated with the two other transitions. The
reduction of the dynamic polarizability amplitude close to the
resonance energies with increasing pure dephasing is also seen
for less dissipative environments. The effect becomes marginal
when the lifetimes are much longer than the pulse duration,
and thus the curves have not been shown here. The bottom
panel shows the effect of pure dephasing on the polarizability
of H2 in an electron-rich environment (with A = 104). The
response reduction is already visible when B = 0.1, and
the polarizability becomes almost flat when pure dephasing
dominates energy relaxation. Furthermore, we see that the
second peak is apparently more affected by pure dephasing
when energy dissipation is larger (compare top and bottom
panels).
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FIG. 5. (Color online) Kennlinien for H2 using four different
dissipation rates. A z-polarized sin2 pulse of duration 1 ps and
maximal amplitude 10−10 Eh/ea0 was used in all cases. The magenta
(light gray) line, the blue (dark gray), the green (light gray), the red
(gray, largest amplitude), and black (with negative slope) ellipsoids
are obtained for fields with carrier frequency 0.4500, 0.4700, 0.4705,
0.4715, and 0.4720 Eh, respectively.

C. Time-dependent dipole and uncertainty assessment

To understand the behavior of the method and assess its
reliability, it is important to look at what happens to the induced
dipole moment as a function of time. As proposed in our
previous article [25], one can look at the so-called kennlinie
in the µz(t)-Fz(t ; ω) plane for different carrier frequencies. A
kennlinie is simply a parametric plot of dependent variables,
here the induced dipole and the electric field as a function of the
time parameter. For different dissipative environments, they
are shown in Fig. 5. The magenta lines represent excitations
far from resonance, at h̄ω = 0.4500Eh. For all dissipative
environments, the kennlinie is almost a flat line and the induced
dipole moment and the field are in phase, as expected. As one
approaches the resonance energy at 0.471 175 Eh, the line
starts to deform into an ellipse due to the increasing phase
shift between the two quantities. The blue curve corresponds
to a carrier frequency of h̄ω = 0.4700Eh and the green curve
to h̄ω = 0.4705Eh. From the two top panels we can see that
the slope of the line bisecting the long axis of the ellipses
is getting smaller as dissipation is turned on. This explains
the decrease in the amplitude of the dynamic polarizability
curve observed in Fig. 3. The very small change observed in
the top two panels is due to the convolution of the field and
the induced dipole moment for the nondissipative case.

Looking at the bottom left panel, where energy relaxation
is now ten times faster than in the top right panel, we see that
not only the slope of the bisector is getting smaller but also the
ellipse is getting rounder. Thus, it seems that increasing energy
relaxation will lead to larger phase shift between the induced
dipole moment and the electric field. This is paralleled by the
reduction of the real dynamic polarizability curve amplitude,
as seen in Fig. 3. If one further adds the effect of nonlocal
pure dephasing to the simulation, the kennlinien become even
rounder and have an even flater slope. The increase in phase
shift between field and dipole is reflected also in the reduction
of the polarizability shown in Fig. 4. The last two curves
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observed in Fig. 5 are obtained for carrier frequencies that
are slightly above the resonance energy, at 0.4715Eh and
0.4720Eh for the red and blue curves, respectively. The same
trends as previously discussed can be observed when the
influence of energy relaxation and pure dephasing are turned
on. The most interesting characteristic of these kennlinien is
that the slope of their bisector is now negative, which can be
easily justified by looking at Eq. (12).

Note that all the simulations discussed above are in the
linear response regime, since no electronic transition takes
place with such low-intensity pulses with carrier frequency
far enough off resonance. The associated kennlinien are thus
evolving smoothly in the µz(t)-Fz(t ; ω) plane. When the laser
energy approaches the transition energy, a kink can be observed
in the kennlinien for the nondissipative system, as shown
in the top left panel of Fig. 6. The yellow, black, and red
lines are kennlinien obtained for carrier frequencies h̄ω =
0.4700Eh, h̄ω = 0.4709Eh, and h̄ω = 0.4710Eh, respectively.
The latter two are located just below the transition energy
at 0.471 175 Eh. This kink has its origin in the transfer of
an almost negligible amount of population to the first excited
state, as can be seen from the top right panel of Fig. 6.

Far from resonance (yellow curve), the dipole moment
increases as the field rises before going back to zero as the
field is turned off. Closer to resonance (black curve), the
induced dipole moment does not return completely to zero
after the field is turned off. Small-amplitude oscillations are
observed at the end of the pulse, which indicate the creation of
an electronic wave packet. The population of the excited state
remains very small, slightly above the numerical accuracy, but
one should already consider that the simulation departs from
the continuous-wave limit. This trend is even more pronounced
when using a carrier frequency closer to the resonant transition,
as can be seen from the red curve in the top right panel. When
compared to the dissipative system, the behavior of the latter
is much more regular. In the bottom left panel we can see
the kennlinien for the same three carrier frequencies as the
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FIG. 6. (Color online) Effect of dissipation on the kennlinien for
H2 close to the resonant transition at 0.471 175 Eh obtained with
a z-polarized sin2 pulse of duration 1 ps and maximal amplitude
10−10 Eh/ea0. The associated time-dependent induced dipole mo-
ment is shown in the right panels. The yellow (light gray), black,
and red (gray, largest amplitude) lines are associated with carrier
frequency 0.4700, 0.4709, and 0.4710 Eh, respectively.

top panel for a system in a strong dissipative environment
(A = 104). All three curves have a much smaller intensity than
in the nondissipative case, and they have a much more regular
ellipsoid shape. Looking at the bottom right panel, it is clear
that there is no creation of an electronic wave packet in the
dissipative environment. For all three energies, the induced
dipole moment rises and falls with the field strength. The
infinitesimal population that might be pumped up to the excited
state is brought down to the ground state by energy relaxation.
Thus, the associated kennlinie do not present any kink.

As seen from the kennlinien, both the electric field and the
induced dipole moment are time-dependent quantities. Thus,
the polarizability computed according to Eq. (9) will also
depend on time. All polarizabilities presented in the present
article have been chosen at the field maximum, because it is
a well-defined quantity. In particular for carrier frequencies
far off resonance, the polarizability at the field and at the
induced dipole maximum is almost the same. On the other
hand, the difference between the two values is much larger
close to the resonance. As pointed out before, this has its
origin in the phase shift of the two quantities, which is of π/2
for the resonant transition. The difference between the two
values can be used as an uncertainty measure on the calculated
polarizability, as proposed in Eq. (11). Figure 7 shows the
uncertainty associated with the real part of the zz component of
the dynamic polarizability tensor of H2 in a strong dissipative
environment (A = 104 and B = 1).

The top panel shows the polarizability and the associated
uncertainty is shown in the bottom panel. The phase shift of
the induced dipole moment with respect to the field is also
shown in the bottom panel. As the carrier frequency gets
close to the resonance, the latter rises to reach a maximum
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FIG. 7. (Color online) Uncertainty in the zz component of the
dynamic polarizability tensor of H2 according to Eq. (11). A
z-polarized sin2 pulse of duration 1 ps and maximal amplitude
10−10 Eh/ea0 was used. The lowest panel shows the phase shift δ

of the induced dipole moment.
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and falls after crossing the resonance. This is true for both
the transitions at 0.471 175 Eh and 0.569 67 Eh, as shown by
the vertical dotted lines. The relative uncertainty is found to
be much larger than the polarizability value at these points.
The third dotted line is there to illustrate that the uncertainty
also increases slightly when the polarizability crosses zero.
This is a numerical problem, since the relative uncertainty in
Eq. (11) will diverge when the induced dipole moment crosses
zero. The same numerical difficulty arises in the determination
of the phase shift. In the bottom panel, we see an unphysical
increase in the phase shift when the induced dipole crosses
zero, which is purely of numerical origin. Note that the phase
shift is not defined when the induced dipole moment strictly
equals zero. Thus, the uncertainty measure we propose follows
the behavior one would intuitively expect.

D. Comparison with the perturbative treatment

It is possible to obtain both the real and imaginary parts
of the polarizability tensor using time-dependent perturbation
theory. Figure 8 compares the real part of the polarizability
obtained using the sum-over-states expressions (13) and (12)
with the nonperturbative treatment. The green line represent
the system without dissipation, for which one can clearly
see that the polarizability diverges at both resonant transition
energies. The three other lines have been computed for a strong
dissipative environment (A = 104 and B = 1). The dashed
blue line refers to the standard formula (13) using constant
energy broadening, and the black line refers to Eq. (12), for
which state-to-state transition rates were computed using the
model exposed in Sec. II B. The constant energy broadening is
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FIG. 8. (Color online) Comparison of the real part zz component
of the dynamic polarizability tensor of H2 obtained using different
methods. The dashed green (light gray) line is obtained using
sum-over-states perturbation theory without dissipation [Eq. (13)
with γ = 0]. The dotted blue (dark gray) line is obtained using
the sum-over-states model with constant dissipative rate [Eq. (13)].
The red (gray) line with large circles is obtained using the refined
SOS-PT model of Eq. (12). The solid black line is computed with
ρ-TDCI, using a sin2 pulse of duration 1 ps with maximal amplitude
10−10 Eh/ea0. The latter two lines coincide with each other. The
detailed behavior of the dynamic polarizability for the 0 → 5
transition is shown in the inset.

chosen equal to the transition rate from the first excited to the
ground state. The red dotted line was obtained using ρ-TDCI
with the same set of state-resolved transition rates as for the
perturbative approach.

It can be seen that all different methods yield quantitatively
the same dynamic polarizability when the electric field is
chosen off resonance. Interestingly, this is valid for both the
dissipative and nondissipative environments. Thus, the effects
of dissipation are only seen in the vicinity of the resonances,
where we already saw that energy relaxation prevents the
creation of an electronic wave packet. In the inset, we can see
the behavior of the real polarizability around the second excited
state accessible using a z-polarized electric pulse. Although
the perturbation theory for the nondissipative system diverges
(green dashed curve), all other curves reach a maximum
slightly below the resonance and cross the zero at the transition
energy before reaching a minimum at an energy above the res-
onance. The profile is in all cases symmetric about the resonant
energy. The perturbation theory yields a larger curve amplitude
than the refined formula (12). This is not to be seen from
the lower energy transition, where both perturbation theory
expressions and the explicitly time-dependent treatment are
equal by construction. At higher energy, dissipation is more ef-
ficient and thus the state-resolved energy broadening (γ ∗

5→0 =
1.048 × 10−3Ehh̄

−1) becomes larger than the constant energy-
broadening parameter (γ = 8.005 × 10−4Ehh̄

−1) used in
Eq. (13).

The nonperturbative treatment follows both other methods,
but the curve has somewhat less amplitude than the one com-
puted using expression (13). The result is numerically equiva-
lent to the state-resolved formula (12), as can be seen from the
figure. This indicates that, although the sum-over-states per-
turbation theory is only strictly valid far from resonance where
the perturbation to the zeroth-order system is small, the field
amplitude remains so small that the inclusion of state-resolved
energy-broadening constants to the perturbation theory suffice
to reproduce the numerical behavior of the dynamic polariz-
ability. Note that the perturbation theory expression does not
include any information about the phase shift of the induced
dipole moment. As seen in the previous section, this phase shift
leads to an uncertainty in the definition of the time at which one
should evaluate the dynamic polarizability. From Fig. 8, it can
clearly be seen that the perturbation theory expression is based
on the evaluation of the linear response quantity at the field
maximum. This is why perturbation theory always yields a
definite value. This arbitrary time definition can be avoided
by computing the dynamic polarizability using the time-
dependent correlated electron dissipative dynamics approach
proposed here. This does not only give access to the phase shift
of the induced dipole moment, but also includes the effect of
the perturbation to all orders in the field expansion for arbitrary
field strengths and field envelope functions (cf. Fig. 2).

Figure 9 shows the imaginary part of the dynamic polar-
izability for the same strong dissipative environment as in
Fig. 8. The green and blue curves refer as before to the simple
and refined perturbation theory expressions, respectively. The
red curve is obtained by transforming the nonperturbative real
polarizability using the Kramers-Kronig rule [Eq. (10)]. The
latter is almost in perfect agreement with the result obtained
with the state-resolved perturbation theory [Eq. (12)]. Both
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FIG. 9. (Color online) Comparison of the imaginary part
zz component of the dynamic polarizability tensor of H2 obtained
using different methods. The solid red (gray) line is obtained from
the real part using the Kramers-Kronig rule. The green (light gray) line
is obtained using the sum-over-states model with constant dissipative
rate. The dashed blue (dark gray) line is obtained using the refined
SOS-PT model of Eq. (12). The detailed behavior of the dynamic
polarizability for the 0 → 5 transition is shown in the inset.

have a smaller amplitude and have a larger width than the
constant rate perturbative calculation [Eq. (13)]. This can be
rationalized on the basis that also the real polarizability is of
larger magnitude in the latter cases. In the inset we see that
the Kramers-Kronig transformation of the real polarizability
yield a curve amplitude that is slightly smaller than the
state-resolved perturbative treatments. This is due to small
inaccuracies in the numerical integral, since both methods
yield the same real dynamic polarizability and should thus
have the same imaginary counterpart, provided there is an
analytical expression for the real part.

IV. CONCLUSION

In conclusion, we have studied the effects of finite electronic
lifetimes on the dynamic polarizability of a simple molecule,
H2, in a dissipative environment. The ρ-TDCI method made
it possible to investigate the linear response property in
a time-resolved correlated electron dynamics framework.
Energy relaxation and pure dephasing were included using the
Lindblad semigroup formalism. The state-to-state transition
rates were computed using a scaled spontaneous emission
approach, for which the parameters were varied systematically
in order to simulate the effect of electron-rich media.

Ultrashort laser pulses of various durations revealed the
convolution of the field and the polarizability close to the
resonant transition energies. It appeared that dissipation
reduces significantly the degree of convolution of the property
and the field. Both energy relaxation and pure dephasing were
studied separately and induced a reduction in the dynamic
polarizability amplitude, as well as a slight broadening of the
peaks. Far off resonance the kennlinien [that is, the parametric
plot in the µz(t)-Fz(t ; ω) plane] showed rounder ellipsoids with
smaller induced dipole moment with increasing dissipative
rate. In the absence of dissipation, creation of an electronic
wave packet is observed close to the resonance energy even
at very low field intensity; a kink is seen in the kennlinien.
This effect is masked by dissipation and the kennlinien remain
well-behaved near resonance. The ambiguity associated with
the time at which the dynamic polarizability should be
computed was used to define a simple measure of uncertainty.
This provides more insight into the relative phase behavior
of the dynamic polarizability, in particular close to resonant
transitions.

Finally, comparison of the perturbative and nonperturbative
treatments revealed that, for the weak fields considered here,
both methods are very similar far off resonance for the real
component of the polarizability tensor. Some discrepancies
arise close to resonances for the model using constant energy
broadening, where the state lifetimes are not properly treated.
The signal amplitude proved significantly lower using the
state-to-state lifetime model proposed earlier, computed either
with the state-resolved perturbation theory expression or our
ultrafast correlated electron dissipative dynamics method. The
time-dependent approach allows for an accurate description of
the phase of the induced dipole moment as well as containing
the field induced perturbation of the electronic density to all
orders exactly. This picture offers complementary information
to the frequency-domain approaches, represented here by the
perturbation theory expressions.

Although the ρ-TDCI method is applied to a simple test
case in the present article, it could be used to characterize
many other systems of current interest. These range from the
response properties of quantum dots with potential application
to qubits to the ultrashort dynamics in molecular electronic
devices or the electron scattering of adsorbates at metal
surfaces.

ACKNOWLEDGMENTS

This work was supported by the Sonderforschungbereich
450 of the Deutsche Forschungsgemeinschaft, Analysis and
Control of Ultrafast Photoinduced Processes (Subproject C7).

[1] M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider,
N. Milosevic, T. Brabek, P. Corkum, U. Heinzmann,
M. Drescher, and F. Krausz, Nature (London) 414, 509 (2001).

[2] R. Kienberger et al., Science 297, 1144 (2002).
[3] M. Drescher, R. Hentschel, M. Kienberger, M. Uibracker,

V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg,
U. Heinzmann, and F. Krausz, Nature (London) 419, 803 (2002).

[4] P. H. Bucksbaum, Nature (London) 421, 593 (2003).
[5] G. G. Paulus, F. Lindner, H. Walther, A. Baltuska,

E. Goulielmakis, M. Lezius, and F. Krausz, Phys. Rev. Lett.
91, 253004 (2003).
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